1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-18 10:35:55 +00:00
freebsd/sys/dev/sound/pci/csapcm.c
Cameron Grant 35f9e4a1db handle emulated dma reads
don't try to get sample size from snd_dbuf
2000-05-26 21:15:47 +00:00

878 lines
22 KiB
C

/*
* Copyright (c) 1999 Seigo Tanimura
* All rights reserved.
*
* Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
* cwcealdr1.zip, the sample sources by Crystal Semiconductor.
* Copyright (c) 1996-1998 Crystal Semiconductor Corp.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/soundcard.h>
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/ac97.h>
#include <dev/sound/chip.h>
#include <dev/sound/pci/csareg.h>
#include <dev/sound/pci/csavar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/* device private data */
struct csa_info;
struct csa_chinfo {
struct csa_info *parent;
pcm_channel *channel;
snd_dbuf *buffer;
int dir;
u_int32_t fmt;
int dma;
};
struct csa_info {
csa_res res; /* resource */
void *ih; /* Interrupt cookie */
bus_dma_tag_t parent_dmat; /* DMA tag */
struct csa_bridgeinfo *binfo; /* The state of the parent. */
/* Contents of board's registers */
u_long pfie;
u_long pctl;
u_long cctl;
struct csa_chinfo pch, rch;
};
/* -------------------------------------------------------------------- */
/* prototypes */
static int csa_init(struct csa_info *);
static void csa_intr(void *);
static void csa_setplaysamplerate(csa_res *resp, u_long ulInRate);
static void csa_setcapturesamplerate(csa_res *resp, u_long ulOutRate);
static void csa_startplaydma(struct csa_info *csa);
static void csa_startcapturedma(struct csa_info *csa);
static void csa_stopplaydma(struct csa_info *csa);
static void csa_stopcapturedma(struct csa_info *csa);
static void csa_powerupadc(csa_res *resp);
static void csa_powerupdac(csa_res *resp);
static int csa_startdsp(csa_res *resp);
static int csa_allocres(struct csa_info *scp, device_t dev);
static void csa_releaseres(struct csa_info *scp, device_t dev);
/* talk to the codec - called from ac97.c */
static u_int32_t csa_rdcd(void *, int);
static void csa_wrcd(void *, int, u_int32_t);
/* channel interface */
static void *csachan_init(void *devinfo, snd_dbuf *b, pcm_channel *c, int dir);
static int csachan_setdir(void *data, int dir);
static int csachan_setformat(void *data, u_int32_t format);
static int csachan_setspeed(void *data, u_int32_t speed);
static int csachan_setblocksize(void *data, u_int32_t blocksize);
static int csachan_trigger(void *data, int go);
static int csachan_getptr(void *data);
static pcmchan_caps *csachan_getcaps(void *data);
static pcmchan_caps csa_playcaps = {
8000, 48000,
AFMT_STEREO | AFMT_U8 | AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE,
AFMT_STEREO | AFMT_S16_LE
};
static pcmchan_caps csa_reccaps = {
11025, 48000,
AFMT_STEREO | AFMT_S16_LE,
AFMT_STEREO | AFMT_S16_LE
};
static pcm_channel csa_chantemplate = {
csachan_init,
csachan_setdir,
csachan_setformat,
csachan_setspeed,
csachan_setblocksize,
csachan_trigger,
csachan_getptr,
csachan_getcaps,
};
/* -------------------------------------------------------------------- */
/* channel interface */
static void *
csachan_init(void *devinfo, snd_dbuf *b, pcm_channel *c, int dir)
{
struct csa_info *csa = devinfo;
struct csa_chinfo *ch = (dir == PCMDIR_PLAY)? &csa->pch : &csa->rch;
ch->parent = csa;
ch->channel = c;
ch->buffer = b;
ch->buffer->bufsize = CS461x_BUFFSIZE;
if (chn_allocbuf(ch->buffer, csa->parent_dmat) == -1) return NULL;
return ch;
}
static int
csachan_setdir(void *data, int dir)
