1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-18 10:35:55 +00:00
freebsd/sys/netinet6/in6.c
Yoshinobu Inoue cfa1ca9dfa udp IPv6 support, IPv6/IPv4 tunneling support in kernel,
packet divert at kernel for IPv6/IPv4 translater daemon

This includes queue related patch submitted by jburkhol@home.com.

Submitted by: queue related patch from jburkhol@home.com
Reviewed by: freebsd-arch, cvs-committers
Obtained from: KAME project
1999-12-07 17:39:16 +00:00

1877 lines
46 KiB
C

/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.2 (Berkeley) 11/15/93
*/
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include "gif.h"
#include <net/if_dl.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet6/nd6.h>
#include <netinet6/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/mld6_var.h>
#include <netinet6/in6_ifattach.h>
#if NGIF > 0
#include <net/if_gif.h>
#endif
#include <net/net_osdep.h>
MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address");
/*
* Definitions of some costant IP6 addresses.
*/
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
const struct in6_addr in6addr_nodelocal_allnodes =
IN6ADDR_NODELOCAL_ALLNODES_INIT;
const struct in6_addr in6addr_linklocal_allnodes =
IN6ADDR_LINKLOCAL_ALLNODES_INIT;
const struct in6_addr in6addr_linklocal_allrouters =
IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
const struct in6_addr in6mask0 = IN6MASK0;
const struct in6_addr in6mask32 = IN6MASK32;
const struct in6_addr in6mask64 = IN6MASK64;
const struct in6_addr in6mask96 = IN6MASK96;
const struct in6_addr in6mask128 = IN6MASK128;
static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
struct ifnet *, struct proc *));
struct in6_multihead in6_multihead; /* XXX BSS initialization */
/*
* Determine whether an IP6 address is in a reserved set of addresses
* that may not be forwarded, or whether datagrams to that destination
* may be forwarded.
*/
int
in6_canforward(src, dst)
struct in6_addr *src, *dst;
{
if (IN6_IS_ADDR_LINKLOCAL(src) ||
IN6_IS_ADDR_LINKLOCAL(dst) ||
IN6_IS_ADDR_MULTICAST(dst))
return(0);
return(1);
}
/*
* Check if the loopback entry will be automatically generated.
* if 0 returned, will not be automatically generated.
* if 1 returned, will be automatically generated.
*/
static int
in6_is_ifloop_auto(struct ifaddr *ifa)
{
#define SIN6(s) ((struct sockaddr_in6 *)s)
/*
* If RTF_CLONING is unset, or (IFF_LOOPBACK | IFF_POINTOPOINT),
* or netmask is all0 or all1, then cloning will not happen,
* then we can't rely on its loopback entry generation.
*/
if ((ifa->ifa_flags & RTF_CLONING) == 0 ||
(ifa->ifa_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) ||
(SIN6(ifa->ifa_netmask)->sin6_len == sizeof(struct sockaddr_in6)
&&
IN6_ARE_ADDR_EQUAL(&SIN6(ifa->ifa_netmask)->sin6_addr,
&in6mask128)) ||
((struct sockaddr_in6 *)ifa->ifa_netmask)->sin6_len == 0)
return 0;
else
return 1;
#undef SIN6
}
/*
* Subroutine for in6_ifaddloop() and in6_ifremloop().
* This routine does actual work.
*/
static void
in6_ifloop_request(int cmd, struct ifaddr *ifa)
{
struct sockaddr_in6 lo_sa;
struct sockaddr_in6 all1_sa;
struct rtentry *nrt = NULL;
bzero(&lo_sa, sizeof(lo_sa));
bzero(&all1_sa, sizeof(all1_sa));
lo_sa.sin6_family = AF_INET6;
lo_sa.sin6_len = sizeof(struct sockaddr_in6);
all1_sa = lo_sa;
lo_sa.sin6_addr = in6addr_loopback;
all1_sa.sin6_addr = in6mask128;
/* So we add or remove static loopback entry, here. */
rtrequest(cmd, ifa->ifa_addr,
(struct sockaddr *)&lo_sa,
(struct sockaddr *)&all1_sa,
RTF_UP|RTF_HOST, &nrt);
/*
* Make sure rt_ifa be equal to IFA, the second argument of the
* function.
* We need this because when we refer rt_ifa->ia6_flags in ip6_input,
* we assume that the rt_ifa points to the address instead of the
* loopback address.
*/
if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
nrt->rt_ifa->ifa_refcnt--;
ifa->ifa_refcnt++;
nrt->rt_ifa = ifa;
}
if (nrt)
nrt->rt_refcnt--;
}
/*
* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link).
* Because, KAME needs loopback rtentry for ownaddr check in
* ip6_input().
*/
static void
in6_ifaddloop(struct ifaddr *ifa)
{
if (!in6_is_ifloop_auto(ifa)) {
struct rtentry *rt;
/* If there is no loopback entry, allocate one. */
rt = rtalloc1(ifa->ifa_addr, 0, 0);
if (rt == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
in6_ifloop_request(RTM_ADD, ifa);
if (rt)
rt->rt_refcnt--;
}
}
/*
* Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
* if it exists.
*/
static void
in6_ifremloop(struct ifaddr *ifa)
{
if (!in6_is_ifloop_auto(ifa)) {
struct in6_ifaddr *ia;
int ia_count = 0;
/* If only one ifa for the loopback entry, delete it. */
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa),
&ia->ia_addr.sin6_addr)) {
ia_count++;
if (ia_count > 1)
break;
}
}
if (ia_count == 1)
in6_ifloop_request(RTM_DELETE, ifa);
}
}
/*
* Subroutine for in6_ifaddproxy() and in6_ifremproxy().
