1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-14 14:55:41 +00:00
freebsd/sys/pci/if_tl.c
Robert Watson 2a567ae5ec Tag a last set of PCI network interfaces as IFF_NEEDSGIANT until they
are either locked down or demonstrated MPSAFE.
2004-08-28 15:10:35 +00:00

2350 lines
59 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
* Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
* the National Semiconductor DP83840A physical interface and the
* Microchip Technology 24Cxx series serial EEPROM.
*
* Written using the following four documents:
*
* Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
* National Semiconductor DP83840A data sheet (www.national.com)
* Microchip Technology 24C02C data sheet (www.microchip.com)
* Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* Some notes about the ThunderLAN:
*
* The ThunderLAN controller is a single chip containing PCI controller
* logic, approximately 3K of on-board SRAM, a LAN controller, and media
* independent interface (MII) bus. The MII allows the ThunderLAN chip to
* control up to 32 different physical interfaces (PHYs). The ThunderLAN
* also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
* to act as a complete ethernet interface.
*
* Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
* use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
* in full or half duplex. Some of the Compaq Deskpro machines use a
* Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
* use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
* concert with the ThunderLAN's internal PHY to provide full 10/100
* support. This is cheaper than using a standalone external PHY for both
* 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
* A serial EEPROM is also attached to the ThunderLAN chip to provide
* power-up default register settings and for storing the adapter's
* station address. Although not supported by this driver, the ThunderLAN
* chip can also be connected to token ring PHYs.
*
* The ThunderLAN has a set of registers which can be used to issue
* commands, acknowledge interrupts, and to manipulate other internal
* registers on its DIO bus. The primary registers can be accessed
* using either programmed I/O (inb/outb) or via PCI memory mapping,
* depending on how the card is configured during the PCI probing
* phase. It is even possible to have both PIO and memory mapped
* access turned on at the same time.
*
* Frame reception and transmission with the ThunderLAN chip is done
* using frame 'lists.' A list structure looks more or less like this:
*
* struct tl_frag {
* u_int32_t fragment_address;
* u_int32_t fragment_size;
* };
* struct tl_list {
* u_int32_t forward_pointer;
* u_int16_t cstat;
* u_int16_t frame_size;
* struct tl_frag fragments[10];
* };
*
* The forward pointer in the list header can be either a 0 or the address
* of another list, which allows several lists to be linked together. Each
* list contains up to 10 fragment descriptors. This means the chip allows
* ethernet frames to be broken up into up to 10 chunks for transfer to
* and from the SRAM. Note that the forward pointer and fragment buffer
* addresses are physical memory addresses, not virtual. Note also that
* a single ethernet frame can not span lists: if the host wants to
* transmit a frame and the frame data is split up over more than 10
* buffers, the frame has to collapsed before it can be transmitted.
*
* To receive frames, the driver sets up a number of lists and populates
* the fragment descriptors, then it sends an RX GO command to the chip.
* When a frame is received, the chip will DMA it into the memory regions
* specified by the fragment descriptors and then trigger an RX 'end of
* frame interrupt' when done. The driver may choose to use only one
* fragment per list; this may result is slighltly less efficient use
* of memory in exchange for improving performance.
*
* To transmit frames, the driver again sets up lists and fragment
* descriptors, only this time the buffers contain frame data that
* is to be DMA'ed into the chip instead of out of it. Once the chip
* has transfered the data into its on-board SRAM, it will trigger a
* TX 'end of frame' interrupt. It will also generate an 'end of channel'
* interrupt when it reaches the end of the list.
*/
/*
* Some notes about this driver:
*
* The ThunderLAN chip provides a couple of different ways to organize
* reception, transmission and interrupt handling. The simplest approach
* is to use one list each for transmission and reception. In this mode,
* the ThunderLAN will generate two interrupts for every received frame
* (one RX EOF and one RX EOC) and two for each transmitted frame (one
* TX EOF and one TX EOC). This may make the driver simpler but it hurts
* performance to have to handle so many interrupts.
*
* Initially I wanted to create a circular list of receive buffers so
* that the ThunderLAN chip would think there was an infinitely long
* receive channel and never deliver an RXEOC interrupt. However this
* doesn't work correctly under heavy load: while the manual says the
* chip will trigger an RXEOF interrupt each time a frame is copied into
* memory, you can't count on the chip waiting around for you to acknowledge
* the interrupt before it starts trying to DMA the next frame. The result
* is that the chip might traverse the entire circular list and then wrap
* around before you have a chance to do anything about it. Consequently,
* the receive list is terminated (with a 0 in the forward pointer in the
* last element). Each time an RXEOF interrupt arrives, the used list
* is shifted to the end of the list. This gives the appearance of an
* infinitely large RX chain so long as the driver doesn't fall behind
* the chip and allow all of the lists to be filled up.
*
* If all the lists are filled, the adapter will deliver an RX 'end of
* channel' interrupt when it hits the 0 forward pointer at the end of
* the chain. The RXEOC handler then cleans out the RX chain and resets
* the list head pointer in the ch_parm register and restarts the receiver.
