mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-25 11:37:56 +00:00
7376ba1329
Add a test to exercise this feature. This should fix --sparse/-S support in tar. Thanks to: Daichi GOTO MFC after: 1 week
2397 lines
66 KiB
C
2397 lines
66 KiB
C
/*-
|
|
* Copyright (c) 2003-2007 Tim Kientzle
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "archive_platform.h"
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef HAVE_SYS_TYPES_H
|
|
#include <sys/types.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_ACL_H
|
|
#include <sys/acl.h>
|
|
#endif
|
|
#ifdef HAVE_ATTR_XATTR_H
|
|
#include <attr/xattr.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_STAT_H
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_UTIME_H
|
|
#include <sys/utime.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_EXT2FS_EXT2_FS_H
|
|
#include <ext2fs/ext2_fs.h> /* for Linux file flags */
|
|
#endif
|
|
#ifdef HAVE_ERRNO_H
|
|
#include <errno.h>
|
|
#endif
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_GRP_H
|
|
#include <grp.h>
|
|
#endif
|
|
#ifdef HAVE_LINUX_FS_H
|
|
#include <linux/fs.h> /* for Linux file flags */
|
|
#endif
|
|
#ifdef HAVE_LIMITS_H
|
|
#include <limits.h>
|
|
#endif
|
|
#ifdef HAVE_PWD_H
|
|
#include <pwd.h>
|
|
#endif
|
|
#include <stdio.h>
|
|
#ifdef HAVE_STDLIB_H
|
|
#include <stdlib.h>
|
|
#endif
|
|
#ifdef HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_UTIME_H
|
|
#include <utime.h>
|
|
#endif
|
|
|
|
#include "archive.h"
|
|
#include "archive_string.h"
|
|
#include "archive_entry.h"
|
|
#include "archive_private.h"
|
|
|
|
#ifndef O_BINARY
|
|
#define O_BINARY 0
|
|
#endif
|
|
|
|
struct fixup_entry {
|
|
struct fixup_entry *next;
|
|
mode_t mode;
|
|
int64_t atime;
|
|
int64_t birthtime;
|
|
int64_t mtime;
|
|
unsigned long atime_nanos;
|
|
unsigned long birthtime_nanos;
|
|
unsigned long mtime_nanos;
|
|
unsigned long fflags_set;
|
|
int fixup; /* bitmask of what needs fixing */
|
|
char *name;
|
|
};
|
|
|
|
/*
|
|
* We use a bitmask to track which operations remain to be done for
|
|
* this file. In particular, this helps us avoid unnecessary
|
|
* operations when it's possible to take care of one step as a
|
|
* side-effect of another. For example, mkdir() can specify the mode
|
|
* for the newly-created object but symlink() cannot. This means we
|
|
* can skip chmod() if mkdir() succeeded, but we must explicitly
|
|
* chmod() if we're trying to create a directory that already exists
|
|
* (mkdir() failed) or if we're restoring a symlink. Similarly, we
|
|
* need to verify UID/GID before trying to restore SUID/SGID bits;
|
|
* that verification can occur explicitly through a stat() call or
|
|
* implicitly because of a successful chown() call.
|
|
*/
|
|
#define TODO_MODE_FORCE 0x40000000
|
|
#define TODO_MODE_BASE 0x20000000
|
|
#define TODO_SUID 0x10000000
|
|
#define TODO_SUID_CHECK 0x08000000
|
|
#define TODO_SGID 0x04000000
|
|
#define TODO_SGID_CHECK 0x02000000
|
|
#define TODO_MODE (TODO_MODE_BASE|TODO_SUID|TODO_SGID)
|
|
#define TODO_TIMES ARCHIVE_EXTRACT_TIME
|
|
#define TODO_OWNER ARCHIVE_EXTRACT_OWNER
|
|
#define TODO_FFLAGS ARCHIVE_EXTRACT_FFLAGS
|
|
#define TODO_ACLS ARCHIVE_EXTRACT_ACL
|
|
#define TODO_XATTR ARCHIVE_EXTRACT_XATTR
|
|
|
|
struct archive_write_disk {
|
|
struct archive archive;
|
|
|
|
mode_t user_umask;
|
|
struct fixup_entry *fixup_list;
|
|
struct fixup_entry *current_fixup;
|
|
uid_t user_uid;
|
|
dev_t skip_file_dev;
|
|
ino_t skip_file_ino;
|
|
time_t start_time;
|
|
|
|
gid_t (*lookup_gid)(void *private, const char *gname, gid_t gid);
|
|
void (*cleanup_gid)(void *private);
|
|
void *lookup_gid_data;
|
|
uid_t (*lookup_uid)(void *private, const char *gname, gid_t gid);
|
|
void (*cleanup_uid)(void *private);
|
|
void *lookup_uid_data;
|
|
|
|
/*
|
|
* Full path of last file to satisfy symlink checks.
|
|
*/
|
|
struct archive_string path_safe;
|
|
|
|
/*
|
|
* Cached stat data from disk for the current entry.
|
|
* If this is valid, pst points to st. Otherwise,
|
|
* pst is null.
|
|
*/
|
|
struct stat st;
|
|
struct stat *pst;
|
|
|
|
/* Information about the object being restored right now. */
|
|
struct archive_entry *entry; /* Entry being extracted. */
|
|
char *name; /* Name of entry, possibly edited. */
|
|
struct archive_string _name_data; /* backing store for 'name' */
|
|
/* Tasks remaining for this object. */
|
|
int todo;
|
|
/* Tasks deferred until end-of-archive. */
|
|
int deferred;
|
|
/* Options requested by the client. */
|
|
int flags;
|
|
/* Handle for the file we're restoring. */
|
|
int fd;
|
|
/* Current offset for writing data to the file. */
|
|
off_t offset;
|
|
/* Last offset actually written to disk. */
|
|
off_t fd_offset;
|
|
/* Maximum size of file, -1 if unknown. */
|
|
off_t filesize;
|
|
/* Dir we were in before this restore; only for deep paths. */
|
|
int restore_pwd;
|
|
/* Mode we should use for this entry; affected by _PERM and umask. */
|
|
mode_t mode;
|
|
/* UID/GID to use in restoring this entry. */
|
|
uid_t uid;
|
|
gid_t gid;
|
|
};
|
|
|
|
/*
|
|
* Default mode for dirs created automatically (will be modified by umask).
|
|
* Note that POSIX specifies 0777 for implicity-created dirs, "modified
|
|
* by the process' file creation mask."
|
|
*/
|
|
#define DEFAULT_DIR_MODE 0777
|
|
/*
|
|
* Dir modes are restored in two steps: During the extraction, the permissions
|
|
* in the archive are modified to match the following limits. During
|
|
* the post-extract fixup pass, the permissions from the archive are
|
|
* applied.