* This routine does actual work.
* call in6_addmulti() when cmd == 1.
* call in6_delmulti() when cmd == 2.
*/
static int
in6_ifproxy_request(int cmd, struct in6_ifaddr *ia)
{
int error = 0;
/*
* If we have an IPv6 dstaddr on adding p2p interface,
* join dstaddr's solicited multicast on necessary interface.
*/
if ((ia->ia_ifp->if_flags & IFF_POINTOPOINT) &&
ia->ia_dstaddr.sin6_family == AF_INET6 &&
!IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
struct in6_ifaddr *ia_lan;
/*
* TODO: Join only on some specified interfaces by some
* configuration.
* Unsolicited Neighbor Advertisements will be also necessary.
*
* Now, join on interfaces which meets following.
* -IFF_BROADCAST and IFF_MULTICAST
* (NBMA is out of scope)
* -the prefix value is same as p2p dstaddr
*/
for (ia_lan = in6_ifaddr; ia_lan; ia_lan = ia_lan->ia_next) {
struct in6_addr llsol;
if ((ia_lan->ia_ifp->if_flags &
(IFF_BROADCAST|IFF_MULTICAST)) !=
(IFF_BROADCAST|IFF_MULTICAST))
continue;
if (!IN6_ARE_MASKED_ADDR_EQUAL(IA6_IN6(ia),
IA6_IN6(ia_lan),
IA6_MASKIN6(ia_lan)))
continue;
if (ia_lan->ia_ifp == ia->ia_ifp)
continue;
/* init llsol */
bzero(&llsol, sizeof(struct in6_addr));
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr16[1] = htons(ia_lan->ia_ifp->if_index);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr32[3] =
ia->ia_dstaddr.sin6_addr.s6_addr32[3];
llsol.s6_addr8[12] = 0xff;
if (cmd == 1)
(void)in6_addmulti(&llsol,
ia_lan->ia_ifp,
&error);
else if (cmd == 2) {
struct in6_multi *in6m;
IN6_LOOKUP_MULTI(llsol,
ia_lan->ia_ifp,
in6m);
if (in6m)
in6_delmulti(in6m);
}
}
}
return error;
}
static int
in6_ifaddproxy(struct in6_ifaddr *ia)
{
return(in6_ifproxy_request(1, ia));
}
static void
in6_ifremproxy(struct in6_ifaddr *ia)
{
in6_ifproxy_request(2, ia);
}
int
in6_ifindex2scopeid(idx)
int idx;
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct sockaddr_in6 *sin6;
if (idx < 0 || if_index < idx)
return -1;
ifp = ifindex2ifnet[idx];
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
return sin6->sin6_scope_id & 0xffff;
}
return -1;
}
int
in6_mask2len(mask)
struct in6_addr *mask;
{
int x, y;
for (x = 0; x < sizeof(*mask); x++) {
if (mask->s6_addr8[x] != 0xff)
break;
}
y = 0;
if (x < sizeof(*mask)) {
for (y = 0; y < 8; y++) {
if ((mask->s6_addr8[x] & (0x80 >> y)) == 0)
break;
}
}
return x * 8 + y;
}
void
in6_len2mask(mask, len)
struct in6_addr *mask;
int len;
{
int i;
bzero(mask, sizeof(*mask));
for (i = 0; i < len / 8; i++)
mask->s6_addr8[i] = 0xff;
if (len % 8)
mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
}
int in6_interfaces; /* number of external internet interfaces */
#define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
#define ia62ifa(ia6) ((struct ifaddr *)(ia6))
int
in6_control(so, cmd, data, ifp, p)
struct socket *so;
u_long cmd;
caddr_t data;
struct ifnet *ifp;
struct proc *p;
{
struct in6_ifreq *ifr = (struct in6_ifreq *)data;
struct in6_ifaddr *ia, *oia;
struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
struct sockaddr_in6 oldaddr, net;
int error = 0, hostIsNew, prefixIsNew;
int privileged;
privileged = 0;
if (p && !suser(p))
privileged++;
/*
* xxx should prevent processes for link-local addresses?
*/
#if NGIF > 0
if (ifp && ifp->if_type == IFT_GIF) {
switch (cmd) {
case SIOCSIFPHYADDR_IN6:
if (!privileged)
return(EPERM);
/*fall through*/
case SIOCGIFPSRCADDR_IN6:
case SIOCGIFPDSTADDR_IN6:
return gif_ioctl(ifp, cmd, data);
}
}
#endif
if (ifp == 0)
return(EOPNOTSUPP);
switch (cmd) {
case SIOCSNDFLUSH_IN6:
case SIOCSPFXFLUSH_IN6:
case SIOCSRTRFLUSH_IN6:
if (!privileged)
return(EPERM);
/*fall through*/
case SIOCGIFINFO_IN6:
case SIOCGDRLST_IN6:
case SIOCGPRLST_IN6:
case SIOCGNBRINFO_IN6:
return(nd6_ioctl(cmd, data, ifp));
}
switch (cmd) {
case SIOCSIFPREFIX_IN6:
case SIOCDIFPREFIX_IN6:
case SIOCAIFPREFIX_IN6:
case SIOCCIFPREFIX_IN6:
case SIOCSGIFPREFIX_IN6:
if (!privileged)
return(EPERM);
/*fall through*/
case SIOCGIFPREFIX_IN6:
return(in6_prefix_ioctl(so, cmd, data, ifp));
}
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
if (!privileged)
return(EPERM);
/*fall through*/
case SIOCGLIFADDR:
return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
}
/*
* Find address for this interface, if it exists.