*
* For frame transmission, it is possible to program the ThunderLAN's
* transmit interrupt threshold so that the chip can acknowledge multiple
* lists with only a single TX EOF interrupt. This allows the driver to
* queue several frames in one shot, and only have to handle a total
* two interrupts (one TX EOF and one TX EOC) no matter how many frames
* are transmitted. Frame transmission is done directly out of the
* mbufs passed to the tl_start() routine via the interface send queue.
* The driver simply sets up the fragment descriptors in the transmit
* lists to point to the mbuf data regions and sends a TX GO command.
*
* Note that since the RX and TX lists themselves are always used
* only by the driver, the are malloc()ed once at driver initialization
* time and never free()ed.
*
* Also, in order to remain as platform independent as possible, this
* driver uses memory mapped register access to manipulate the card
* as opposed to programmed I/O. This avoids the use of the inb/outb
* (and related) instructions which are specific to the i386 platform.
*
* Using these techniques, this driver achieves very high performance
* by minimizing the amount of interrupts generated during large
* transfers and by completely avoiding buffer copies. Frame transfer
* to and from the ThunderLAN chip is performed entirely by the chip
* itself thereby reducing the load on the host CPU.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
/*
* Default to using PIO register access mode to pacify certain
* laptop docking stations with built-in ThunderLAN chips that
* don't seem to handle memory mapped mode properly.
*/
#define TL_USEIOSPACE
#include <pci/if_tlreg.h>
MODULE_DEPEND(tl, pci, 1, 1, 1);
MODULE_DEPEND(tl, ether, 1, 1, 1);
MODULE_DEPEND(tl, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names.
*/
static struct tl_type tl_devs[] = {
{ TI_VENDORID, TI_DEVICEID_THUNDERLAN,
"Texas Instruments ThunderLAN" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
"Compaq Netelligent 10" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
"Compaq Netelligent 10/100" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
"Compaq Netelligent 10/100 Proliant" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
"Compaq Netelligent 10/100 Dual Port" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
"Compaq NetFlex-3/P Integrated" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
"Compaq NetFlex-3/P" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
"Compaq NetFlex 3/P w/ BNC" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
"Compaq Netelligent 10/100 TX Embedded UTP" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
"Compaq Netelligent 10/100 TX UTP" },
{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
"Olicom OC-2183/2185" },
{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
"Olicom OC-2325" },
{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
"Olicom OC-2326 10/100 TX UTP" },
{ 0, 0, NULL }
};
static int tl_probe (device_t);
static int tl_attach (device_t);
static int tl_detach (device_t);
static int tl_intvec_rxeoc (void *, u_int32_t);
static int tl_intvec_txeoc (void *, u_int32_t);
static int tl_intvec_txeof (void *, u_int32_t);
static int tl_intvec_rxeof (void *, u_int32_t);
static int tl_intvec_adchk (void *, u_int32_t);
static int tl_intvec_netsts (void *, u_int32_t);
static int tl_newbuf (struct tl_softc *, struct tl_chain_onefrag *);
static void tl_stats_update (void *);
static int tl_encap (struct tl_softc *, struct tl_chain *,
struct mbuf *);
static void tl_intr (void *);
static void tl_start (struct ifnet *);
static int tl_ioctl (struct ifnet *, u_long, caddr_t);
static void tl_init (void *);
static void tl_stop (struct tl_softc *);
static void tl_watchdog (struct ifnet *);
static void tl_shutdown (device_t);
static int tl_ifmedia_upd (struct ifnet *);
static void tl_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static u_int8_t tl_eeprom_putbyte (struct tl_softc *, int);
static u_int8_t tl_eeprom_getbyte (struct tl_softc *, int, u_int8_t *);
static int tl_read_eeprom (struct tl_softc *, caddr_t, int, int);
static void tl_mii_sync (struct tl_softc *);
static void tl_mii_send (struct tl_softc *, u_int32_t, int);
static int tl_mii_readreg (struct tl_softc *, struct tl_mii_frame *);
static int tl_mii_writereg (struct tl_softc *, struct tl_mii_frame *);
static int tl_miibus_readreg (device_t, int, int);
static int tl_miibus_writereg (device_t, int, int, int);
static void tl_miibus_statchg (device_t);
static void tl_setmode (struct tl_softc *, int);
static uint32_t tl_mchash (const uint8_t *);
static void tl_setmulti (struct tl_softc *);
static void tl_setfilt (struct tl_softc *, caddr_t, int);
static void tl_softreset (struct tl_softc *, int);
static void tl_hardreset (device_t);
static int tl_list_rx_init (struct tl_softc *);
static int tl_list_tx_init (struct tl_softc *);
static u_int8_t tl_dio_read8 (struct tl_softc *, int);
static u_int16_t tl_dio_read16 (struct tl_softc *, int);
static u_int32_t tl_dio_read32 (struct tl_softc *, int);
static void tl_dio_write8 (struct tl_softc *, int, int);
static void tl_dio_write16 (struct tl_softc *, int, int);
static void tl_dio_write32 (struct tl_softc *, int, int);
static void tl_dio_setbit (struct tl_softc *, int, int);
static void tl_dio_clrbit (struct tl_softc *, int, int);
static void tl_dio_setbit16 (struct tl_softc *, int, int);
static void tl_dio_clrbit16 (struct tl_softc *, int, int);
#ifdef TL_USEIOSPACE
#define TL_RES SYS_RES_IOPORT
#define TL_RID TL_PCI_LOIO
#else
#define TL_RES SYS_RES_MEMORY
#define TL_RID TL_PCI_LOMEM
#endif
static device_method_t tl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, tl_probe),
DEVMETHOD(device_attach, tl_attach),
DEVMETHOD(device_detach, tl_detach),
DEVMETHOD(device_shutdown, tl_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, tl_miibus_readreg),
DEVMETHOD(miibus_writereg, tl_miibus_writereg),
DEVMETHOD(miibus_statchg, tl_miibus_statchg),
{ 0, 0 }
};
static driver_t tl_driver = {
"tl",
tl_methods,
sizeof(struct tl_softc)
};
static devclass_t tl_devclass;
DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
static u_int8_t tl_dio_read8(sc, reg)
struct tl_softc *sc;
int reg;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
}
static u_int16_t tl_dio_read16(sc, reg)
struct tl_softc *sc;
int reg;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
}
static u_int32_t tl_dio_read32(sc, reg)