|
|
*/
|
|
#define MINIMUM_DIR_MODE 0700
|
|
#define MAXIMUM_DIR_MODE 0775
|
|
|
|
static int check_symlinks(struct archive_write_disk *);
|
|
static int create_filesystem_object(struct archive_write_disk *);
|
|
static struct fixup_entry *current_fixup(struct archive_write_disk *, const char *pathname);
|
|
#ifdef HAVE_FCHDIR
|
|
static void edit_deep_directories(struct archive_write_disk *ad);
|
|
#endif
|
|
static int cleanup_pathname(struct archive_write_disk *);
|
|
static int create_dir(struct archive_write_disk *, char *);
|
|
static int create_parent_dir(struct archive_write_disk *, char *);
|
|
static int older(struct stat *, struct archive_entry *);
|
|
static int restore_entry(struct archive_write_disk *);
|
|
#ifdef HAVE_POSIX_ACL
|
|
static int set_acl(struct archive_write_disk *, int fd, struct archive_entry *,
|
|
acl_type_t, int archive_entry_acl_type, const char *tn);
|
|
#endif
|
|
static int set_acls(struct archive_write_disk *);
|
|
static int set_xattrs(struct archive_write_disk *);
|
|
static int set_fflags(struct archive_write_disk *);
|
|
static int set_fflags_platform(struct archive_write_disk *, int fd,
|
|
const char *name, mode_t mode,
|
|
unsigned long fflags_set, unsigned long fflags_clear);
|
|
static int set_ownership(struct archive_write_disk *);
|
|
static int set_mode(struct archive_write_disk *, int mode);
|
|
static int set_time(int, int, const char *, time_t, long, time_t, long);
|
|
static int set_times(struct archive_write_disk *);
|
|
static struct fixup_entry *sort_dir_list(struct fixup_entry *p);
|
|
static gid_t trivial_lookup_gid(void *, const char *, gid_t);
|
|
static uid_t trivial_lookup_uid(void *, const char *, uid_t);
|
|
static ssize_t write_data_block(struct archive_write_disk *,
|
|
const char *, size_t);
|
|
|
|
static struct archive_vtable *archive_write_disk_vtable(void);
|
|
|
|
static int _archive_write_close(struct archive *);
|
|
static int _archive_write_finish(struct archive *);
|
|
static int _archive_write_header(struct archive *, struct archive_entry *);
|
|
static int _archive_write_finish_entry(struct archive *);
|
|
static ssize_t _archive_write_data(struct archive *, const void *, size_t);
|
|
static ssize_t _archive_write_data_block(struct archive *, const void *, size_t, off_t);
|
|
|
|
static int
|
|
_archive_write_disk_lazy_stat(struct archive_write_disk *a)
|
|
{
|
|
if (a->pst != NULL) {
|
|
/* Already have stat() data available. */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#ifdef HAVE_FSTAT
|
|
if (a->fd >= 0 && fstat(a->fd, &a->st) == 0) {
|
|
a->pst = &a->st;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#endif
|
|
/*
|
|
* XXX At this point, symlinks should not be hit, otherwise
|
|
* XXX a race occured. Do we want to check explicitly for that?
|
|
*/
|
|
if (lstat(a->name, &a->st) == 0) {
|
|
a->pst = &a->st;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
archive_set_error(&a->archive, errno, "Couldn't stat file");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
static struct archive_vtable *
|
|
archive_write_disk_vtable(void)
|
|
{
|
|
static struct archive_vtable av;
|
|
static int inited = 0;
|
|
|
|
if (!inited) {
|
|
av.archive_write_close = _archive_write_close;
|
|
av.archive_write_finish = _archive_write_finish;
|
|
av.archive_write_header = _archive_write_header;
|
|
av.archive_write_finish_entry = _archive_write_finish_entry;
|
|
av.archive_write_data = _archive_write_data;
|
|
av.archive_write_data_block = _archive_write_data_block;
|
|
}
|
|
return (&av);
|
|
}
|
|
|
|
|
|
int
|
|
archive_write_disk_set_options(struct archive *_a, int flags)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
|
|
a->flags = flags;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* Extract this entry to disk.
|
|
*
|
|
* TODO: Validate hardlinks. According to the standards, we're
|
|
* supposed to check each extracted hardlink and squawk if it refers
|
|
* to a file that we didn't restore. I'm not entirely convinced this
|
|
* is a good idea, but more importantly: Is there any way to validate
|
|
* hardlinks without keeping a complete list of filenames from the
|
|
* entire archive?? Ugh.
|
|
*
|
|
*/
|
|
static int
|
|
_archive_write_header(struct archive *_a, struct archive_entry *entry)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
struct fixup_entry *fe;
|
|
int ret, r;
|
|
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_write_disk_header");
|
|
archive_clear_error(&a->archive);
|
|
if (a->archive.state & ARCHIVE_STATE_DATA) {
|
|
r = _archive_write_finish_entry(&a->archive);
|
|
if (r == ARCHIVE_FATAL)
|
|
return (r);
|
|
}
|
|
|
|
/* Set up for this particular entry. */
|
|
a->pst = NULL;
|
|
a->current_fixup = NULL;
|
|
a->deferred = 0;
|
|
if (a->entry) {
|
|
archive_entry_free(a->entry);
|
|
a->entry = NULL;
|
|
}
|
|
a->entry = archive_entry_clone(entry);
|
|
a->fd = -1;
|
|
a->fd_offset = 0;
|
|
a->offset = 0;
|
|
a->uid = a->user_uid;
|
|
a->mode = archive_entry_mode(a->entry);
|
|
if (archive_entry_size_is_set(a->entry))
|
|
a->filesize = archive_entry_size(a->entry);
|
|
else
|
|
a->filesize = -1;
|
|
archive_strcpy(&(a->_name_data), archive_entry_pathname(a->entry));
|
|
a->name = a->_name_data.s;
|
|
archive_clear_error(&a->archive);
|
|
|
|
/*
|
|
* Clean up the requested path. This is necessary for correct
|
|
* dir restores; the dir restore logic otherwise gets messed
|
|
* up by nonsense like "dir/.".
|
|
*/
|
|
ret = cleanup_pathname(a);
|
|
if (ret != ARCHIVE_OK)
|
|
return (ret);
|
|
|
|
/*
|
|
* Set the umask to zero so we get predictable mode settings.
|
|
* This gets done on every call to _write_header in case the
|
|
* user edits their umask during the extraction for some
|
|
* reason. This will be reset before we return. Note that we
|
|
* don't need to do this in _finish_entry, as the chmod(), etc,
|
|
* system calls don't obey umask.
|
|
*/
|
|
a->user_umask = umask(0);
|
|
/* From here on, early exit requires "goto done" to clean up. */
|
|
|
|
/* Figure out what we need to do for this entry. */
|
|
a->todo = TODO_MODE_BASE;
|
|
if (a->flags & ARCHIVE_EXTRACT_PERM) {
|
|
a->todo |= TODO_MODE_FORCE; /* Be pushy about permissions. */
|
|
/*
|
|
* SGID requires an extra "check" step because we
|
|
* cannot easily predict the GID that the system will
|
|
* assign. (Different systems assign GIDs to files
|
|
* based on a variety of criteria, including process
|
|
* credentials and the gid of the enclosing
|
|
* directory.) We can only restore the SGID bit if
|
|
* the file has the right GID, and we only know the
|
|
* GID if we either set it (see set_ownership) or if
|
|
* we've actually called stat() on the file after it
|
|
* was restored. Since there are several places at
|
|
* which we might verify the GID, we need a TODO bit
|
|
* to keep track.
|
|
*/
|
|
if (a->mode & S_ISGID)
|
|
a->todo |= TODO_SGID | TODO_SGID_CHECK;
|
|
/*
|
|
* Verifying the SUID is simpler, but can still be
|
|
* done in multiple ways, hence the separate "check" bit.
|
|
*/
|
|
if (a->mode & S_ISUID)
|
|
a->todo |= TODO_SUID | TODO_SUID_CHECK;
|
|
} else {
|
|
/*
|
|
* User didn't request full permissions, so don't
|
|
* restore SUID, SGID bits and obey umask.
|
|
*/
|
|
a->mode &= ~S_ISUID;
|
|
a->mode &= ~S_ISGID;
|
|
a->mode &= ~S_ISVTX;
|
|
a->mode &= ~a->user_umask;
|
|
}
|
|
if (a->flags & ARCHIVE_EXTRACT_OWNER)
|
|
a->todo |= TODO_OWNER;
|
|
if (a->flags & ARCHIVE_EXTRACT_TIME)
|
|
a->todo |= TODO_TIMES;
|
|
if (a->flags & ARCHIVE_EXTRACT_ACL)
|
|
a->todo |= TODO_ACLS;
|
|
if (a->flags & ARCHIVE_EXTRACT_FFLAGS)
|
|
a->todo |= TODO_FFLAGS;
|
|
if (a->flags & ARCHIVE_EXTRACT_SECURE_SYMLINKS) {
|
|
ret = check_symlinks(a);
|
|
if (ret != ARCHIVE_OK)
|
|
goto done;
|
|
}
|
|
#ifdef HAVE_FCHDIR
|
|
/* If path exceeds PATH_MAX, shorten the path. */
|
|
edit_deep_directories(a);
|
|
#endif
|
|
|
|
ret = restore_entry(a);
|
|
|
|
#ifdef HAVE_FCHDIR
|
|
/* If we changed directory above, restore it here. */
|
|
if (a->restore_pwd >= 0) {
|
|
fchdir(a->restore_pwd);
|
|
close(a->restore_pwd);
|
|
a->restore_pwd = -1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Fixup uses the unedited pathname from archive_entry_pathname(),
|
|
* because it is relative to the base dir and the edited path
|
|
* might be relative to some intermediate dir as a result of the
|
|
* deep restore logic.