*/
{
struct sockaddr_in6 *sa6 =
(struct sockaddr_in6 *)&ifra->ifra_addr;
if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
if (sa6->sin6_addr.s6_addr16[1] == 0) {
/* interface ID is not embedded by the user */
sa6->sin6_addr.s6_addr16[1] =
htons(ifp->if_index);
} else
if (sa6->sin6_addr.s6_addr16[1] !=
htons(ifp->if_index))
return(EINVAL); /* ifid is contradict */
if (sa6->sin6_scope_id) {
if (sa6->sin6_scope_id !=
(u_int32_t)ifp->if_index)
return(EINVAL);
sa6->sin6_scope_id = 0; /* XXX: good way? */
}
}
}
ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
switch (cmd) {
case SIOCDIFADDR_IN6:
if (ia == 0)
return(EADDRNOTAVAIL);
/* FALLTHROUGH */
case SIOCAIFADDR_IN6:
case SIOCSIFADDR_IN6:
case SIOCSIFNETMASK_IN6:
case SIOCSIFDSTADDR_IN6:
if (!privileged)
return(EPERM);
if (ia == 0) {
ia = (struct in6_ifaddr *)
malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
if (ia == NULL)
return (ENOBUFS);
bzero((caddr_t)ia, sizeof(*ia));
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
ia->ia_ifa.ifa_dstaddr
= (struct sockaddr *)&ia->ia_dstaddr;
ia->ia_ifa.ifa_netmask
= (struct sockaddr *)&ia->ia_prefixmask;
ia->ia_ifp = ifp;
if ((oia = in6_ifaddr) != NULL) {
for ( ; oia->ia_next; oia = oia->ia_next)
continue;
oia->ia_next = ia;
} else
in6_ifaddr = ia;
TAILQ_INSERT_TAIL(&ifp->if_addrlist,
(struct ifaddr *)ia, ifa_list);
if ((ifp->if_flags & IFF_LOOPBACK) == 0)
in6_interfaces++; /*XXX*/
}
if (cmd == SIOCAIFADDR_IN6) {
/* sanity for overflow - beware unsigned */
struct in6_addrlifetime *lt;
lt = &ifra->ifra_lifetime;
if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
&& lt->ia6t_vltime + time_second < time_second) {
return EINVAL;
}
if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
&& lt->ia6t_pltime + time_second < time_second) {
return EINVAL;
}
}
break;
case SIOCGIFADDR_IN6:
/* This interface is basically deprecated. use SIOCGIFCONF. */
/* fall through */
case SIOCGIFAFLAG_IN6:
case SIOCGIFNETMASK_IN6:
case SIOCGIFDSTADDR_IN6:
case SIOCGIFALIFETIME_IN6:
/* must think again about its semantics */
if (ia == 0)
return(EADDRNOTAVAIL);
break;
case SIOCSIFALIFETIME_IN6:
{
struct in6_addrlifetime *lt;
if (!privileged)
return(EPERM);
if (ia == 0)
return(EADDRNOTAVAIL);
/* sanity for overflow - beware unsigned */
lt = &ifr->ifr_ifru.ifru_lifetime;
if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
&& lt->ia6t_vltime + time_second < time_second) {
return EINVAL;
}
if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
&& lt->ia6t_pltime + time_second < time_second) {
return EINVAL;
}
break;
}
}
switch (cmd) {
case SIOCGIFADDR_IN6:
ifr->ifr_addr = ia->ia_addr;
break;
case SIOCGIFDSTADDR_IN6:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return(EINVAL);
ifr->ifr_dstaddr = ia->ia_dstaddr;
break;
case SIOCGIFNETMASK_IN6:
ifr->ifr_addr = ia->ia_prefixmask;
break;
case SIOCGIFAFLAG_IN6:
ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
break;
case SIOCGIFSTAT_IN6:
if (ifp == NULL)
return EINVAL;
if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
|| in6_ifstat[ifp->if_index] == NULL) {
/* return EAFNOSUPPORT? */
bzero(&ifr->ifr_ifru.ifru_stat,
sizeof(ifr->ifr_ifru.ifru_stat));
} else
ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
break;
case SIOCGIFSTAT_ICMP6:
if (ifp == NULL)
return EINVAL;
if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
icmp6_ifstat[ifp->if_index] == NULL) {
/* return EAFNOSUPPORT? */
bzero(&ifr->ifr_ifru.ifru_stat,
sizeof(ifr->ifr_ifru.ifru_icmp6stat));
} else
ifr->ifr_ifru.ifru_icmp6stat =
*icmp6_ifstat[ifp->if_index];
break;
case SIOCSIFDSTADDR_IN6:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return(EINVAL);
oldaddr = ia->ia_dstaddr;
ia->ia_dstaddr = ifr->ifr_dstaddr;
/* link-local index check */
if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
/* interface ID is not embedded by the user */
ia->ia_dstaddr.sin6_addr.s6_addr16[1]
= htons(ifp->if_index);
} else
if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
htons(ifp->if_index)) {