struct tl_softc *sc;
int reg;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
}
static void tl_dio_write8(sc, reg, val)
struct tl_softc *sc;
int reg;
int val;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
return;
}
static void tl_dio_write16(sc, reg, val)
struct tl_softc *sc;
int reg;
int val;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
return;
}
static void tl_dio_write32(sc, reg, val)
struct tl_softc *sc;
int reg;
int val;
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
return;
}
static void
tl_dio_setbit(sc, reg, bit)
struct tl_softc *sc;
int reg;
int bit;
{
u_int8_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
f |= bit;
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
return;
}
static void
tl_dio_clrbit(sc, reg, bit)
struct tl_softc *sc;
int reg;
int bit;
{
u_int8_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
f &= ~bit;
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
return;
}
static void tl_dio_setbit16(sc, reg, bit)
struct tl_softc *sc;
int reg;
int bit;
{
u_int16_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
f |= bit;
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
return;
}
static void tl_dio_clrbit16(sc, reg, bit)
struct tl_softc *sc;
int reg;
int bit;
{
u_int16_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
f &= ~bit;
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
return;
}
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static u_int8_t tl_eeprom_putbyte(sc, byte)
struct tl_softc *sc;
int byte;
{
register int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
} else {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
}
DELAY(1);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
}
/*
* Turn off TX mode.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
/*
* Check for ack.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
return(ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
*/
static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
struct tl_softc *sc;
int addr;
u_int8_t *dest;
{
register int i;
u_int8_t byte = 0;
struct ifnet *ifp = &sc->arpcom.ac_if;
tl_dio_write8(sc, TL_NETSIO, 0);
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
if_printf(ifp, "failed to send write command, status: %x\n",
tl_dio_read8(sc, TL_NETSIO));
return(1);
}
/*
* Send address of byte we want to read.
*/
if (tl_eeprom_putbyte(sc, addr)) {
if_printf(ifp, "failed to send address, status: %x\n",
tl_dio_read8(sc, TL_NETSIO));
return(1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
if_printf(ifp, "failed to send write command, status: %x\n",
tl_dio_read8(sc, TL_NETSIO));
return(1);
}
/*
* Start reading bits from EEPROM.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
for (i = 0x80; i; i >>= 1) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
byte |= i;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
tl_read_eeprom(sc, dest, off, cnt)
struct tl_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = tl_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
static void
tl_mii_sync(sc)
struct tl_softc *sc;
{
register int i;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
for (i = 0; i < 32; i++) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
return;
}
static void
tl_mii_send(sc, bits, cnt)
struct tl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
if (bits & i) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
} else {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
}
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
}
static int
tl_mii_readreg(sc, frame)
struct tl_softc *sc;
struct tl_mii_frame *frame;
{
int i, ack;
int minten = 0;
TL_LOCK(sc);
tl_mii_sync(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
if (minten) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
}
/*
* Turn on data xmit.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/*
* Send command/address info.
*/
tl_mii_send(sc, frame->mii_stdelim, 2);
tl_mii_send(sc, frame->mii_opcode, 2);
tl_mii_send(sc, frame->mii_phyaddr, 5);
tl_mii_send(sc, frame->mii_regaddr, 5);
/*
* Turn off xmit.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/* Idle bit */
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
/* Check for ack */
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
/* Complete the cycle */
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHYs in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
if (!ack) {
if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
frame->mii_data |= i;
}
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
fail:
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
/* Reenable interrupts */
if (minten) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
}
TL_UNLOCK(sc);
if (ack)
return(1);
return(0);
}
static int
tl_mii_writereg(sc, frame)
struct tl_softc *sc;
struct tl_mii_frame *frame;
{
int minten;
TL_LOCK(sc);
tl_mii_sync(sc);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_WRITEOP;
frame->mii_turnaround = TL_MII_TURNAROUND;
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
if (minten) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
}
/*
* Turn on data output.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
tl_mii_send(sc, frame->mii_stdelim, 2);
tl_mii_send(sc, frame->mii_opcode, 2);
tl_mii_send(sc, frame->mii_phyaddr, 5);
tl_mii_send(sc, frame->mii_regaddr, 5);
tl_mii_send(sc, frame->mii_turnaround, 2);
tl_mii_send(sc, frame->mii_data, 16);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
/*
* Turn off xmit.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/* Reenable interrupts */
if (minten)
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
TL_UNLOCK(sc);
return(0);
}
static int
tl_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct tl_softc *sc;
struct tl_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
tl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int
tl_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct tl_softc *sc;
struct tl_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
tl_mii_writereg(sc, &frame);
return(0);
}
static void
tl_miibus_statchg(dev)
device_t dev;
{
struct tl_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
TL_LOCK(sc);
mii = device_get_softc(sc->tl_miibus);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
} else {
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
}
TL_UNLOCK(sc);
return;
}
/*
* Set modes for bitrate devices.