{
struct csa_chinfo *ch = data;
struct csa_info *csa = ch->parent;
csa_res *resp;
resp = &csa->res;
if (dir == PCMDIR_PLAY)
csa_writemem(resp, BA1_PBA, vtophys(ch->buffer->buf));
else
csa_writemem(resp, BA1_CBA, vtophys(ch->buffer->buf));
ch->dir = dir;
return 0;
}
static int
csachan_setformat(void *data, u_int32_t format)
{
struct csa_chinfo *ch = data;
struct csa_info *csa = ch->parent;
u_long pdtc;
csa_res *resp;
resp = &csa->res;
if (ch->dir == PCMDIR_REC)
csa_writemem(resp, BA1_CIE, (csa_readmem(resp, BA1_CIE) & ~0x0000003f) | 0x00000001);
else {
csa->pfie = csa_readmem(resp, BA1_PFIE) & ~0x0000f03f;
if (format & AFMT_U8 || format & AFMT_U16_LE || format & AFMT_U16_BE)
csa->pfie |= 0x8000;
if (format & AFMT_S16_BE || format & AFMT_U16_BE)
csa->pfie |= 0x4000;
if (!(format & AFMT_STEREO))
csa->pfie |= 0x2000;
if (format & AFMT_U8 || format & AFMT_S8)
csa->pfie |= 0x1000;
csa_writemem(resp, BA1_PFIE, csa->pfie);
pdtc = csa_readmem(resp, BA1_PDTC) & ~0x000003ff;
if ((format & AFMT_S16_BE || format & AFMT_U16_BE || format & AFMT_S16_LE || format & AFMT_U16_LE) && (format & AFMT_STEREO))
pdtc |= 0x00f;
else if ((format & AFMT_S16_BE || format & AFMT_U16_BE || format & AFMT_S16_LE || format & AFMT_U16_LE) || (format & AFMT_STEREO))
pdtc |= 0x007;
else
pdtc |= 0x003;
csa_writemem(resp, BA1_PDTC, pdtc);
}
ch->fmt = format;
return 0;
}
static int
csachan_setspeed(void *data, u_int32_t speed)
{
struct csa_chinfo *ch = data;
struct csa_info *csa = ch->parent;
csa_res *resp;
resp = &csa->res;
if (ch->dir == PCMDIR_PLAY)
csa_setplaysamplerate(resp, speed);
else if (ch->dir == PCMDIR_REC)
csa_setcapturesamplerate(resp, speed);
/* rec/play speeds locked together - should indicate in flags */
#if 0
if (ch->direction == PCMDIR_PLAY) d->rec[0].speed = speed;
else d->play[0].speed = speed;
#endif
return speed; /* XXX calc real speed */
}
static void
csa_setplaysamplerate(csa_res *resp, u_long ulInRate)
{
u_long ulTemp1, ulTemp2;
u_long ulPhiIncr;
u_long ulCorrectionPerGOF, ulCorrectionPerSec;
u_long ulOutRate;
ulOutRate = 48000;
/*
* Compute the values used to drive the actual sample rate conversion.
* The following formulas are being computed, using inline assembly
* since we need to use 64 bit arithmetic to compute the values:
*
* ulPhiIncr = floor((Fs,in * 2^26) / Fs,out)
* ulCorrectionPerGOF = floor((Fs,in * 2^26 - Fs,out * ulPhiIncr) /
* GOF_PER_SEC)
* ulCorrectionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -
* GOF_PER_SEC * ulCorrectionPerGOF
*
* i.e.
*
* ulPhiIncr:ulOther = dividend:remainder((Fs,in * 2^26) / Fs,out)
* ulCorrectionPerGOF:ulCorrectionPerSec =
* dividend:remainder(ulOther / GOF_PER_SEC)
*/
ulTemp1 = ulInRate << 16;
ulPhiIncr = ulTemp1 / ulOutRate;
ulTemp1 -= ulPhiIncr * ulOutRate;
ulTemp1 <<= 10;
ulPhiIncr <<= 10;
ulTemp2 = ulTemp1 / ulOutRate;
ulPhiIncr += ulTemp2;
ulTemp1 -= ulTemp2 * ulOutRate;
ulCorrectionPerGOF = ulTemp1 / GOF_PER_SEC;
ulTemp1 -= ulCorrectionPerGOF * GOF_PER_SEC;
ulCorrectionPerSec = ulTemp1;
/*
* Fill in the SampleRateConverter control block.
*/
csa_writemem(resp, BA1_PSRC, ((ulCorrectionPerSec << 16) & 0xFFFF0000) | (ulCorrectionPerGOF & 0xFFFF));
csa_writemem(resp, BA1_PPI, ulPhiIncr);
}
static void
csa_setcapturesamplerate(csa_res *resp, u_long ulOutRate)
{
u_long ulPhiIncr, ulCoeffIncr, ulTemp1, ulTemp2;
u_long ulCorrectionPerGOF, ulCorrectionPerSec, ulInitialDelay;
u_long dwFrameGroupLength, dwCnt;
u_long ulInRate;
ulInRate = 48000;
/*
* We can only decimate by up to a factor of 1/9th the hardware rate.