ia->ia_dstaddr = oldaddr;
return(EINVAL); /* ifid is contradict */
}
}
if (ifp->if_ioctl && (error = (ifp->if_ioctl)
(ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
ia->ia_dstaddr = oldaddr;
return(error);
}
if (ia->ia_flags & IFA_ROUTE) {
ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
ia->ia_ifa.ifa_dstaddr =
(struct sockaddr *)&ia->ia_dstaddr;
rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
}
break;
case SIOCGIFALIFETIME_IN6:
ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
break;
case SIOCSIFALIFETIME_IN6:
ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
/* for sanity */
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_expire =
time_second + ia->ia6_lifetime.ia6t_vltime;
} else
ia->ia6_lifetime.ia6t_expire = 0;
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_preferred =
time_second + ia->ia6_lifetime.ia6t_pltime;
} else
ia->ia6_lifetime.ia6t_preferred = 0;
break;
case SIOCSIFADDR_IN6:
return(in6_ifinit(ifp, ia, &ifr->ifr_addr, 1));
case SIOCSIFNETMASK_IN6:
ia->ia_prefixmask = ifr->ifr_addr;
bzero(&net, sizeof(net));
net.sin6_len = sizeof(struct sockaddr_in6);
net.sin6_family = AF_INET6;
net.sin6_port = htons(0);
net.sin6_flowinfo = htonl(0);
net.sin6_addr.s6_addr32[0]
= ia->ia_addr.sin6_addr.s6_addr32[0] &
ia->ia_prefixmask.sin6_addr.s6_addr32[0];
net.sin6_addr.s6_addr32[1]
= ia->ia_addr.sin6_addr.s6_addr32[1] &
ia->ia_prefixmask.sin6_addr.s6_addr32[1];
net.sin6_addr.s6_addr32[2]
= ia->ia_addr.sin6_addr.s6_addr32[2] &
ia->ia_prefixmask.sin6_addr.s6_addr32[2];
net.sin6_addr.s6_addr32[3]
= ia->ia_addr.sin6_addr.s6_addr32[3] &
ia->ia_prefixmask.sin6_addr.s6_addr32[3];
ia->ia_net = net;
break;
case SIOCAIFADDR_IN6:
prefixIsNew = 0;
hostIsNew = 1;
if (ifra->ifra_addr.sin6_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;
} else if (IN6_ARE_ADDR_EQUAL(&ifra->ifra_addr.sin6_addr,
&ia->ia_addr.sin6_addr))
hostIsNew = 0;
if (ifra->ifra_prefixmask.sin6_len) {
in6_ifscrub(ifp, ia);
ia->ia_prefixmask = ifra->ifra_prefixmask;
prefixIsNew = 1;
}
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin6_family == AF_INET6)) {
in6_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;
/* link-local index check: should be a separate function? */
if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
/*
* interface ID is not embedded by
* the user
*/
ia->ia_dstaddr.sin6_addr.s6_addr16[1]
= htons(ifp->if_index);
} else
if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
htons(ifp->if_index)) {
ia->ia_dstaddr = oldaddr;
return(EINVAL); /* ifid is contradict */
}
}
prefixIsNew = 1; /* We lie; but effect's the same */
}
if (ifra->ifra_addr.sin6_family == AF_INET6 &&
(hostIsNew || prefixIsNew))
error = in6_ifinit(ifp, ia, &ifra->ifra_addr, 0);
if (ifra->ifra_addr.sin6_family == AF_INET6
&& hostIsNew && (ifp->if_flags & IFF_MULTICAST)) {
int error_local = 0;
/*
* join solicited multicast addr for new host id
*/
struct in6_addr llsol;
bzero(&llsol, sizeof(struct in6_addr));
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr16[1] = htons(ifp->if_index);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr32[3] =
ifra->ifra_addr.sin6_addr.s6_addr32[3];
llsol.s6_addr8[12] = 0xff;
(void)in6_addmulti(&llsol, ifp, &error_local);
if (error == 0)
error = error_local;
}
/* Join dstaddr's solicited multicast if necessary. */
if (nd6_proxyall && hostIsNew) {
int error_local;
error_local = in6_ifaddproxy(ia);
if (error == 0)
error = error_local;
}
ia->ia6_flags = ifra->ifra_flags;
ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/
ia->ia6_lifetime = ifra->ifra_lifetime;
/* for sanity */
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_expire =
time_second + ia->ia6_lifetime.ia6t_vltime;
} else
ia->ia6_lifetime.ia6t_expire = 0;
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_preferred =
time_second + ia->ia6_lifetime.ia6t_pltime;
} else
ia->ia6_lifetime.ia6t_preferred = 0;
/*
* Perform DAD, if needed.
* XXX It may be of use, if we can administratively
* disable DAD.