|
|
*/
|
|
if (a->deferred & TODO_MODE) {
|
|
fe = current_fixup(a, archive_entry_pathname(entry));
|
|
fe->fixup |= TODO_MODE_BASE;
|
|
fe->mode = a->mode;
|
|
}
|
|
|
|
if ((a->deferred & TODO_TIMES)
|
|
&& (archive_entry_mtime_is_set(entry)
|
|
|| archive_entry_atime_is_set(entry))) {
|
|
fe = current_fixup(a, archive_entry_pathname(entry));
|
|
fe->fixup |= TODO_TIMES;
|
|
if (archive_entry_atime_is_set(entry)) {
|
|
fe->atime = archive_entry_atime(entry);
|
|
fe->atime_nanos = archive_entry_atime_nsec(entry);
|
|
} else {
|
|
/* If atime is unset, use start time. */
|
|
fe->atime = a->start_time;
|
|
fe->atime_nanos = 0;
|
|
}
|
|
if (archive_entry_mtime_is_set(entry)) {
|
|
fe->mtime = archive_entry_mtime(entry);
|
|
fe->mtime_nanos = archive_entry_mtime_nsec(entry);
|
|
} else {
|
|
/* If mtime is unset, use start time. */
|
|
fe->mtime = a->start_time;
|
|
fe->mtime_nanos = 0;
|
|
}
|
|
if (archive_entry_birthtime_is_set(entry)) {
|
|
fe->birthtime = archive_entry_birthtime(entry);
|
|
fe->birthtime_nanos = archive_entry_birthtime_nsec(entry);
|
|
} else {
|
|
/* If birthtime is unset, use mtime. */
|
|
fe->birthtime = fe->mtime;
|
|
fe->birthtime_nanos = fe->mtime_nanos;
|
|
}
|
|
}
|
|
|
|
if (a->deferred & TODO_FFLAGS) {
|
|
fe = current_fixup(a, archive_entry_pathname(entry));
|
|
fe->fixup |= TODO_FFLAGS;
|
|
/* TODO: Complete this.. defer fflags from below. */
|
|
}
|
|
|
|
/* We've created the object and are ready to pour data into it. */
|
|
if (ret >= ARCHIVE_WARN)
|
|
a->archive.state = ARCHIVE_STATE_DATA;
|
|
/*
|
|
* If it's not open, tell our client not to try writing.
|
|
* In particular, dirs, links, etc, don't get written to.
|
|
*/
|
|
if (a->fd < 0) {
|
|
archive_entry_set_size(entry, 0);
|
|
a->filesize = 0;
|
|
}
|
|
done:
|
|
/* Restore the user's umask before returning. */
|
|
umask(a->user_umask);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
archive_write_disk_set_skip_file(struct archive *_a, dev_t d, ino_t i)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_write_disk_set_skip_file");
|
|
a->skip_file_dev = d;
|
|
a->skip_file_ino = i;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
static ssize_t
|
|
write_data_block(struct archive_write_disk *a, const char *buff, size_t size)
|
|
{
|
|
uint64_t start_size = size;
|
|
ssize_t bytes_written = 0;
|
|
ssize_t block_size = 0, bytes_to_write;
|
|
|
|
if (a->filesize == 0 || a->fd < 0) {
|
|
archive_set_error(&a->archive, 0,
|
|
"Attempt to write to an empty file");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
if (a->flags & ARCHIVE_EXTRACT_SPARSE) {
|
|
#if HAVE_STRUCT_STAT_ST_BLKSIZE
|
|
int r;
|
|
if ((r = _archive_write_disk_lazy_stat(a)) != ARCHIVE_OK)
|
|
return (r);
|
|
block_size = a->pst->st_blksize;
|
|
#else
|
|
/* XXX TODO XXX Is there a more appropriate choice here ? */
|
|
/* This needn't match the filesystem allocation size. */
|
|
block_size = 16*1024;
|
|
#endif
|
|
}
|
|
|
|
/* If this write would run beyond the file size, truncate it. */
|
|
if (a->filesize >= 0 && (off_t)(a->offset + size) > a->filesize)
|
|
start_size = size = (size_t)(a->filesize - a->offset);
|
|
|
|
/* Write the data. */
|
|
while (size > 0) {
|
|
if (block_size == 0) {
|
|
bytes_to_write = size;
|
|
} else {
|
|
/* We're sparsifying the file. */
|
|
const char *p, *end;
|
|
off_t block_end;
|
|
|
|
/* Skip leading zero bytes. */
|
|
for (p = buff, end = buff + size; p < end; ++p) {
|
|
if (*p != '\0')
|
|
break;
|
|
}
|
|
a->offset += p - buff;
|
|
size -= p - buff;
|
|
buff = p;
|
|
if (size == 0)
|
|
break;
|
|
|
|
/* Calculate next block boundary after offset. */
|
|
block_end
|
|
= (a->offset / block_size + 1) * block_size;
|
|
|
|
/* If the adjusted write would cross block boundary,
|
|
* truncate it to the block boundary. */
|
|
bytes_to_write = size;
|
|
if (a->offset + bytes_to_write > block_end)
|
|
bytes_to_write = block_end - a->offset;
|
|
}
|
|
|
|
/* Seek if necessary to the specified offset. */
|
|
if (a->offset != a->fd_offset) {
|
|
if (lseek(a->fd, a->offset, SEEK_SET) < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Seek failed");
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
a->fd_offset = a->offset;
|
|
a->archive.file_position = a->offset;
|
|
a->archive.raw_position = a->offset;
|
|
}
|
|
bytes_written = write(a->fd, buff, bytes_to_write);
|
|
if (bytes_written < 0) {
|
|
archive_set_error(&a->archive, errno, "Write failed");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
buff += bytes_written;
|
|
size -= bytes_written;
|
|
a->offset += bytes_written;
|
|
a->archive.file_position += bytes_written;
|
|
a->archive.raw_position += bytes_written;
|
|
a->fd_offset = a->offset;
|
|
}
|
|
return (start_size - size);
|
|
}
|
|
|
|
static ssize_t
|
|
_archive_write_data_block(struct archive *_a,
|
|
const void *buff, size_t size, off_t offset)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
ssize_t r;
|
|
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_DATA, "archive_write_disk_block");
|
|
|
|
a->offset = offset;
|
|
r = write_data_block(a, buff, size);
|
|
if (r < ARCHIVE_OK)
|
|
return (r);
|
|
if ((size_t)r < size) {
|
|
archive_set_error(&a->archive, 0,
|
|
"Write request too large");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
static ssize_t
|
|
_archive_write_data(struct archive *_a, const void *buff, size_t size)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_DATA, "archive_write_data");
|
|
|
|
return (write_data_block(a, buff, size));
|
|
}
|
|
|
|
static int
|
|
_archive_write_finish_entry(struct archive *_a)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
int ret = ARCHIVE_OK;
|
|
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_write_finish_entry");
|
|
if (a->archive.state & ARCHIVE_STATE_HEADER)
|
|
return (ARCHIVE_OK);
|
|
archive_clear_error(&a->archive);
|
|
|
|
/* Pad or truncate file to the right size. */
|
|
if (a->fd < 0) {
|
|
/* There's no file. */
|
|
} else if (a->filesize < 0) {
|
|
/* File size is unknown, so we can't set the size. */
|
|
} else if (a->fd_offset == a->filesize) {
|
|
/* Last write ended at exactly the filesize; we're done. */
|
|
/* Hopefully, this is the common case. */
|
|
} else {
|
|
#if HAVE_FTRUNCATE
|
|
if (ftruncate(a->fd, a->filesize) == -1 &&
|
|
a->filesize == 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"File size could not be restored");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
#endif
|
|
/*
|
|
* Explicitly stat the file as some platforms might not
|
|
* implement the XSI option to extend files via ftruncate.