*/
static void
tl_setmode(sc, media)
struct tl_softc *sc;
int media;
{
if (IFM_SUBTYPE(media) == IFM_10_5)
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
if (IFM_SUBTYPE(media) == IFM_10_T) {
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
if ((media & IFM_GMASK) == IFM_FDX) {
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
} else {
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
}
}
return;
}
/*
* Calculate the hash of a MAC address for programming the multicast hash
* table. This hash is simply the address split into 6-bit chunks
* XOR'd, e.g.
* byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
* bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
* Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
* the folded 24-bit value is split into 6-bit portions and XOR'd.
*/
static uint32_t
tl_mchash(addr)
const uint8_t *addr;
{
int t;
t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
(addr[2] ^ addr[5]);
return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
}
/*
* The ThunderLAN has a perfect MAC address filter in addition to
* the multicast hash filter. The perfect filter can be programmed
* with up to four MAC addresses. The first one is always used to
* hold the station address, which leaves us free to use the other
* three for multicast addresses.
*/
static void
tl_setfilt(sc, addr, slot)
struct tl_softc *sc;
caddr_t addr;
int slot;
{
int i;
u_int16_t regaddr;
regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
for (i = 0; i < ETHER_ADDR_LEN; i++)
tl_dio_write8(sc, regaddr + i, *(addr + i));
return;
}
/*
* XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
* linked list. This is fine, except addresses are added from the head
* end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
* group to always be in the perfect filter, but as more groups are added,
* the 224.0.0.1 entry (which is always added first) gets pushed down
* the list and ends up at the tail. So after 3 or 4 multicast groups
* are added, the all-hosts entry gets pushed out of the perfect filter
* and into the hash table.
*
* Because the multicast list is a doubly-linked list as opposed to a
* circular queue, we don't have the ability to just grab the tail of
* the list and traverse it backwards. Instead, we have to traverse
* the list once to find the tail, then traverse it again backwards to
* update the multicast filter.
*/
static void
tl_setmulti(sc)
struct tl_softc *sc;
{
struct ifnet *ifp;
u_int32_t hashes[2] = { 0, 0 };
int h, i;
struct ifmultiaddr *ifma;
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
ifp = &sc->arpcom.ac_if;
/* First, zot all the existing filters. */
for (i = 1; i < 4; i++)
tl_setfilt(sc, (caddr_t)&dummy, i);
tl_dio_write32(sc, TL_HASH1, 0);
tl_dio_write32(sc, TL_HASH2, 0);
/* Now program new ones. */
if (ifp->if_flags & IFF_ALLMULTI) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first three multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (i < 4) {
tl_setfilt(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
i++;
continue;
}
h = tl_mchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
}
tl_dio_write32(sc, TL_HASH1, hashes[0]);
tl_dio_write32(sc, TL_HASH2, hashes[1]);
return;
}
/*
* This routine is recommended by the ThunderLAN manual to insure that
* the internal PHY is powered up correctly. It also recommends a one
* second pause at the end to 'wait for the clocks to start' but in my
* experience this isn't necessary.
*/
static void
tl_hardreset(dev)
device_t dev;
{
struct tl_softc *sc;
int i;
u_int16_t flags;
sc = device_get_softc(dev);
tl_mii_sync(sc);
flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
for (i = 0; i < MII_NPHY; i++)
tl_miibus_writereg(dev, i, MII_BMCR, flags);
tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
DELAY(50000);
tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
tl_mii_sync(sc);
while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
DELAY(50000);
return;
}
static void
tl_softreset(sc, internal)
struct tl_softc *sc;
int internal;
{
u_int32_t cmd, dummy, i;
/* Assert the adapter reset bit. */
CMD_SET(sc, TL_CMD_ADRST);
/* Turn off interrupts */
CMD_SET(sc, TL_CMD_INTSOFF);
/* First, clear the stats registers. */
for (i = 0; i < 5; i++)
dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
/* Clear Areg and Hash registers */
for (i = 0; i < 8; i++)
tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
/*
* Set up Netconfig register. Enable one channel and
* one fragment mode.
*/
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
if (internal && !sc->tl_bitrate) {
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
} else {
tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
}
/* Handle cards with bitrate devices. */
if (sc->tl_bitrate)
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
/*
* Load adapter irq pacing timer and tx threshold.
* We make the transmit threshold 1 initially but we may
* change that later.