*/
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
ia->ia6_flags |= IN6_IFF_TENTATIVE;
nd6_dad_start((struct ifaddr *)ia, NULL);
break;
#ifdef IFT_DUMMY
case IFT_DUMMY:
#endif
case IFT_FAITH:
case IFT_GIF:
case IFT_LOOP:
default:
break;
}
if (hostIsNew) {
int iilen;
int error_local = 0;
iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) -
in6_mask2len(&ia->ia_prefixmask.sin6_addr);
error_local = in6_prefix_add_ifid(iilen, ia);
if (error == 0)
error = error_local;
}
return(error);
case SIOCDIFADDR_IN6:
in6_ifscrub(ifp, ia);
if (ifp->if_flags & IFF_MULTICAST) {
/*
* delete solicited multicast addr for deleting host id
*/
struct in6_multi *in6m;
struct in6_addr llsol;
bzero(&llsol, sizeof(struct in6_addr));
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr16[1] = htons(ifp->if_index);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr32[3] =
ia->ia_addr.sin6_addr.s6_addr32[3];
llsol.s6_addr8[12] = 0xff;
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
if (in6m)
in6_delmulti(in6m);
}
/* Leave dstaddr's solicited multicast if necessary. */
if (nd6_proxyall)
in6_ifremproxy(ia);
TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *)ia, ifa_list);
oia = ia;
if (oia == (ia = in6_ifaddr))
in6_ifaddr = ia->ia_next;
else {
while (ia->ia_next && (ia->ia_next != oia))
ia = ia->ia_next;
if (ia->ia_next)
ia->ia_next = oia->ia_next;
else
printf("Didn't unlink in6_ifaddr from list\n");
}
{
int iilen;
iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) -
in6_mask2len(&oia->ia_prefixmask.sin6_addr);
in6_prefix_remove_ifid(iilen, oia);
}
IFAFREE((&oia->ia_ifa));
break;
default:
if (ifp == 0 || ifp->if_ioctl == 0)
return(EOPNOTSUPP);
return((*ifp->if_ioctl)(ifp, cmd, data));
}
return(0);
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (?!?)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* add the specified prefix, filling hostid part from
* the first link-local address. prefixlen must be <= 64.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in6_ioctl()
*
* NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
* this is to accomodate address naming scheme other than RFC2374,
* in the future.
* RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
* address encoding scheme. (see figure on page 8)
*/
static int
in6_lifaddr_ioctl(so, cmd, data, ifp, p)
struct socket *so;
u_long cmd;
caddr_t data;
struct ifnet *ifp;
struct proc *p;
{
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
/* sanity checks */
if (!data || !ifp) {
panic("invalid argument to in6_lifaddr_ioctl");
/*NOTRECHED*/
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/*FALLTHROUGH*/
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
if (iflr->addr.__ss_family != AF_INET6)
return EINVAL;
if (iflr->addr.__ss_len != sizeof(struct sockaddr_in6))
return EINVAL;
/* XXX need improvement */
if (iflr->dstaddr.__ss_family
&& iflr->dstaddr.__ss_family != AF_INET6)
return EINVAL;
if (iflr->dstaddr.__ss_family
&& iflr->dstaddr.__ss_len != sizeof(struct sockaddr_in6))
return EINVAL;
break;
default: /*shouldn't happen*/
return EOPNOTSUPP;
}
if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
return EINVAL;
switch (cmd) {
case SIOCALIFADDR:
{
struct in6_aliasreq ifra;
struct in6_addr *hostid = NULL;
int prefixlen;
if ((iflr->flags & IFLR_PREFIX) != 0) {
struct sockaddr_in6 *sin6;
/*
* hostid is to fill in the hostid part of the
* address. hostid points to the first link-local
* address attached to the interface.
*/
ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp);
if (!ifa)
return EADDRNOTAVAIL;
hostid = IFA_IN6(ifa);
/* prefixlen must be <= 64. */
if (64 < iflr->prefixlen)
return EINVAL;
prefixlen = iflr->prefixlen;
/* hostid part must be zero. */
sin6 = (struct sockaddr_in6 *)&iflr->addr;
if (sin6->sin6_addr.s6_addr32[2] != 0
|| sin6->sin6_addr.s6_addr32[3] != 0) {
return EINVAL;
}
} else
prefixlen = iflr->prefixlen;
/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.__ss_len);
if (hostid) {
/* fill in hostid part */
ifra.ifra_addr.sin6_addr.s6_addr32[2] =
hostid->s6_addr32[2];
ifra.ifra_addr.sin6_addr.s6_addr32[3] =
hostid->s6_addr32[3];
}
if (iflr->dstaddr.__ss_family) { /*XXX*/
bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
iflr->dstaddr.__ss_len);
if (hostid) {
ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
hostid->s6_addr32[2];
ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
hostid->s6_addr32[3];
}
}
ifra.ifra_prefixmask.sin6_family = AF_INET6;
ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in6_ifaddr *ia;
struct in6_addr mask, candidate, match;
struct sockaddr_in6 *sin6;
int cmp;
bzero(&mask, sizeof(mask));
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in6_len2mask(&mask, iflr->prefixlen);
sin6 = (struct sockaddr_in6 *)&iflr->addr;
bcopy(&sin6->sin6_addr, &match, sizeof(match));
match.s6_addr32[0] &= mask.s6_addr32[0];
match.s6_addr32[1] &= mask.s6_addr32[1];
match.s6_addr32[2] &= mask.s6_addr32[2];
match.s6_addr32[3] &= mask.s6_addr32[3];
/* if you set extra bits, that's wrong */
if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
return EINVAL;
cmp = 1;
} else {
if (cmd == SIOCGLIFADDR) {
/* on getting an address, take the 1st match */
cmp = 0; /*XXX*/
} else {
/* on deleting an address, do exact match */
in6_len2mask(&mask, 128);
sin6 = (struct sockaddr_in6 *)&iflr->addr;
bcopy(&sin6->sin6_addr, &match, sizeof(match));
cmp = 1;
}
}
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!cmp)
break;
bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
candidate.s6_addr32[0] &= mask.s6_addr32[0];
candidate.s6_addr32[1] &= mask.s6_addr32[1];
candidate.s6_addr32[2] &= mask.s6_addr32[2];
candidate.s6_addr32[3] &= mask.s6_addr32[3];
if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
break;
}
if (!ifa)
return EADDRNOTAVAIL;
ia = ifa2ia6(ifa);
if (cmd == SIOCGLIFADDR) {
/* fill in the if_laddrreq structure */
bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
ia->ia_dstaddr.sin6_len);
} else
bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
iflr->prefixlen =
in6_mask2len(&ia->ia_prefixmask.sin6_addr);
iflr->flags = ia->ia6_flags; /*XXX*/
return 0;
} else {
struct in6_aliasreq ifra;
/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&ia->ia_addr, &ifra.ifra_addr,
ia->ia_addr.sin6_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
ia->ia_dstaddr.sin6_len);
}
bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
ia->ia_prefixmask.sin6_len);
ifra.ifra_flags = ia->ia6_flags;
return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
ifp, p);
}
}
}
return EOPNOTSUPP; /*just for safety*/
}
/*
* Delete any existing route for an interface.