|
|
*/
|
|
a->pst = NULL;
|
|
if ((ret = _archive_write_disk_lazy_stat(a)) != ARCHIVE_OK)
|
|
return (ret);
|
|
if (a->st.st_size != a->filesize) {
|
|
const char nul = '\0';
|
|
if (lseek(a->fd, a->st.st_size - 1, SEEK_SET) < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Seek failed");
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
if (write(a->fd, &nul, 1) < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Write to restore size failed");
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
a->pst = NULL;
|
|
}
|
|
}
|
|
|
|
/* Restore metadata. */
|
|
|
|
/*
|
|
* Look up the "real" UID only if we're going to need it.
|
|
* TODO: the TODO_SGID condition can be dropped here, can't it?
|
|
*/
|
|
if (a->todo & (TODO_OWNER | TODO_SUID | TODO_SGID)) {
|
|
a->uid = a->lookup_uid(a->lookup_uid_data,
|
|
archive_entry_uname(a->entry),
|
|
archive_entry_uid(a->entry));
|
|
}
|
|
/* Look up the "real" GID only if we're going to need it. */
|
|
/* TODO: the TODO_SUID condition can be dropped here, can't it? */
|
|
if (a->todo & (TODO_OWNER | TODO_SGID | TODO_SUID)) {
|
|
a->gid = a->lookup_gid(a->lookup_gid_data,
|
|
archive_entry_gname(a->entry),
|
|
archive_entry_gid(a->entry));
|
|
}
|
|
/*
|
|
* If restoring ownership, do it before trying to restore suid/sgid
|
|
* bits. If we set the owner, we know what it is and can skip
|
|
* a stat() call to examine the ownership of the file on disk.
|
|
*/
|
|
if (a->todo & TODO_OWNER)
|
|
ret = set_ownership(a);
|
|
if (a->todo & TODO_MODE) {
|
|
int r2 = set_mode(a, a->mode);
|
|
if (r2 < ret) ret = r2;
|
|
}
|
|
if (a->todo & TODO_ACLS) {
|
|
int r2 = set_acls(a);
|
|
if (r2 < ret) ret = r2;
|
|
}
|
|
if (a->todo & TODO_XATTR) {
|
|
int r2 = set_xattrs(a);
|
|
if (r2 < ret) ret = r2;
|
|
}
|
|
if (a->todo & TODO_FFLAGS) {
|
|
int r2 = set_fflags(a);
|
|
if (r2 < ret) ret = r2;
|
|
}
|
|
if (a->todo & TODO_TIMES) {
|
|
int r2 = set_times(a);
|
|
if (r2 < ret) ret = r2;
|
|
}
|
|
|
|
/* If there's an fd, we can close it now. */
|
|
if (a->fd >= 0) {
|
|
close(a->fd);
|
|
a->fd = -1;
|
|
}
|
|
/* If there's an entry, we can release it now. */
|
|
if (a->entry) {
|
|
archive_entry_free(a->entry);
|
|
a->entry = NULL;
|
|
}
|
|
a->archive.state = ARCHIVE_STATE_HEADER;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
archive_write_disk_set_group_lookup(struct archive *_a,
|
|
void *private_data,
|
|
gid_t (*lookup_gid)(void *private, const char *gname, gid_t gid),
|
|
void (*cleanup_gid)(void *private))
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_write_disk_set_group_lookup");
|
|
|
|
a->lookup_gid = lookup_gid;
|
|
a->cleanup_gid = cleanup_gid;
|
|
a->lookup_gid_data = private_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_write_disk_set_user_lookup(struct archive *_a,
|
|
void *private_data,
|
|
uid_t (*lookup_uid)(void *private, const char *uname, uid_t uid),
|
|
void (*cleanup_uid)(void *private))
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_write_disk_set_user_lookup");
|
|
|
|
a->lookup_uid = lookup_uid;
|
|
a->cleanup_uid = cleanup_uid;
|
|
a->lookup_uid_data = private_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a new archive_write_disk object and initialize it with global state.
|
|
*/
|
|
struct archive *
|
|
archive_write_disk_new(void)
|
|
{
|
|
struct archive_write_disk *a;
|
|
|
|
a = (struct archive_write_disk *)malloc(sizeof(*a));
|
|
if (a == NULL)
|
|
return (NULL);
|
|
memset(a, 0, sizeof(*a));
|
|
a->archive.magic = ARCHIVE_WRITE_DISK_MAGIC;
|
|
/* We're ready to write a header immediately. */
|
|
a->archive.state = ARCHIVE_STATE_HEADER;
|
|
a->archive.vtable = archive_write_disk_vtable();
|
|
a->lookup_uid = trivial_lookup_uid;
|
|
a->lookup_gid = trivial_lookup_gid;
|
|
a->start_time = time(NULL);
|
|
#ifdef HAVE_GETEUID
|
|
a->user_uid = geteuid();
|
|
#endif /* HAVE_GETEUID */
|
|
if (archive_string_ensure(&a->path_safe, 512) == NULL) {
|
|
free(a);
|
|
return (NULL);
|
|
}
|
|
return (&a->archive);
|
|
}
|
|
|
|
|
|
/*
|
|
* If pathname is longer than PATH_MAX, chdir to a suitable
|
|
* intermediate dir and edit the path down to a shorter suffix. Note
|
|
* that this routine never returns an error; if the chdir() attempt
|
|
* fails for any reason, we just go ahead with the long pathname. The
|
|
* object creation is likely to fail, but any error will get handled
|
|
* at that time.
|
|
*/
|
|
#ifdef HAVE_FCHDIR
|
|
static void
|
|
edit_deep_directories(struct archive_write_disk *a)
|
|
{
|
|
int ret;
|
|
char *tail = a->name;
|
|
|
|
a->restore_pwd = -1;
|
|
|
|
/* If path is short, avoid the open() below. */
|
|
if (strlen(tail) <= PATH_MAX)
|
|
return;
|
|
|
|
/* Try to record our starting dir. */
|
|
a->restore_pwd = open(".", O_RDONLY | O_BINARY);
|
|
if (a->restore_pwd < 0)
|
|
return;
|
|
|
|
/* As long as the path is too long... */
|
|
while (strlen(tail) > PATH_MAX) {
|
|
/* Locate a dir prefix shorter than PATH_MAX. */
|
|
tail += PATH_MAX - 8;
|
|
while (tail > a->name && *tail != '/')
|
|
tail--;
|
|
/* Exit if we find a too-long path component. */
|
|
if (tail <= a->name)
|
|
return;
|
|
/* Create the intermediate dir and chdir to it. */
|
|
*tail = '\0'; /* Terminate dir portion */
|
|
ret = create_dir(a, a->name);
|
|
if (ret == ARCHIVE_OK && chdir(a->name) != 0)
|
|
ret = ARCHIVE_FAILED;
|
|
*tail = '/'; /* Restore the / we removed. */
|
|
if (ret != ARCHIVE_OK)
|
|
return;
|
|
tail++;
|
|
/* The chdir() succeeded; we've now shortened the path. */
|
|
a->name = tail;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The main restore function.
|
|
*/
|
|
static int
|
|
restore_entry(struct archive_write_disk *a)
|
|
{
|
|
int ret = ARCHIVE_OK, en;
|
|
|
|
if (a->flags & ARCHIVE_EXTRACT_UNLINK && !S_ISDIR(a->mode)) {
|
|
/*
|
|
* TODO: Fix this. Apparently, there are platforms
|
|
* that still allow root to hose the entire filesystem
|
|
* by unlinking a dir. The S_ISDIR() test above
|
|
* prevents us from using unlink() here if the new
|
|
* object is a dir, but that doesn't mean the old
|
|
* object isn't a dir.