* Return an error if an attempt is made to stray outside that limit.
*/
if((ulOutRate * 9) < ulInRate)
return;
/*
* We can not capture at at rate greater than the Input Rate (48000).
* Return an error if an attempt is made to stray outside that limit.
*/
if(ulOutRate > ulInRate)
return;
/*
* Compute the values used to drive the actual sample rate conversion.
* The following formulas are being computed, using inline assembly
* since we need to use 64 bit arithmetic to compute the values:
*
* ulCoeffIncr = -floor((Fs,out * 2^23) / Fs,in)
* ulPhiIncr = floor((Fs,in * 2^26) / Fs,out)
* ulCorrectionPerGOF = floor((Fs,in * 2^26 - Fs,out * ulPhiIncr) /
* GOF_PER_SEC)
* ulCorrectionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -
* GOF_PER_SEC * ulCorrectionPerGOF
* ulInitialDelay = ceil((24 * Fs,in) / Fs,out)
*
* i.e.
*
* ulCoeffIncr = neg(dividend((Fs,out * 2^23) / Fs,in))
* ulPhiIncr:ulOther = dividend:remainder((Fs,in * 2^26) / Fs,out)
* ulCorrectionPerGOF:ulCorrectionPerSec =
* dividend:remainder(ulOther / GOF_PER_SEC)
* ulInitialDelay = dividend(((24 * Fs,in) + Fs,out - 1) / Fs,out)
*/
ulTemp1 = ulOutRate << 16;
ulCoeffIncr = ulTemp1 / ulInRate;
ulTemp1 -= ulCoeffIncr * ulInRate;
ulTemp1 <<= 7;
ulCoeffIncr <<= 7;
ulCoeffIncr += ulTemp1 / ulInRate;
ulCoeffIncr ^= 0xFFFFFFFF;
ulCoeffIncr++;
ulTemp1 = ulInRate << 16;
ulPhiIncr = ulTemp1 / ulOutRate;
ulTemp1 -= ulPhiIncr * ulOutRate;
ulTemp1 <<= 10;
ulPhiIncr <<= 10;
ulTemp2 = ulTemp1 / ulOutRate;
ulPhiIncr += ulTemp2;
ulTemp1 -= ulTemp2 * ulOutRate;
ulCorrectionPerGOF = ulTemp1 / GOF_PER_SEC;
ulTemp1 -= ulCorrectionPerGOF * GOF_PER_SEC;
ulCorrectionPerSec = ulTemp1;
ulInitialDelay = ((ulInRate * 24) + ulOutRate - 1) / ulOutRate;
/*
* Fill in the VariDecimate control block.
*/
csa_writemem(resp, BA1_CSRC,
((ulCorrectionPerSec << 16) & 0xFFFF0000) | (ulCorrectionPerGOF & 0xFFFF));
csa_writemem(resp, BA1_CCI, ulCoeffIncr);
csa_writemem(resp, BA1_CD,
(((BA1_VARIDEC_BUF_1 + (ulInitialDelay << 2)) << 16) & 0xFFFF0000) | 0x80);
csa_writemem(resp, BA1_CPI, ulPhiIncr);
/*
* Figure out the frame group length for the write back task. Basically,
* this is just the factors of 24000 (2^6*3*5^3) that are not present in
* the output sample rate.
*/
dwFrameGroupLength = 1;
for(dwCnt = 2; dwCnt <= 64; dwCnt *= 2)
{
if(((ulOutRate / dwCnt) * dwCnt) !=
ulOutRate)
{
dwFrameGroupLength *= 2;
}
}
if(((ulOutRate / 3) * 3) !=
ulOutRate)
{
dwFrameGroupLength *= 3;
}
for(dwCnt = 5; dwCnt <= 125; dwCnt *= 5)
{
if(((ulOutRate / dwCnt) * dwCnt) !=
ulOutRate)
{
dwFrameGroupLength *= 5;
}
}
/*
* Fill in the WriteBack control block.