*/
void
in6_ifscrub(ifp, ia)
register struct ifnet *ifp;
register struct in6_ifaddr *ia;
{
if ((ia->ia_flags & IFA_ROUTE) == 0)
return;
if (ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
else
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
ia->ia_flags &= ~IFA_ROUTE;
/* Remove ownaddr's loopback rtentry, if it exists. */
in6_ifremloop(&(ia->ia_ifa));
}
/*
* Initialize an interface's intetnet6 address
* and routing table entry.
*/
int
in6_ifinit(ifp, ia, sin6, scrub)
struct ifnet *ifp;
struct in6_ifaddr *ia;
struct sockaddr_in6 *sin6;
int scrub;
{
struct sockaddr_in6 oldaddr;
int error, flags = RTF_UP;
int s = splimp();
oldaddr = ia->ia_addr;
ia->ia_addr = *sin6;
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
if (ifp->if_ioctl &&
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
splx(s);
ia->ia_addr = oldaddr;
return(error);
}
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
ia->ia_ifa.ifa_flags |= RTF_CLONING;
break;
case IFT_PPP:
ia->ia_ifa.ifa_rtrequest = nd6_p2p_rtrequest;
ia->ia_ifa.ifa_flags |= RTF_CLONING;
break;
}
splx(s);
if (scrub) {
ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
in6_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
}
/* xxx
* in_socktrim
*/
/*
* Add route for the network.
*/
ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin6_family != AF_INET6)
return(0);
flags |= RTF_HOST;
}
if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, flags)) == 0)
ia->ia_flags |= IFA_ROUTE;
/* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
in6_ifaddloop(&(ia->ia_ifa));
return(error);
}
/*
* Add an address to the list of IP6 multicast addresses for a
* given interface.
*/
struct in6_multi *
in6_addmulti(maddr6, ifp, errorp)
register struct in6_addr *maddr6;
register struct ifnet *ifp;
int *errorp;
{
struct in6_multi *in6m;
struct sockaddr_in6 sin6;
struct ifmultiaddr *ifma;
int s = splnet();
*errorp = 0;
/*
* Call generic routine to add membership or increment
* refcount. It wants addresses in the form of a sockaddr,
* so we build one here (being careful to zero the unused bytes).
*/
bzero(&sin6, sizeof sin6);
sin6.sin6_family = AF_INET6;
sin6.sin6_len = sizeof sin6;
sin6.sin6_addr = *maddr6;
*errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
if (*errorp) {
splx(s);
return 0;
}
/*
* If ifma->ifma_protospec is null, then if_addmulti() created
* a new record. Otherwise, we are done.
*/
if (ifma->ifma_protospec != 0)
return ifma->ifma_protospec;
/* XXX - if_addmulti uses M_WAITOK. Can this really be called
at interrupt time? If so, need to fix if_addmulti. XXX */
in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
if (in6m == NULL) {
splx(s);
return (NULL);
}
bzero(in6m, sizeof *in6m);
in6m->in6m_addr = *maddr6;
in6m->in6m_ifp = ifp;
in6m->in6m_ifma = ifma;
ifma->ifma_protospec = in6m;
LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
/*
* Let MLD6 know that we have joined a new IP6 multicast
* group.
*/
mld6_start_listening(in6m);
splx(s);
return(in6m);
}
/*
* Delete a multicast address record.
*/
void
in6_delmulti(in6m)
struct in6_multi *in6m;
{
struct ifmultiaddr *ifma = in6m->in6m_ifma;
int s = splnet();
if (ifma->ifma_refcount == 1) {
/*
* No remaining claims to this record; let MLD6 know
* that we are leaving the multicast group.
*/
mld6_stop_listening(in6m);
ifma->ifma_protospec = 0;
LIST_REMOVE(in6m, in6m_entry);
free(in6m, M_IPMADDR);
}
/* XXX - should be separate API for when we have an ifma? */
if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
splx(s);
}
/*
* Find an IPv6 interface link-local address specific to an interface.
*/
struct in6_ifaddr *
in6ifa_ifpforlinklocal(ifp)
struct ifnet *ifp;
{
register struct ifaddr *ifa;
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa)))
break;
}
return((struct in6_ifaddr *)ifa);
}
/*
* find the internet address corresponding to a given interface and address.
*/
struct in6_ifaddr *
in6ifa_ifpwithaddr(ifp, addr)
struct ifnet *ifp;
struct in6_addr *addr;
{
register struct ifaddr *ifa;
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
break;
}
return((struct in6_ifaddr *)ifa);
}
/*
* Convert IP6 address to printable (loggable) representation.