*/
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd |= TL_CMD_NES;
cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
/* Unreset the MII */
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
/* Take the adapter out of reset */
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
/* Wait for things to settle down a little. */
DELAY(500);
return;
}
/*
* Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int
tl_probe(dev)
device_t dev;
{
struct tl_type *t;
t = tl_devs;
while(t->tl_name != NULL) {
if ((pci_get_vendor(dev) == t->tl_vid) &&
(pci_get_device(dev) == t->tl_did)) {
device_set_desc(dev, t->tl_name);
return(0);
}
t++;
}
return(ENXIO);
}
static int
tl_attach(dev)
device_t dev;
{
int i;
u_int16_t did, vid;
struct tl_type *t;
struct ifnet *ifp;
struct tl_softc *sc;
int unit, error = 0, rid;
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
sc = device_get_softc(dev);
unit = device_get_unit(dev);
t = tl_devs;
while(t->tl_name != NULL) {
if (vid == t->tl_vid && did == t->tl_did)
break;
t++;
}
if (t->tl_name == NULL) {
device_printf(dev, "unknown device!?\n");
return (ENXIO);
}
mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
#ifdef TL_USEIOSPACE
rid = TL_PCI_LOIO;
sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
/*
* Some cards have the I/O and memory mapped address registers
* reversed. Try both combinations before giving up.
*/
if (sc->tl_res == NULL) {
rid = TL_PCI_LOMEM;
sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
}
#else
rid = TL_PCI_LOMEM;
sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->tl_res == NULL) {
rid = TL_PCI_LOIO;
sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
}
#endif
if (sc->tl_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
sc->tl_btag = rman_get_bustag(sc->tl_res);
sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
#ifdef notdef
/*
* The ThunderLAN manual suggests jacking the PCI latency
* timer all the way up to its maximum value. I'm not sure
* if this is really necessary, but what the manual wants,
* the manual gets.
*/
command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
command |= 0x0000FF00;
pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
#endif
/* Allocate interrupt */
rid = 0;
sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->tl_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/*
* Now allocate memory for the TX and RX lists.
*/
sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->tl_ldata == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
bzero(sc->tl_ldata, sizeof(struct tl_list_data));
sc->tl_dinfo = t;
if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
sc->tl_eeaddr = TL_EEPROM_EADDR;
if (t->tl_vid == OLICOM_VENDORID)
sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
/* Reset the adapter. */
tl_softreset(sc, 1);
tl_hardreset(dev);
tl_softreset(sc, 1);
/*
* Get station address from the EEPROM.
*/
if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
sc->tl_eeaddr, ETHER_ADDR_LEN)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
/*
* XXX Olicom, in its desire to be different from the
* rest of the world, has done strange things with the
* encoding of the station address in the EEPROM. First
* of all, they store the address at offset 0xF8 rather
* than at 0x83 like the ThunderLAN manual suggests.
* Second, they store the address in three 16-bit words in
* network byte order, as opposed to storing it sequentially
* like all the other ThunderLAN cards. In order to get
* the station address in a form that matches what the Olicom
* diagnostic utility specifies, we have to byte-swap each
* word. To make things even more confusing, neither 00:00:28
* nor 00:00:24 appear in the IEEE OUI database.
*/
if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
u_int16_t *p;
p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
*p = ntohs(*p);
}
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NEEDSGIANT;
ifp->if_ioctl = tl_ioctl;
ifp->if_start = tl_start;
ifp->if_watchdog = tl_watchdog;
ifp->if_init = tl_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
callout_handle_init(&sc->tl_stat_ch);
/* Reset the adapter again. */
tl_softreset(sc, 1);
tl_hardreset(dev);
tl_softreset(sc, 1);
/*
* Do MII setup. If no PHYs are found, then this is a
* bitrate ThunderLAN chip that only supports 10baseT
* and AUI/BNC.
*/
if (mii_phy_probe(dev, &sc->tl_miibus,
tl_ifmedia_upd, tl_ifmedia_sts)) {
struct ifmedia *ifm;
sc->tl_bitrate = 1;
ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
/* Reset again, this time setting bitrate mode. */
tl_softreset(sc, 1);
ifm = &sc->ifmedia;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
tl_ifmedia_upd(ifp);
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
tl_intr, sc, &sc->tl_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
tl_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
tl_detach(dev)
device_t dev;
{
struct tl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
TL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
tl_stop(sc);
ether_ifdetach(ifp);
}
if (sc->tl_miibus)
device_delete_child(dev, sc->tl_miibus);
bus_generic_detach(dev);
if (sc->tl_ldata)
contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
if (sc->tl_bitrate)
ifmedia_removeall(&sc->ifmedia);
if (sc->tl_intrhand)
bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
if (sc->tl_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
if (sc->tl_res)
bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
TL_UNLOCK(sc);
mtx_destroy(&sc->tl_mtx);
return(0);
}
/*
* Initialize the transmit lists.
*/
static int
tl_list_tx_init(sc)
struct tl_softc *sc;
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_TX_LIST_CNT; i++) {
cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
if (i == (TL_TX_LIST_CNT - 1))
cd->tl_tx_chain[i].tl_next = NULL;
else
cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
}
cd->tl_tx_free = &cd->tl_tx_chain[0];
cd->tl_tx_tail = cd->tl_tx_head = NULL;
sc->tl_txeoc = 1;
return(0);
}
/*
* Initialize the RX lists and allocate mbufs for them.