|
|
*/
|
|
if (unlink(a->name) == 0) {
|
|
/* We removed it, reset cached stat. */
|
|
a->pst = NULL;
|
|
} else if (errno == ENOENT) {
|
|
/* File didn't exist, that's just as good. */
|
|
} else if (rmdir(a->name) == 0) {
|
|
/* It was a dir, but now it's gone. */
|
|
a->pst = NULL;
|
|
} else {
|
|
/* We tried, but couldn't get rid of it. */
|
|
archive_set_error(&a->archive, errno,
|
|
"Could not unlink");
|
|
return(ARCHIVE_FAILED);
|
|
}
|
|
}
|
|
|
|
/* Try creating it first; if this fails, we'll try to recover. */
|
|
en = create_filesystem_object(a);
|
|
|
|
if ((en == ENOTDIR || en == ENOENT)
|
|
&& !(a->flags & ARCHIVE_EXTRACT_NO_AUTODIR)) {
|
|
/* If the parent dir doesn't exist, try creating it. */
|
|
create_parent_dir(a, a->name);
|
|
/* Now try to create the object again. */
|
|
en = create_filesystem_object(a);
|
|
}
|
|
|
|
if ((en == EISDIR || en == EEXIST)
|
|
&& (a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE)) {
|
|
/* If we're not overwriting, we're done. */
|
|
archive_set_error(&a->archive, en, "Already exists");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
/*
|
|
* Some platforms return EISDIR if you call
|
|
* open(O_WRONLY | O_EXCL | O_CREAT) on a directory, some
|
|
* return EEXIST. POSIX is ambiguous, requiring EISDIR
|
|
* for open(O_WRONLY) on a dir and EEXIST for open(O_EXCL | O_CREAT)
|
|
* on an existing item.
|
|
*/
|
|
if (en == EISDIR) {
|
|
/* A dir is in the way of a non-dir, rmdir it. */
|
|
if (rmdir(a->name) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't remove already-existing dir");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
a->pst = NULL;
|
|
/* Try again. */
|
|
en = create_filesystem_object(a);
|
|
} else if (en == EEXIST) {
|
|
/*
|
|
* We know something is in the way, but we don't know what;
|
|
* we need to find out before we go any further.
|
|
*/
|
|
int r = 0;
|
|
/*
|
|
* The SECURE_SYMLINK logic has already removed a
|
|
* symlink to a dir if the client wants that. So
|
|
* follow the symlink if we're creating a dir.
|
|
*/
|
|
if (S_ISDIR(a->mode))
|
|
r = stat(a->name, &a->st);
|
|
/*
|
|
* If it's not a dir (or it's a broken symlink),
|
|
* then don't follow it.
|
|
*/
|
|
if (r != 0 || !S_ISDIR(a->mode))
|
|
r = lstat(a->name, &a->st);
|
|
if (r != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't stat existing object");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
/*
|
|
* NO_OVERWRITE_NEWER doesn't apply to directories.
|
|
*/
|
|
if ((a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE_NEWER)
|
|
&& !S_ISDIR(a->st.st_mode)) {
|
|
if (!older(&(a->st), a->entry)) {
|
|
archive_set_error(&a->archive, 0,
|
|
"File on disk is not older; skipping.");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
}
|
|
|
|
/* If it's our archive, we're done. */
|
|
if (a->skip_file_dev > 0 &&
|
|
a->skip_file_ino > 0 &&
|
|
a->st.st_dev == a->skip_file_dev &&
|
|
a->st.st_ino == a->skip_file_ino) {
|
|
archive_set_error(&a->archive, 0, "Refusing to overwrite archive");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
if (!S_ISDIR(a->st.st_mode)) {
|
|
/* A non-dir is in the way, unlink it. */
|
|
if (unlink(a->name) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't unlink already-existing object");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
a->pst = NULL;
|
|
/* Try again. */
|
|
en = create_filesystem_object(a);
|
|
} else if (!S_ISDIR(a->mode)) {
|
|
/* A dir is in the way of a non-dir, rmdir it. */
|
|
if (rmdir(a->name) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't remove already-existing dir");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
/* Try again. */
|
|
en = create_filesystem_object(a);
|
|
} else {
|
|
/*
|
|
* There's a dir in the way of a dir. Don't
|
|
* waste time with rmdir()/mkdir(), just fix
|
|
* up the permissions on the existing dir.
|
|
* Note that we don't change perms on existing
|
|
* dirs unless _EXTRACT_PERM is specified.
|
|
*/
|
|
if ((a->mode != a->st.st_mode)
|
|
&& (a->todo & TODO_MODE_FORCE))
|
|
a->deferred |= (a->todo & TODO_MODE);
|
|
/* Ownership doesn't need deferred fixup. */
|
|
en = 0; /* Forget the EEXIST. */
|
|
}
|
|
}
|
|
|
|
if (en) {
|
|
/* Everything failed; give up here. */
|
|
archive_set_error(&a->archive, en, "Can't create '%s'", a->name);
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
a->pst = NULL; /* Cached stat data no longer valid. */
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if creation succeeds, or else returns errno value from
|
|
* the failed system call. Note: This function should only ever perform
|
|
* a single system call.
|
|
*/
|
|
int
|
|
create_filesystem_object(struct archive_write_disk *a)
|
|
{
|
|
/* Create the entry. */
|
|
const char *linkname;
|
|
mode_t final_mode, mode;
|
|
int r;
|
|
|
|
/* We identify hard/symlinks according to the link names. */
|
|
/* Since link(2) and symlink(2) don't handle modes, we're done here. */
|
|
linkname = archive_entry_hardlink(a->entry);
|
|
if (linkname != NULL) {
|
|
r = link(linkname, a->name) ? errno : 0;
|
|
/*
|
|
* New cpio and pax formats allow hardlink entries
|
|
* to carry data, so we may have to open the file
|
|
* for hardlink entries.
|
|
*
|
|
* If the hardlink was successfully created and
|
|
* the archive doesn't have carry data for it,
|
|
* consider it to be non-authoritive for meta data.
|
|
* This is consistent with GNU tar and BSD pax.
|
|
* If the hardlink does carry data, let the last
|
|
* archive entry decide ownership.
|
|
*/
|
|
if (r == 0 && a->filesize <= 0) {
|
|
a->todo = 0;
|
|
a->deferred = 0;
|
|
} if (r == 0 && a->filesize > 0) {
|
|
a->fd = open(a->name, O_WRONLY | O_TRUNC | O_BINARY);
|
|
if (a->fd < 0)
|
|
r = errno;
|
|
}
|
|
return (r);
|
|
}
|
|
linkname = archive_entry_symlink(a->entry);
|
|
if (linkname != NULL)
|
|
return symlink(linkname, a->name) ? errno : 0;
|
|
|
|
/*
|
|
* The remaining system calls all set permissions, so let's
|
|
* try to take advantage of that to avoid an extra chmod()
|
|
* call. (Recall that umask is set to zero right now!)
|
|
*/
|
|
|
|
/* Mode we want for the final restored object (w/o file type bits). */
|
|
final_mode = a->mode & 07777;
|
|
/*
|
|
* The mode that will actually be restored in this step. Note
|
|
* that SUID, SGID, etc, require additional work to ensure
|
|
* security, so we never restore them at this point.