*/
static char digits[] = "0123456789abcdef";
static int ip6round = 0;
char *
ip6_sprintf(addr)
register struct in6_addr *addr;
{
static char ip6buf[8][48];
register int i;
register char *cp;
register u_short *a = (u_short *)addr;
register u_char *d;
int dcolon = 0;
ip6round = (ip6round + 1) & 7;
cp = ip6buf[ip6round];
for (i = 0; i < 8; i++) {
if (dcolon == 1) {
if (*a == 0) {
if (i == 7)
*cp++ = ':';
a++;
continue;
} else
dcolon = 2;
}
if (*a == 0) {
if (dcolon == 0 && *(a + 1) == 0) {
if (i == 0)
*cp++ = ':';
*cp++ = ':';
dcolon = 1;
} else {
*cp++ = '0';
*cp++ = ':';
}
a++;
continue;
}
d = (u_char *)a;
*cp++ = digits[*d >> 4];
*cp++ = digits[*d++ & 0xf];
*cp++ = digits[*d >> 4];
*cp++ = digits[*d & 0xf];
*cp++ = ':';
a++;
}
*--cp = 0;
return(ip6buf[ip6round]);
}
int
in6_localaddr(in6)
struct in6_addr *in6;
{
struct in6_ifaddr *ia;
if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
return 1;
for (ia = in6_ifaddr; ia; ia = ia->ia_next)
if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
&ia->ia_prefixmask.sin6_addr))
return 1;
return (0);
}
/*
* Get a scope of the address. Node-local, link-local, site-local or global.
*/
int
in6_addrscope (addr)
struct in6_addr *addr;
{
int scope;
if (addr->s6_addr8[0] == 0xfe) {
scope = addr->s6_addr8[1] & 0xc0;
switch (scope) {
case 0x80:
return IPV6_ADDR_SCOPE_LINKLOCAL;
break;
case 0xc0:
return IPV6_ADDR_SCOPE_SITELOCAL;
break;
default:
return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
break;
}
}
if (addr->s6_addr8[0] == 0xff) {
scope = addr->s6_addr8[1] & 0x0f;
/*
* due to other scope such as reserved,
* return scope doesn't work.
*/
switch (scope) {
case IPV6_ADDR_SCOPE_NODELOCAL:
return IPV6_ADDR_SCOPE_NODELOCAL;
break;
case IPV6_ADDR_SCOPE_LINKLOCAL:
return IPV6_ADDR_SCOPE_LINKLOCAL;
break;
case IPV6_ADDR_SCOPE_SITELOCAL:
return IPV6_ADDR_SCOPE_SITELOCAL;
break;
default:
return IPV6_ADDR_SCOPE_GLOBAL;
break;
}
}
if (bcmp(&in6addr_loopback, addr, sizeof(addr) - 1) == 0) {
if (addr->s6_addr8[15] == 1) /* loopback */
return IPV6_ADDR_SCOPE_NODELOCAL;
if (addr->s6_addr8[15] == 0) /* unspecified */
return IPV6_ADDR_SCOPE_LINKLOCAL;
}
return IPV6_ADDR_SCOPE_GLOBAL;
}
/*
* return length of part which dst and src are equal
* hard coding...
*/
int
in6_matchlen(src, dst)
struct in6_addr *src, *dst;
{
int match = 0;
u_char *s = (u_char *)src, *d = (u_char *)dst;
u_char *lim = s + 16, r;
while (s < lim)
if ((r = (*d++ ^ *s++)) != 0) {
while (r < 128) {
match++;
r <<= 1;
}
break;
} else
match += 8;
return match;
}
int
in6_are_prefix_equal(p1, p2, len)
struct in6_addr *p1, *p2;
int len;
{
int bytelen, bitlen;
/* sanity check */
if (0 > len || len > 128) {
log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
len);
return(0);
}
bytelen = len / 8;
bitlen = len % 8;
if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
return(0);
if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
p2->s6_addr[bytelen] >> (8 - bitlen))
return(0);
return(1);
}
void
in6_prefixlen2mask(maskp, len)
struct in6_addr *maskp;
int len;
{
u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
int bytelen, bitlen, i;
/* sanity check */
if (0 > len || len > 128) {
log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
len);
return;
}
bzero(maskp, sizeof(*maskp));
bytelen = len / 8;
bitlen = len % 8;
for (i = 0; i < bytelen; i++)
maskp->s6_addr[i] = 0xff;
if (bitlen)
maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
}
/*
* return the best address out of the same scope
*/
struct in6_ifaddr *
in6_ifawithscope(ifp, dst)
register struct ifnet *ifp;
register struct in6_addr *dst;
{
int dst_scope = in6_addrscope(dst), blen = -1, tlen;
struct ifaddr *ifa;
struct in6_ifaddr *besta = NULL, *ia;
struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/
dep[0] = dep[1] = NULL;
/*
* We first look for addresses in the same scope.
* If there is one, return it.
* If two or more, return one which matches the dst longest.
* If none, return one of global addresses assigned other ifs.
*/
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
continue; /* XXX: is there any case to allow anycast? */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
continue; /* don't use this interface */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
if (ip6_use_deprecated)
dep[0] = (struct in6_ifaddr *)ifa;
continue;
}
if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
/*
* call in6_matchlen() as few as possible
*/
if (besta) {
if (blen == -1)
blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
tlen = in6_matchlen(IFA_IN6(ifa), dst);
if (tlen > blen) {
blen = tlen;
besta = (struct in6_ifaddr *)ifa;
}
} else
besta = (struct in6_ifaddr *)ifa;
}
}
if (besta)
return besta;
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
if (IPV6_ADDR_SCOPE_GLOBAL !=
in6_addrscope(&(ia->ia_addr.sin6_addr)))
continue;
/* XXX: is there any case to allow anycast? */
if ((ia->ia6_flags & IN6_IFF_ANYCAST) != 0)
continue;
if ((ia->ia6_flags & IN6_IFF_NOTREADY) != 0)
continue;
if ((ia->ia6_flags & IN6_IFF_DETACHED) != 0)
continue;
if ((ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
if (ip6_use_deprecated)
dep[1] = (struct in6_ifaddr *)ifa;
continue;
}
return ia;
}
/* use the last-resort values, that are, deprecated addresses */
if (dep[0])
return dep[0];
if (dep[1])
return dep[1];
return NULL;
}
/*
* return the best address out of the same scope. if no address was
* found, return the first valid address from designated IF.