*/
static int
tl_list_rx_init(sc)
struct tl_softc *sc;
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_RX_LIST_CNT; i++) {
cd->tl_rx_chain[i].tl_ptr =
(struct tl_list_onefrag *)&ld->tl_rx_list[i];
if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (TL_RX_LIST_CNT - 1)) {
cd->tl_rx_chain[i].tl_next = NULL;
ld->tl_rx_list[i].tlist_fptr = 0;
} else {
cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
ld->tl_rx_list[i].tlist_fptr =
vtophys(&ld->tl_rx_list[i + 1]);
}
}
cd->tl_rx_head = &cd->tl_rx_chain[0];
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
return(0);
}
static int
tl_newbuf(sc, c)
struct tl_softc *sc;
struct tl_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
#ifdef __alpha__
m_new->m_data += 2;
#endif
c->tl_mbuf = m_new;
c->tl_next = NULL;
c->tl_ptr->tlist_frsize = MCLBYTES;
c->tl_ptr->tlist_fptr = 0;
c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
return(0);
}
/*
* Interrupt handler for RX 'end of frame' condition (EOF). This
* tells us that a full ethernet frame has been captured and we need
* to handle it.
*
* Reception is done using 'lists' which consist of a header and a
* series of 10 data count/data address pairs that point to buffers.
* Initially you're supposed to create a list, populate it with pointers
* to buffers, then load the physical address of the list into the
* ch_parm register. The adapter is then supposed to DMA the received
* frame into the buffers for you.
*
* To make things as fast as possible, we have the chip DMA directly
* into mbufs. This saves us from having to do a buffer copy: we can
* just hand the mbufs directly to ether_input(). Once the frame has
* been sent on its way, the 'list' structure is assigned a new buffer
* and moved to the end of the RX chain. As long we we stay ahead of
* the chip, it will always think it has an endless receive channel.
*
* If we happen to fall behind and the chip manages to fill up all of
* the buffers, it will generate an end of channel interrupt and wait
* for us to empty the chain and restart the receiver.
*/
static int
tl_intvec_rxeof(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r = 0, total_len = 0;
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct tl_chain_onefrag *cur_rx;
sc = xsc;
ifp = &sc->arpcom.ac_if;
TL_LOCK_ASSERT(sc);
while(sc->tl_cdata.tl_rx_head != NULL) {
cur_rx = sc->tl_cdata.tl_rx_head;
if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
break;
r++;
sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
m = cur_rx->tl_mbuf;
total_len = cur_rx->tl_ptr->tlist_frsize;
if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
continue;
}
sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
vtophys(cur_rx->tl_ptr);
sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
sc->tl_cdata.tl_rx_tail = cur_rx;
/*
* Note: when the ThunderLAN chip is in 'capture all
* frames' mode, it will receive its own transmissions.
* We drop don't need to process our own transmissions,
* so we drop them here and continue.
*/
eh = mtod(m, struct ether_header *);
/*if (ifp->if_flags & IFF_PROMISC && */
if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN)) {
m_freem(m);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
TL_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
TL_LOCK(sc);
}
return(r);
}
/*
* The RX-EOC condition hits when the ch_parm address hasn't been
* initialized or the adapter reached a list with a forward pointer
* of 0 (which indicates the end of the chain). In our case, this means
* the card has hit the end of the receive buffer chain and we need to
* empty out the buffers and shift the pointer back to the beginning again.
*/
static int
tl_intvec_rxeoc(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r;
struct tl_chain_data *cd;
sc = xsc;
cd = &sc->tl_cdata;
/* Flush out the receive queue and ack RXEOF interrupts. */
r = tl_intvec_rxeof(xsc, type);
CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
r = 1;
cd->tl_rx_head = &cd->tl_rx_chain[0];
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
r |= (TL_CMD_GO|TL_CMD_RT);
return(r);
}
static int
tl_intvec_txeof(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r = 0;
struct tl_chain *cur_tx;
sc = xsc;
/*
* Go through our tx list and free mbufs for those
* frames that have been sent.
*/
while (sc->tl_cdata.tl_tx_head != NULL) {
cur_tx = sc->tl_cdata.tl_tx_head;
if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
break;
sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
r++;
m_freem(cur_tx->tl_mbuf);
cur_tx->tl_mbuf = NULL;
cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx;
if (!cur_tx->tl_ptr->tlist_fptr)
break;
}
return(r);
}
/*
* The transmit end of channel interrupt. The adapter triggers this
* interrupt to tell us it hit the end of the current transmit list.
*
* A note about this: it's possible for a condition to arise where
* tl_start() may try to send frames between TXEOF and TXEOC interrupts.
* You have to avoid this since the chip expects things to go in a
* particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
* When the TXEOF handler is called, it will free all of the transmitted
* frames and reset the tx_head pointer to NULL. However, a TXEOC
* interrupt should be received and acknowledged before any more frames
* are queued for transmission. If tl_statrt() is called after TXEOF
* resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
* it could attempt to issue a transmit command prematurely.
*
* To guard against this, tl_start() will only issue transmit commands
* if the tl_txeoc flag is set, and only the TXEOC interrupt handler
* can set this flag once tl_start() has cleared it.