|
|
*/
|
|
mode = final_mode & 0777;
|
|
|
|
switch (a->mode & AE_IFMT) {
|
|
default:
|
|
/* POSIX requires that we fall through here. */
|
|
/* FALLTHROUGH */
|
|
case AE_IFREG:
|
|
a->fd = open(a->name,
|
|
O_WRONLY | O_CREAT | O_EXCL | O_BINARY, mode);
|
|
r = (a->fd < 0);
|
|
break;
|
|
case AE_IFCHR:
|
|
#ifdef HAVE_MKNOD
|
|
/* Note: we use AE_IFCHR for the case label, and
|
|
* S_IFCHR for the mknod() call. This is correct. */
|
|
r = mknod(a->name, mode | S_IFCHR,
|
|
archive_entry_rdev(a->entry));
|
|
#else
|
|
/* TODO: Find a better way to warn about our inability
|
|
* to restore a char device node. */
|
|
return (EINVAL);
|
|
#endif /* HAVE_MKNOD */
|
|
break;
|
|
case AE_IFBLK:
|
|
#ifdef HAVE_MKNOD
|
|
r = mknod(a->name, mode | S_IFBLK,
|
|
archive_entry_rdev(a->entry));
|
|
#else
|
|
/* TODO: Find a better way to warn about our inability
|
|
* to restore a block device node. */
|
|
return (EINVAL);
|
|
#endif /* HAVE_MKNOD */
|
|
break;
|
|
case AE_IFDIR:
|
|
mode = (mode | MINIMUM_DIR_MODE) & MAXIMUM_DIR_MODE;
|
|
r = mkdir(a->name, mode);
|
|
if (r == 0) {
|
|
/* Defer setting dir times. */
|
|
a->deferred |= (a->todo & TODO_TIMES);
|
|
a->todo &= ~TODO_TIMES;
|
|
/* Never use an immediate chmod(). */
|
|
/* We can't avoid the chmod() entirely if EXTRACT_PERM
|
|
* because of SysV SGID inheritance. */
|
|
if ((mode != final_mode)
|
|
|| (a->flags & ARCHIVE_EXTRACT_PERM))
|
|
a->deferred |= (a->todo & TODO_MODE);
|
|
a->todo &= ~TODO_MODE;
|
|
}
|
|
break;
|
|
case AE_IFIFO:
|
|
#ifdef HAVE_MKFIFO
|
|
r = mkfifo(a->name, mode);
|
|
#else
|
|
/* TODO: Find a better way to warn about our inability
|
|
* to restore a fifo. */
|
|
return (EINVAL);
|
|
#endif /* HAVE_MKFIFO */
|
|
break;
|
|
}
|
|
|
|
/* All the system calls above set errno on failure. */
|
|
if (r)
|
|
return (errno);
|
|
|
|
/* If we managed to set the final mode, we've avoided a chmod(). */
|
|
if (mode == final_mode)
|
|
a->todo &= ~TODO_MODE;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Cleanup function for archive_extract. Mostly, this involves processing
|
|
* the fixup list, which is used to address a number of problems:
|
|
* * Dir permissions might prevent us from restoring a file in that
|
|
* dir, so we restore the dir with minimum 0700 permissions first,
|
|
* then correct the mode at the end.
|
|
* * Similarly, the act of restoring a file touches the directory
|
|
* and changes the timestamp on the dir, so we have to touch-up dir
|
|
* timestamps at the end as well.
|
|
* * Some file flags can interfere with the restore by, for example,
|
|
* preventing the creation of hardlinks to those files.
|
|
*
|
|
* Note that tar/cpio do not require that archives be in a particular
|
|
* order; there is no way to know when the last file has been restored
|
|
* within a directory, so there's no way to optimize the memory usage
|
|
* here by fixing up the directory any earlier than the
|
|
* end-of-archive.
|
|
*
|
|
* XXX TODO: Directory ACLs should be restored here, for the same
|
|
* reason we set directory perms here. XXX
|
|
*/
|
|
static int
|
|
_archive_write_close(struct archive *_a)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
struct fixup_entry *next, *p;
|
|
int ret;
|
|
|
|
__archive_check_magic(&a->archive, ARCHIVE_WRITE_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_write_disk_close");
|
|
ret = _archive_write_finish_entry(&a->archive);
|
|
|
|
/* Sort dir list so directories are fixed up in depth-first order. */
|
|
p = sort_dir_list(a->fixup_list);
|
|
|
|
while (p != NULL) {
|
|
a->pst = NULL; /* Mark stat cache as out-of-date. */
|
|
if (p->fixup & TODO_TIMES) {
|
|
#ifdef HAVE_UTIMES
|
|
/* {f,l,}utimes() are preferred, when available. */
|
|
struct timeval times[2];
|
|
times[0].tv_sec = p->atime;
|
|
times[0].tv_usec = p->atime_nanos / 1000;
|
|
#ifdef HAVE_STRUCT_STAT_ST_BIRTHTIME
|
|
/* if it's valid and not mtime, push the birthtime first */
|
|
if (((times[1].tv_sec = p->birthtime) < p->mtime) &&
|
|
(p->birthtime > 0))
|
|
{
|
|
times[1].tv_usec = p->birthtime_nanos / 1000;
|
|
utimes(p->name, times);
|
|
}
|
|
#endif
|
|
times[1].tv_sec = p->mtime;
|
|
times[1].tv_usec = p->mtime_nanos / 1000;
|
|
#ifdef HAVE_LUTIMES
|
|
lutimes(p->name, times);
|
|
#else
|
|
utimes(p->name, times);
|
|
#endif
|
|
#else
|
|
/* utime() is more portable, but less precise. */
|
|
struct utimbuf times;
|
|
times.modtime = p->mtime;
|
|
times.actime = p->atime;
|
|
|
|
utime(p->name, ×);
|
|
#endif
|
|
}
|
|
if (p->fixup & TODO_MODE_BASE)
|
|
chmod(p->name, p->mode);
|
|
|
|
if (p->fixup & TODO_FFLAGS)
|
|
set_fflags_platform(a, -1, p->name,
|
|
p->mode, p->fflags_set, 0);
|
|
|
|
next = p->next;
|
|
free(p->name);
|
|
free(p);
|
|
p = next;
|
|
}
|
|
a->fixup_list = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
_archive_write_finish(struct archive *_a)
|
|
{
|
|
struct archive_write_disk *a = (struct archive_write_disk *)_a;
|
|
int ret;
|
|
ret = _archive_write_close(&a->archive);
|
|
if (a->cleanup_gid != NULL && a->lookup_gid_data != NULL)
|
|
(a->cleanup_gid)(a->lookup_gid_data);
|
|
if (a->cleanup_uid != NULL && a->lookup_uid_data != NULL)
|
|
(a->cleanup_uid)(a->lookup_uid_data);
|
|
archive_string_free(&a->_name_data);
|
|
archive_string_free(&a->archive.error_string);
|
|
archive_string_free(&a->path_safe);
|
|
free(a);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Simple O(n log n) merge sort to order the fixup list. In
|
|
* particular, we want to restore dir timestamps depth-first.
|
|
*/
|
|
static struct fixup_entry *
|
|
sort_dir_list(struct fixup_entry *p)
|
|
{
|
|
struct fixup_entry *a, *b, *t;
|
|
|
|
if (p == NULL)
|
|
return (NULL);
|
|
/* A one-item list is already sorted. */
|
|
if (p->next == NULL)
|
|
return (p);
|
|
|
|
/* Step 1: split the list. */
|
|
t = p;
|
|
a = p->next->next;
|
|
while (a != NULL) {
|
|
/* Step a twice, t once. */
|
|
a = a->next;
|
|
if (a != NULL)
|
|
a = a->next;
|
|
t = t->next;
|
|
}
|
|
/* Now, t is at the mid-point, so break the list here. */
|
|
b = t->next;
|
|
t->next = NULL;
|
|
a = p;
|
|
|
|
/* Step 2: Recursively sort the two sub-lists. */
|
|
a = sort_dir_list(a);
|
|
b = sort_dir_list(b);
|
|
|
|
/* Step 3: Merge the returned lists. */
|
|
/* Pick the first element for the merged list. */
|
|
if (strcmp(a->name, b->name) > 0) {
|
|
t = p = a;
|
|
a = a->next;
|
|
} else {
|
|
t = p = b;
|
|
b = b->next;
|
|
}
|
|
|
|
/* Always put the later element on the list first. */
|
|
while (a != NULL && b != NULL) {
|
|
if (strcmp(a->name, b->name) > 0) {
|
|
t->next = a;
|
|
a = a->next;
|
|
} else {
|
|
t->next = b;
|
|
b = b->next;
|
|
}
|
|
t = t->next;
|
|
}
|
|
|
|
/* Only one list is non-empty, so just splice it on. */
|
|
if (a != NULL)
|
|
t->next = a;
|
|
if (b != NULL)
|
|
t->next = b;
|
|
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Returns a new, initialized fixup entry.