*/
struct in6_ifaddr *
in6_ifawithifp(ifp, dst)
register struct ifnet *ifp;
register struct in6_addr *dst;
{
int dst_scope = in6_addrscope(dst), blen = -1, tlen;
struct ifaddr *ifa;
struct in6_ifaddr *besta = 0;
struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/
dep[0] = dep[1] = NULL;
/*
* We first look for addresses in the same scope.
* If there is one, return it.
* If two or more, return one which matches the dst longest.
* If none, return one of global addresses assigned other ifs.
*/
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
continue; /* XXX: is there any case to allow anycast? */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
continue; /* don't use this interface */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
if (ip6_use_deprecated)
dep[0] = (struct in6_ifaddr *)ifa;
continue;
}
if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
/*
* call in6_matchlen() as few as possible
*/
if (besta) {
if (blen == -1)
blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
tlen = in6_matchlen(IFA_IN6(ifa), dst);
if (tlen > blen) {
blen = tlen;
besta = (struct in6_ifaddr *)ifa;
}
} else
besta = (struct in6_ifaddr *)ifa;
}
}
if (besta)
return(besta);
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
continue; /* XXX: is there any case to allow anycast? */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
continue; /* don't use this interface */
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
continue;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
if (ip6_use_deprecated)
dep[1] = (struct in6_ifaddr *)ifa;
continue;
}
return (struct in6_ifaddr *)ifa;
}
/* use the last-resort values, that are, deprecated addresses */
if (dep[0])
return dep[0];
if (dep[1])
return dep[1];
return NULL;
}
/*
* perform DAD when interface becomes IFF_UP.
*/
void
in6_if_up(ifp)
struct ifnet *ifp;
{
struct ifaddr *ifa;
struct in6_ifaddr *ia;
struct sockaddr_dl *sdl;
int type;
struct ether_addr ea;
int off;
int dad_delay; /* delay ticks before DAD output */
bzero(&ea, sizeof(ea));
sdl = NULL;
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family == AF_INET6
&& IN6_IS_ADDR_LINKLOCAL(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr)) {
goto dad;
}
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
break;
}
switch (ifp->if_type) {
case IFT_SLIP:
case IFT_PPP:
#ifdef IFT_DUMMY
case IFT_DUMMY:
#endif
case IFT_GIF:
case IFT_FAITH:
type = IN6_IFT_P2P;
in6_ifattach(ifp, type, 0, 1);
break;
case IFT_ETHER:
case IFT_FDDI:
case IFT_ATM:
type = IN6_IFT_802;
if (sdl == NULL)
break;
off = sdl->sdl_nlen;
if (bcmp(&sdl->sdl_data[off], &ea, sizeof(ea)) != 0)
in6_ifattach(ifp, type, LLADDR(sdl), 0);
break;
case IFT_ARCNET:
type = IN6_IFT_ARCNET;
if (sdl == NULL)
break;
off = sdl->sdl_nlen;
if (sdl->sdl_data[off] != 0) /* XXX ?: */
in6_ifattach(ifp, type, LLADDR(sdl), 0);
break;
default:
break;
}
dad:
dad_delay = 0;
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
{
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (ia->ia6_flags & IN6_IFF_TENTATIVE)
nd6_dad_start(ifa, &dad_delay);
}
}
/*
* Calculate max IPv6 MTU through all the interfaces and store it
* to in6_maxmtu.
*/
void
in6_setmaxmtu()
{
unsigned long maxmtu = 0;
struct ifnet *ifp;
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
{
if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
maxmtu = nd_ifinfo[ifp->if_index].linkmtu;
}
if (maxmtu) /* update only when maxmtu is positive */
in6_maxmtu = maxmtu;
}
/*
* Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
* v4 mapped addr or v4 compat addr
*/
void
in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
{
bzero(sin, sizeof(*sin));
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_port = sin6->sin6_port;
sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
}
/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
void
in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
{
bzero(sin6, sizeof(*sin6));
sin6->sin6_len = sizeof(struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = sin->sin_port;
sin6->sin6_addr.s6_addr32[0] = 0;
sin6->sin6_addr.s6_addr32[1] = 0;
sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
}
/* Convert sockaddr_in6 into sockaddr_in. */
void
in6_sin6_2_sin_in_sock(struct sockaddr *nam)
{
struct sockaddr_in *sin_p;
struct sockaddr_in6 sin6;
/*
* Save original sockaddr_in6 addr and convert it
* to sockaddr_in.
*/
sin6 = *(struct sockaddr_in6 *)nam;
sin_p = (struct sockaddr_in *)nam;
in6_sin6_2_sin(sin_p, &sin6);
}
/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
void
in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
{
struct sockaddr_in *sin_p;
struct sockaddr_in6 *sin6_p;
MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
M_WAITOK);
sin_p = (struct sockaddr_in *)*nam;
in6_sin_2_v4mapsin6(sin_p, sin6_p);
FREE(*nam, M_SONAME);
*nam = (struct sockaddr *)sin6_p;
}