*/
static int
tl_intvec_txeoc(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
struct ifnet *ifp;
u_int32_t cmd;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->tl_cdata.tl_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->tl_cdata.tl_tx_tail = NULL;
sc->tl_txeoc = 1;
} else {
sc->tl_txeoc = 0;
/* First we have to ack the EOC interrupt. */
CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
/* Then load the address of the next TX list. */
CSR_WRITE_4(sc, TL_CH_PARM,
vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
/* Restart TX channel. */
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
CMD_PUT(sc, cmd);
return(0);
}
return(1);
}
static int
tl_intvec_adchk(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
sc = xsc;
if (type)
if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
tl_softreset(sc, 1);
tl_stop(sc);
tl_init(sc);
CMD_SET(sc, TL_CMD_INTSON);
return(0);
}
static int
tl_intvec_netsts(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
u_int16_t netsts;
sc = xsc;
netsts = tl_dio_read16(sc, TL_NETSTS);
tl_dio_write16(sc, TL_NETSTS, netsts);
if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
return(1);
}
static void
tl_intr(xsc)
void *xsc;
{
struct tl_softc *sc;
struct ifnet *ifp;
int r = 0;
u_int32_t type = 0;
u_int16_t ints = 0;
u_int8_t ivec = 0;
sc = xsc;
TL_LOCK(sc);
/* Disable interrupts */
ints = CSR_READ_2(sc, TL_HOST_INT);
CSR_WRITE_2(sc, TL_HOST_INT, ints);
type = (ints << 16) & 0xFFFF0000;
ivec = (ints & TL_VEC_MASK) >> 5;
ints = (ints & TL_INT_MASK) >> 2;
ifp = &sc->arpcom.ac_if;
switch(ints) {
case (TL_INTR_INVALID):
#ifdef DIAGNOSTIC
if_printf(ifp, "got an invalid interrupt!\n");
#endif
/* Re-enable interrupts but don't ack this one. */
CMD_PUT(sc, type);
r = 0;
break;
case (TL_INTR_TXEOF):
r = tl_intvec_txeof((void *)sc, type);
break;
case (TL_INTR_TXEOC):
r = tl_intvec_txeoc((void *)sc, type);
break;
case (TL_INTR_STATOFLOW):
tl_stats_update(sc);
r = 1;
break;
case (TL_INTR_RXEOF):
r = tl_intvec_rxeof((void *)sc, type);
break;
case (TL_INTR_DUMMY):
if_printf(ifp, "got a dummy interrupt\n");
r = 1;
break;
case (TL_INTR_ADCHK):
if (ivec)
r = tl_intvec_adchk((void *)sc, type);
else
r = tl_intvec_netsts((void *)sc, type);
break;
case (TL_INTR_RXEOC):
r = tl_intvec_rxeoc((void *)sc, type);
break;
default:
if_printf(ifp, "bogus interrupt type\n");
break;
}
/* Re-enable interrupts */
if (r) {
CMD_PUT(sc, TL_CMD_ACK | r | type);
}
if (ifp->if_snd.ifq_head != NULL)
tl_start(ifp);
TL_UNLOCK(sc);
return;
}
static void
tl_stats_update(xsc)
void *xsc;
{
struct tl_softc *sc;
struct ifnet *ifp;
struct tl_stats tl_stats;
struct mii_data *mii;
u_int32_t *p;
bzero((char *)&tl_stats, sizeof(struct tl_stats));
sc = xsc;
TL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
p = (u_int32_t *)&tl_stats;
CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
ifp->if_opackets += tl_tx_goodframes(tl_stats);
ifp->if_collisions += tl_stats.tl_tx_single_collision +
tl_stats.tl_tx_multi_collision;
ifp->if_ipackets += tl_rx_goodframes(tl_stats);
ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
tl_rx_overrun(tl_stats);
ifp->if_oerrors += tl_tx_underrun(tl_stats);
if (tl_tx_underrun(tl_stats)) {
u_int8_t tx_thresh;
tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
tx_thresh >>= 4;
tx_thresh++;
if_printf(ifp, "tx underrun -- increasing "
"tx threshold to %d bytes\n",
(64 * (tx_thresh * 4)));
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
}
}
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
if (!sc->tl_bitrate) {
mii = device_get_softc(sc->tl_miibus);
mii_tick(mii);
}
TL_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a list by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
tl_encap(sc, c, m_head)
struct tl_softc *sc;
struct tl_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct tl_frag *f = NULL;
int total_len;
struct mbuf *m;
struct ifnet *ifp = &sc->arpcom.ac_if;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == TL_MAXFRAGS)
break;
total_len+= m->m_len;
c->tl_ptr->tl_frag[frag].tlist_dadr =
vtophys(mtod(m, vm_offset_t));
c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
frag++;
}
}
/*
* Handle special cases.
* Special case #1: we used up all 10 fragments, but
* we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
if_printf(ifp, "no memory for tx list\n");
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
if_printf(ifp, "no memory for tx list\n");
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->tl_ptr->tl_frag[0];
f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
f->tlist_dcnt = total_len = m_new->m_len;
frag = 1;
}
/*
* Special case #2: the frame is smaller than the minimum
* frame size. We have to pad it to make the chip happy.