|
|
*
|
|
* TODO: Reduce the memory requirements for this list by using a tree
|
|
* structure rather than a simple list of names.
|
|
*/
|
|
static struct fixup_entry *
|
|
new_fixup(struct archive_write_disk *a, const char *pathname)
|
|
{
|
|
struct fixup_entry *fe;
|
|
|
|
fe = (struct fixup_entry *)malloc(sizeof(struct fixup_entry));
|
|
if (fe == NULL)
|
|
return (NULL);
|
|
fe->next = a->fixup_list;
|
|
a->fixup_list = fe;
|
|
fe->fixup = 0;
|
|
fe->name = strdup(pathname);
|
|
return (fe);
|
|
}
|
|
|
|
/*
|
|
* Returns a fixup structure for the current entry.
|
|
*/
|
|
static struct fixup_entry *
|
|
current_fixup(struct archive_write_disk *a, const char *pathname)
|
|
{
|
|
if (a->current_fixup == NULL)
|
|
a->current_fixup = new_fixup(a, pathname);
|
|
return (a->current_fixup);
|
|
}
|
|
|
|
/* TODO: Make this work. */
|
|
/*
|
|
* TODO: The deep-directory support bypasses this; disable deep directory
|
|
* support if we're doing symlink checks.
|
|
*/
|
|
/*
|
|
* TODO: Someday, integrate this with the deep dir support; they both
|
|
* scan the path and both can be optimized by comparing against other
|
|
* recent paths.
|
|
*/
|
|
static int
|
|
check_symlinks(struct archive_write_disk *a)
|
|
{
|
|
char *pn, *p;
|
|
char c;
|
|
int r;
|
|
struct stat st;
|
|
|
|
/*
|
|
* Guard against symlink tricks. Reject any archive entry whose
|
|
* destination would be altered by a symlink.
|
|
*/
|
|
/* Whatever we checked last time doesn't need to be re-checked. */
|
|
pn = a->name;
|
|
p = a->path_safe.s;
|
|
while ((*pn != '\0') && (*p == *pn))
|
|
++p, ++pn;
|
|
c = pn[0];
|
|
/* Keep going until we've checked the entire name. */
|
|
while (pn[0] != '\0' && (pn[0] != '/' || pn[1] != '\0')) {
|
|
/* Skip the next path element. */
|
|
while (*pn != '\0' && *pn != '/')
|
|
++pn;
|
|
c = pn[0];
|
|
pn[0] = '\0';
|
|
/* Check that we haven't hit a symlink. */
|
|
r = lstat(a->name, &st);
|
|
if (r != 0) {
|
|
/* We've hit a dir that doesn't exist; stop now. */
|
|
if (errno == ENOENT)
|
|
break;
|
|
} else if (S_ISLNK(st.st_mode)) {
|
|
if (c == '\0') {
|
|
/*
|
|
* Last element is symlink; remove it
|
|
* so we can overwrite it with the
|
|
* item being extracted.
|
|
*/
|
|
if (unlink(a->name)) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Could not remove symlink %s",
|
|
a->name);
|
|
pn[0] = c;
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
a->pst = NULL;
|
|
/*
|
|
* Even if we did remove it, a warning
|
|
* is in order. The warning is silly,
|
|
* though, if we're just replacing one
|
|
* symlink with another symlink.
|
|
*/
|
|
if (!S_ISLNK(a->mode)) {
|
|
archive_set_error(&a->archive, 0,
|
|
"Removing symlink %s",
|
|
a->name);
|
|
}
|
|
/* Symlink gone. No more problem! */
|
|
pn[0] = c;
|
|
return (0);
|
|
} else if (a->flags & ARCHIVE_EXTRACT_UNLINK) {
|
|
/* User asked us to remove problems. */
|
|
if (unlink(a->name) != 0) {
|
|
archive_set_error(&a->archive, 0,
|
|
"Cannot remove intervening symlink %s",
|
|
a->name);
|
|
pn[0] = c;
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
a->pst = NULL;
|
|
} else {
|
|
archive_set_error(&a->archive, 0,
|
|
"Cannot extract through symlink %s",
|
|
a->name);
|
|
pn[0] = c;
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
}
|
|
}
|
|
pn[0] = c;
|
|
/* We've checked and/or cleaned the whole path, so remember it. */
|
|
archive_strcpy(&a->path_safe, a->name);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Canonicalize the pathname. In particular, this strips duplicate
|
|
* '/' characters, '.' elements, and trailing '/'. It also raises an
|
|
* error for an empty path, a trailing '..' or (if _SECURE_NODOTDOT is
|
|
* set) any '..' in the path.
|
|
*/
|
|
static int
|
|
cleanup_pathname(struct archive_write_disk *a)
|
|
{
|
|
char *dest, *src;
|
|
char separator = '\0';
|
|
|
|
dest = src = a->name;
|
|
if (*src == '\0') {
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
|
|
"Invalid empty pathname");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
/* Skip leading '/'. */
|
|
if (*src == '/')
|
|
separator = *src++;
|
|
|
|
/* Scan the pathname one element at a time. */
|
|
for (;;) {
|
|
/* src points to first char after '/' */
|
|
if (src[0] == '\0') {
|
|
break;
|
|
} else if (src[0] == '/') {
|
|
/* Found '//', ignore second one. */
|
|
src++;
|
|
continue;
|
|
} else if (src[0] == '.') {
|
|
if (src[1] == '\0') {
|
|
/* Ignore trailing '.' */
|
|
break;
|
|
} else if (src[1] == '/') {
|
|
/* Skip './'. */
|
|
src += 2;
|
|
continue;
|
|
} else if (src[1] == '.') {
|
|
if (src[2] == '/' || src[2] == '\0') {
|
|
/* Conditionally warn about '..' */
|
|
if (a->flags & ARCHIVE_EXTRACT_SECURE_NODOTDOT) {
|
|
archive_set_error(&a->archive,
|
|
ARCHIVE_ERRNO_MISC,
|
|
"Path contains '..'");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
}
|
|
/*
|
|
* Note: Under no circumstances do we
|
|
* remove '..' elements. In
|
|
* particular, restoring
|
|
* '/foo/../bar/' should create the
|
|
* 'foo' dir as a side-effect.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/* Copy current element, including leading '/'. */
|
|
if (separator)
|
|
*dest++ = '/';
|
|
while (*src != '\0' && *src != '/') {
|
|
*dest++ = *src++;
|
|
}
|
|
|
|
if (*src == '\0')
|
|
break;
|
|
|
|
/* Skip '/' separator. */
|
|
separator = *src++;
|
|
}
|
|
/*
|
|
* We've just copied zero or more path elements, not including the
|
|
* final '/'.
|
|
*/
|
|
if (dest == a->name) {
|
|
/*
|
|
* Nothing got copied. The path must have been something
|
|
* like '.' or '/' or './' or '/././././/./'.
|
|
*/
|
|
if (separator)
|
|
*dest++ = '/';
|
|
else
|
|
*dest++ = '.';
|
|
}
|
|
/* Terminate the result. */
|
|
*dest = '\0';
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Create the parent directory of the specified path, assuming path
|
|
* is already in mutable storage.
|
|
*/
|
|
static int
|
|
create_parent_dir(struct archive_write_disk *a, char *path)
|
|
{
|
|
char *slash;
|
|
int r;
|
|
|
|
/* Remove tail element to obtain parent name. */
|
|
slash = strrchr(path, '/');
|
|
if (slash == NULL)
|
|
return (ARCHIVE_OK);
|
|
*slash = '\0';
|
|
r = create_dir(a, path);
|
|
*slash = '/';
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Create the specified dir, recursing to create parents as necessary.