*/
csa_writemem(resp, BA1_CFG1, dwFrameGroupLength);
csa_writemem(resp, BA1_CFG2, (0x00800000 | dwFrameGroupLength));
csa_writemem(resp, BA1_CCST, 0x0000FFFF);
csa_writemem(resp, BA1_CSPB, ((65536 * ulOutRate) / 24000));
csa_writemem(resp, (BA1_CSPB + 4), 0x0000FFFF);
}
static int
csachan_setblocksize(void *data, u_int32_t blocksize)
{
#if notdef
return blocksize;
#else
struct csa_chinfo *ch = data;
return ch->buffer->bufsize / 2;
#endif /* notdef */
}
static int
csachan_trigger(void *data, int go)
{
struct csa_chinfo *ch = data;
struct csa_info *csa = ch->parent;
if (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD)
return 0;
if (ch->dir == PCMDIR_PLAY) {
if (go == PCMTRIG_START)
csa_startplaydma(csa);
else
csa_stopplaydma(csa);
} else {
if (go == PCMTRIG_START)
csa_startcapturedma(csa);
else
csa_stopcapturedma(csa);
}
return 0;
}
static void
csa_startplaydma(struct csa_info *csa)
{
csa_res *resp;
u_long ul;
if (!csa->pch.dma) {
resp = &csa->res;
ul = csa_readmem(resp, BA1_PCTL);
ul &= 0x0000ffff;
csa_writemem(resp, BA1_PCTL, ul | csa->pctl);
csa_writemem(resp, BA1_PVOL, 0x80008000);
csa->pch.dma = 1;
}
}
static void
csa_startcapturedma(struct csa_info *csa)
{
csa_res *resp;
u_long ul;
if (!csa->rch.dma) {
resp = &csa->res;
ul = csa_readmem(resp, BA1_CCTL);
ul &= 0xffff0000;
csa_writemem(resp, BA1_CCTL, ul | csa->cctl);
csa_writemem(resp, BA1_CVOL, 0x80008000);
csa->rch.dma = 1;
}
}
static void
csa_stopplaydma(struct csa_info *csa)
{
csa_res *resp;
u_long ul;
if (csa->pch.dma) {
resp = &csa->res;
ul = csa_readmem(resp, BA1_PCTL);
csa->pctl = ul & 0xffff0000;
csa_writemem(resp, BA1_PCTL, ul & 0x0000ffff);
csa_writemem(resp, BA1_PVOL, 0xffffffff);
csa->pch.dma = 0;
/*
* The bitwise pointer of the serial FIFO in the DSP
* seems to make an error upon starting or stopping the
* DSP. Clear the FIFO and correct the pointer if we
* are not capturing.
*/
if (!csa->rch.dma) {
csa_clearserialfifos(resp);
csa_writeio(resp, BA0_SERBSP, 0);
}
}
}
static void
csa_stopcapturedma(struct csa_info *csa)
{
csa_res *resp;
u_long ul;
if (csa->rch.dma) {
resp = &csa->res;
ul = csa_readmem(resp, BA1_CCTL);
csa->cctl = ul & 0x0000ffff;
csa_writemem(resp, BA1_CCTL, ul & 0xffff0000);
csa_writemem(resp, BA1_CVOL, 0xffffffff);
csa->rch.dma = 0;
/*
* The bitwise pointer of the serial FIFO in the DSP
* seems to make an error upon starting or stopping the
* DSP. Clear the FIFO and correct the pointer if we
* are not playing.
*/
if (!csa->pch.dma) {
csa_clearserialfifos(resp);
csa_writeio(resp, BA0_SERBSP, 0);
}
}
}
static void
csa_powerupdac(csa_res *resp)
{
int i;
u_long ul;
/*
* Power on the DACs on the AC97 codec. We turn off the DAC
* powerdown bit and write the new value of the power control
* register.
*/
ul = csa_readio(resp, BA0_AC97_POWERDOWN);
ul &= 0xfdff;
csa_writeio(resp, BA0_AC97_POWERDOWN, ul);
/*
* Now, we wait until we sample a DAC ready state.
*/
for (i = 0 ; i < 32 ; i++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
DELAY(125);
/*
* Read the current state of the power control register.
*/
ul = csa_readio(resp, BA0_AC97_POWERDOWN);
/*
* If the DAC ready state bit is set, then stop waiting.
*/
if ((ul & 0x2) != 0)
break;
}
/*
* The DACs are now calibrated, so we can unmute the DAC output.