*/
if (total_len < TL_MIN_FRAMELEN) {
if (frag == TL_MAXFRAGS)
if_printf(ifp,
"all frags filled but frame still to small!\n");
f = &c->tl_ptr->tl_frag[frag];
f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
total_len += f->tlist_dcnt;
frag++;
}
c->tl_mbuf = m_head;
c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
c->tl_ptr->tlist_frsize = total_len;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
c->tl_ptr->tlist_fptr = 0;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
tl_start(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t cmd;
struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
TL_LOCK(sc);
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->tl_cdata.tl_tx_free == NULL) {
ifp->if_flags |= IFF_OACTIVE;
TL_UNLOCK(sc);
return;
}
start_tx = sc->tl_cdata.tl_tx_free;
while(sc->tl_cdata.tl_tx_free != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a chain member off the free list. */
cur_tx = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
cur_tx->tl_next = NULL;
/* Pack the data into the list. */
tl_encap(sc, cur_tx, m_head);
/* Chain it together */
if (prev != NULL) {
prev->tl_next = cur_tx;
prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
}
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, cur_tx->tl_mbuf);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL) {
TL_UNLOCK(sc);
return;
}
/*
* That's all we can stands, we can't stands no more.
* If there are no other transfers pending, then issue the
* TX GO command to the adapter to start things moving.
* Otherwise, just leave the data in the queue and let
* the EOF/EOC interrupt handler send.
*/
if (sc->tl_cdata.tl_tx_head == NULL) {
sc->tl_cdata.tl_tx_head = start_tx;
sc->tl_cdata.tl_tx_tail = cur_tx;
if (sc->tl_txeoc) {
sc->tl_txeoc = 0;
CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
CMD_PUT(sc, cmd);
}
} else {
sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
sc->tl_cdata.tl_tx_tail = cur_tx;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
TL_UNLOCK(sc);
return;
}
static void
tl_init(xsc)
void *xsc;
{
struct tl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
TL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/*
* Cancel pending I/O.
*/
tl_stop(sc);
/* Initialize TX FIFO threshold */
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
/* Set PCI burst size */
tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
/*
* Set 'capture all frames' bit for promiscuous mode.
*/
if (ifp->if_flags & IFF_PROMISC)
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
else
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
else
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
/* Init our MAC address */
tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
/* Init multicast filter, if needed. */
tl_setmulti(sc);
/* Init circular RX list. */
if (tl_list_rx_init(sc) == ENOBUFS) {
if_printf(ifp,
"initialization failed: no memory for rx buffers\n");
tl_stop(sc);
TL_UNLOCK(sc);
return;
}
/* Init TX pointers. */
tl_list_tx_init(sc);
/* Enable PCI interrupts. */
CMD_SET(sc, TL_CMD_INTSON);
/* Load the address of the rx list */
CMD_SET(sc, TL_CMD_RT);
CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
if (!sc->tl_bitrate) {
if (sc->tl_miibus != NULL) {
mii = device_get_softc(sc->tl_miibus);
mii_mediachg(mii);
}
} else {
tl_ifmedia_upd(ifp);
}
/* Send the RX go command */
CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Start the stats update counter */
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
TL_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
tl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
struct mii_data *mii = NULL;
sc = ifp->if_softc;
if (sc->tl_bitrate)
tl_setmode(sc, sc->ifmedia.ifm_media);
else {
mii = device_get_softc(sc->tl_miibus);
mii_mediachg(mii);
}
return(0);
}
/*
* Report current media status.
*/
static void
tl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct tl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (sc->tl_bitrate) {
if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
} else {
mii = device_get_softc(sc->tl_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
return;
}
static int
tl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct tl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->tl_if_flags & IFF_PROMISC)) {
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
tl_setmulti(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->tl_if_flags & IFF_PROMISC) {
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
tl_setmulti(sc);
} else
tl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
tl_stop(sc);
}
}
sc->tl_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
tl_setmulti(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->tl_bitrate)
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
else {
struct mii_data *mii;
mii = device_get_softc(sc->tl_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
(void)splx(s);
return(error);
}
static void
tl_watchdog(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
sc = ifp->if_softc;
if_printf(ifp, "device timeout\n");
ifp->if_oerrors++;
tl_softreset(sc, 1);
tl_init(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
tl_stop(sc)
struct tl_softc *sc;
{
register int i;
struct ifnet *ifp;
TL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* Stop the stats updater. */
untimeout(tl_stats_update, sc, sc->tl_stat_ch);
/* Stop the transmitter */
CMD_CLR(sc, TL_CMD_RT);
CMD_SET(sc, TL_CMD_STOP);
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/* Stop the receiver */
CMD_SET(sc, TL_CMD_RT);
CMD_SET(sc, TL_CMD_STOP);
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/*
* Disable host interrupts.
*/
CMD_SET(sc, TL_CMD_INTSOFF);
/*
* Clear list pointer.
*/
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/*
* Free the RX lists.
*/
for (i = 0; i < TL_RX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
}
}
bzero((char *)&sc->tl_ldata->tl_rx_list,
sizeof(sc->tl_ldata->tl_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < TL_TX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
}
}
bzero((char *)&sc->tl_ldata->tl_tx_list,
sizeof(sc->tl_ldata->tl_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
TL_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
tl_shutdown(dev)
device_t dev;
{
struct tl_softc *sc;
sc = device_get_softc(dev);
tl_stop(sc);
return;
}