*/
csa_writeio(resp, BA0_AC97_PCM_OUT_VOLUME, 0x0808);
}
static void
csa_powerupadc(csa_res *resp)
{
int i;
u_long ul;
/*
* Power on the ADCs on the AC97 codec. We turn off the ADC
* powerdown bit and write the new value of the power control
* register.
*/
ul = csa_readio(resp, BA0_AC97_POWERDOWN);
ul &= 0xfeff;
csa_writeio(resp, BA0_AC97_POWERDOWN, ul);
/*
* Now, we wait until we sample a ADC ready state.
*/
for (i = 0 ; i < 32 ; i++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
DELAY(125);
/*
* Read the current state of the power control register.
*/
ul = csa_readio(resp, BA0_AC97_POWERDOWN);
/*
* If the ADC ready state bit is set, then stop waiting.
*/
if ((ul & 0x1) != 0)
break;
}
}
static int
csa_startdsp(csa_res *resp)
{
int i;
u_long ul;
/*
* Set the frame timer to reflect the number of cycles per frame.
*/
csa_writemem(resp, BA1_FRMT, 0xadf);
/*
* Turn on the run, run at frame, and DMA enable bits in the local copy of
* the SP control register.
*/
csa_writemem(resp, BA1_SPCR, SPCR_RUN | SPCR_RUNFR | SPCR_DRQEN);
/*
* Wait until the run at frame bit resets itself in the SP control
* register.
*/
ul = 0;
for (i = 0 ; i < 25 ; i++) {
/*
* Wait a little bit, so we don't issue PCI reads too frequently.
*/
#if notdef
DELAY(1000);
#else
DELAY(125);
#endif /* notdef */
/*
* Fetch the current value of the SP status register.
*/
ul = csa_readmem(resp, BA1_SPCR);
/*
* If the run at frame bit has reset, then stop waiting.
*/
if((ul & SPCR_RUNFR) == 0)
break;
}
/*
* If the run at frame bit never reset, then return an error.
*/
if((ul & SPCR_RUNFR) != 0)
return (EAGAIN);
return (0);
}
static int
csachan_getptr(void *data)
{
struct csa_chinfo *ch = data;
struct csa_info *csa = ch->parent;
csa_res *resp;
int ptr;
resp = &csa->res;
if (ch->dir == PCMDIR_PLAY) {
ptr = csa_readmem(resp, BA1_PBA) - vtophys(ch->buffer->buf);
if ((ch->fmt & AFMT_U8) != 0 || (ch->fmt & AFMT_S8) != 0)
ptr >>= 1;
} else {
ptr = csa_readmem(resp, BA1_CBA) - vtophys(ch->buffer->buf);
if ((ch->fmt & AFMT_U8) != 0 || (ch->fmt & AFMT_S8) != 0)
ptr >>= 1;
}
return (ptr);
}
static pcmchan_caps *
csachan_getcaps(void *data)
{
struct csa_chinfo *ch = data;
return (ch->dir == PCMDIR_PLAY)? &csa_playcaps : &csa_reccaps;
}
/* The interrupt handler */
static void
csa_intr (void *p)
{
struct csa_info *csa = p;
if ((csa->binfo->hisr & HISR_VC0) != 0)
chn_intr(csa->pch.channel);
if ((csa->binfo->hisr & HISR_VC1) != 0)
chn_intr(csa->rch.channel);
}
/* -------------------------------------------------------------------- */
/*
* Probe and attach the card
*/
static int
csa_init(struct csa_info *csa)
{
csa_res *resp;
resp = &csa->res;
csa->pfie = 0;
csa_stopplaydma(csa);
csa_stopcapturedma(csa);
/* Crank up the power on the DAC and ADC. */
csa_powerupadc(resp);
csa_powerupdac(resp);
csa_setplaysamplerate(resp, 8000);
csa_setcapturesamplerate(resp, 8000);
if (csa_startdsp(resp))
return (1);
return 0;
}
/* Allocates resources. */
static int
csa_allocres(struct csa_info *csa, device_t dev)
{
csa_res *resp;
resp = &csa->res;
if (resp->io == NULL) {
resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, CS461x_IO_SIZE, RF_ACTIVE);
if (resp->io == NULL)
return (1);
}
if (resp->mem == NULL) {
resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, CS461x_MEM_SIZE, RF_ACTIVE);
if (resp->mem == NULL)
return (1);
}
if (resp->irq == NULL) {
resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (resp->irq == NULL)
return (1);
}
if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/CS461x_BUFFSIZE, /*boundary*/CS461x_BUFFSIZE,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/CS461x_BUFFSIZE, /*nsegments*/1, /*maxsegz*/0x3ffff,
/*flags*/0, &csa->parent_dmat) != 0)
return (1);
return (0);
}
/* Releases resources. */
static void
csa_releaseres(struct csa_info *csa, device_t dev)
{
csa_res *resp;
resp = &csa->res;
if (resp->irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
resp->irq = NULL;
}
if (resp->io != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
resp->io = NULL;
}
if (resp->mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
resp->mem = NULL;
}
}
static int pcmcsa_probe(device_t dev);
static int pcmcsa_attach(device_t dev);
static int
pcmcsa_probe(device_t dev)
{
char *s;
struct sndcard_func *func;
/* The parent device has already been probed. */
func = device_get_ivars(dev);
if (func == NULL || func->func != SCF_PCM)
return (ENXIO);
s = "CS461x PCM Audio";
device_set_desc(dev, s);
return (0);
}
static int
pcmcsa_attach(device_t dev)
{
snddev_info *devinfo;
struct csa_info *csa;
csa_res *resp;
int unit;
char status[SND_STATUSLEN];
struct ac97_info *codec;
struct sndcard_func *func;
devinfo = device_get_softc(dev);
csa = malloc(sizeof(*csa), M_DEVBUF, M_NOWAIT);
if (csa == NULL)
return (ENOMEM);
bzero(csa, sizeof(*csa));
unit = device_get_unit(dev);
func = device_get_ivars(dev);
csa->binfo = func->varinfo;
/*
* Fake the status of DMA so that the initial value of
* PCTL and CCTL can be stored into csa->pctl and csa->cctl,
* respectively.
*/
csa->pch.dma = csa->rch.dma = 1;
/* Allocate the resources. */
resp = &csa->res;
resp->io_rid = CS461x_IO_OFFSET;
resp->mem_rid = CS461x_MEM_OFFSET;
resp->irq_rid = 0;
if (csa_allocres(csa, dev)) {
csa_releaseres(csa, dev);
return (ENXIO);
}
if (csa_init(csa)) {
csa_releaseres(csa, dev);
return (ENXIO);
}
codec = ac97_create(dev, csa, NULL, csa_rdcd, csa_wrcd);
if (codec == NULL)
return (ENXIO);
if (mixer_init(devinfo, &ac97_mixer, codec) == -1)
return (ENXIO);
snprintf(status, SND_STATUSLEN, "at irq %ld", rman_get_start(resp->irq));
/* Enable interrupt. */
if (bus_setup_intr(dev, resp->irq, INTR_TYPE_TTY, csa_intr, csa, &csa->ih)) {
csa_releaseres(csa, dev);
return (ENXIO);
}
csa_writemem(resp, BA1_PFIE, csa_readmem(resp, BA1_PFIE) & ~0x0000f03f);
csa_writemem(resp, BA1_CIE, (csa_readmem(resp, BA1_CIE) & ~0x0000003f) | 0x00000001);
if (pcm_register(dev, csa, 1, 1)) {
csa_releaseres(csa, dev);
return (ENXIO);
}
pcm_addchan(dev, PCMDIR_REC, &csa_chantemplate, csa);
pcm_addchan(dev, PCMDIR_PLAY, &csa_chantemplate, csa);
pcm_setstatus(dev, status);
return (0);
}
/* ac97 codec */
static u_int32_t
csa_rdcd(void *devinfo, int regno)
{
u_int32_t data;
struct csa_info *csa = (struct csa_info *)devinfo;
if (csa_readcodec(&csa->res, regno + BA0_AC97_RESET, &data))
data = 0;
return data;
}
static void
csa_wrcd(void *devinfo, int regno, u_int32_t data)
{
struct csa_info *csa = (struct csa_info *)devinfo;
csa_writecodec(&csa->res, regno + BA0_AC97_RESET, data);
}
static device_method_t pcmcsa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe , pcmcsa_probe ),
DEVMETHOD(device_attach, pcmcsa_attach),
{ 0, 0 },
};
static driver_t pcmcsa_driver = {
"pcm",
pcmcsa_methods,
sizeof(snddev_info),
};
static devclass_t pcm_devclass;
DRIVER_MODULE(pcmcsa, csa, pcmcsa_driver, pcm_devclass, 0, 0);