|
|
*
|
|
* Returns ARCHIVE_OK if the path exists when we're done here.
|
|
* Otherwise, returns ARCHIVE_FAILED.
|
|
* Assumes path is in mutable storage; path is unchanged on exit.
|
|
*/
|
|
static int
|
|
create_dir(struct archive_write_disk *a, char *path)
|
|
{
|
|
struct stat st;
|
|
struct fixup_entry *le;
|
|
char *slash, *base;
|
|
mode_t mode_final, mode;
|
|
int r;
|
|
|
|
r = ARCHIVE_OK;
|
|
|
|
/* Check for special names and just skip them. */
|
|
slash = strrchr(path, '/');
|
|
if (slash == NULL)
|
|
base = path;
|
|
else
|
|
base = slash + 1;
|
|
|
|
if (base[0] == '\0' ||
|
|
(base[0] == '.' && base[1] == '\0') ||
|
|
(base[0] == '.' && base[1] == '.' && base[2] == '\0')) {
|
|
/* Don't bother trying to create null path, '.', or '..'. */
|
|
if (slash != NULL) {
|
|
*slash = '\0';
|
|
r = create_dir(a, path);
|
|
*slash = '/';
|
|
return (r);
|
|
}
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Yes, this should be stat() and not lstat(). Using lstat()
|
|
* here loses the ability to extract through symlinks. Also note
|
|
* that this should not use the a->st cache.
|
|
*/
|
|
if (stat(path, &st) == 0) {
|
|
if (S_ISDIR(st.st_mode))
|
|
return (ARCHIVE_OK);
|
|
if ((a->flags & ARCHIVE_EXTRACT_NO_OVERWRITE)) {
|
|
archive_set_error(&a->archive, EEXIST,
|
|
"Can't create directory '%s'", path);
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
if (unlink(path) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't create directory '%s': "
|
|
"Conflicting file cannot be removed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
} else if (errno != ENOENT && errno != ENOTDIR) {
|
|
/* Stat failed? */
|
|
archive_set_error(&a->archive, errno, "Can't test directory '%s'", path);
|
|
return (ARCHIVE_FAILED);
|
|
} else if (slash != NULL) {
|
|
*slash = '\0';
|
|
r = create_dir(a, path);
|
|
*slash = '/';
|
|
if (r != ARCHIVE_OK)
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Mode we want for the final restored directory. Per POSIX,
|
|
* implicitly-created dirs must be created obeying the umask.
|
|
* There's no mention whether this is different for privileged
|
|
* restores (which the rest of this code handles by pretending
|
|
* umask=0). I've chosen here to always obey the user's umask for
|
|
* implicit dirs, even if _EXTRACT_PERM was specified.
|
|
*/
|
|
mode_final = DEFAULT_DIR_MODE & ~a->user_umask;
|
|
/* Mode we want on disk during the restore process. */
|
|
mode = mode_final;
|
|
mode |= MINIMUM_DIR_MODE;
|
|
mode &= MAXIMUM_DIR_MODE;
|
|
if (mkdir(path, mode) == 0) {
|
|
if (mode != mode_final) {
|
|
le = new_fixup(a, path);
|
|
le->fixup |=TODO_MODE_BASE;
|
|
le->mode = mode_final;
|
|
}
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Without the following check, a/b/../b/c/d fails at the
|
|
* second visit to 'b', so 'd' can't be created. Note that we
|
|
* don't add it to the fixup list here, as it's already been
|
|
* added.
|
|
*/
|
|
if (stat(path, &st) == 0 && S_ISDIR(st.st_mode))
|
|
return (ARCHIVE_OK);
|
|
|
|
archive_set_error(&a->archive, errno, "Failed to create dir '%s'", path);
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
|
|
/*
|
|
* Note: Although we can skip setting the user id if the desired user
|
|
* id matches the current user, we cannot skip setting the group, as
|
|
* many systems set the gid based on the containing directory. So
|
|
* we have to perform a chown syscall if we want to set the SGID
|
|
* bit. (The alternative is to stat() and then possibly chown(); it's
|
|
* more efficient to skip the stat() and just always chown().) Note
|
|
* that a successful chown() here clears the TODO_SGID_CHECK bit, which
|
|
* allows set_mode to skip the stat() check for the GID.
|
|
*/
|
|
static int
|
|
set_ownership(struct archive_write_disk *a)
|
|
{
|
|
/* If we know we can't change it, don't bother trying. */
|
|
if (a->user_uid != 0 && a->user_uid != a->uid) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set UID=%d", a->uid);
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
#ifdef HAVE_FCHOWN
|
|
/* If we have an fd, we can avoid a race. */
|
|
if (a->fd >= 0 && fchown(a->fd, a->uid, a->gid) == 0) {
|
|
/* We've set owner and know uid/gid are correct. */
|
|
a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#endif
|
|
|
|
/* We prefer lchown() but will use chown() if that's all we have. */
|
|
/* Of course, if we have neither, this will always fail. */
|
|
#ifdef HAVE_LCHOWN
|
|
if (lchown(a->name, a->uid, a->gid) == 0) {
|
|
/* We've set owner and know uid/gid are correct. */
|
|
a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#elif HAVE_CHOWN
|
|
if (!S_ISLNK(a->mode) && chown(a->name, a->uid, a->gid) == 0) {
|
|
/* We've set owner and know uid/gid are correct. */
|
|
a->todo &= ~(TODO_OWNER | TODO_SGID_CHECK | TODO_SUID_CHECK);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#endif
|
|
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set user=%d/group=%d for %s", a->uid, a->gid,
|
|
a->name);
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
#ifdef HAVE_UTIMES
|
|
/*
|
|
* The utimes()-family functions provide high resolution and
|
|
* a way to set time on an fd or a symlink. We prefer them
|
|
* when they're available.
|
|
*/
|
|
static int
|
|
set_time(int fd, int mode, const char *name,
|
|
time_t atime, long atime_nsec,
|
|
time_t mtime, long mtime_nsec)
|
|
{
|
|
struct timeval times[2];
|
|
|
|
times[0].tv_sec = atime;
|
|
times[0].tv_usec = atime_nsec / 1000;
|
|
times[1].tv_sec = mtime;
|
|
times[1].tv_usec = mtime_nsec / 1000;
|
|
|
|
#ifdef HAVE_FUTIMES
|
|
if (fd >= 0)
|
|
return (futimes(fd, times));
|
|
#else
|
|
(void)fd; /* UNUSED */
|
|
#endif
|
|
#ifdef HAVE_LUTIMES
|
|
(void)mode; /* UNUSED */
|
|
return (lutimes(name, times));
|
|
#else
|
|
if (S_ISLNK(mode))
|
|
return (0);
|
|
return (utimes(name, times));
|
|
#endif
|
|
}
|
|
#elif defined(HAVE_UTIME)
|
|
/*
|
|
* utime() is an older, more standard interface that we'll use
|
|
* if utimes() isn't available.
|
|
*/
|
|
static int
|
|
set_time(int fd, int mode, const char *name,
|
|
time_t atime, long atime_nsec,
|
|
time_t mtime, long mtime_nsec)
|
|
{
|
|
struct utimbuf times;
|
|
(void)fd; /* UNUSED */
|
|
(void)name; /* UNUSED */
|
|
(void)atime_nsec; /* UNUSED */
|
|
(void)mtime_nsec; /* UNUSED */
|
|
times.actime = atime;
|
|
times.modtime = mtime;
|
|
if (S_ISLNK(mode))
|
|
return (ARCHIVE_OK);
|
|
return (utime(name, ×));
|
|
}
|
|
#else
|
|
static int
|
|
set_time(int fd, int mode, const char *name,
|
|
time_t atime, long atime_nsec,
|
|
time_t mtime, long mtime_nsec)
|
|
{
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
set_times(struct archive_write_disk *a)
|
|
{
|
|
time_t atime = a->start_time, mtime = a->start_time;
|
|
long atime_nsec = 0, mtime_nsec = 0;
|
|
|
|
/* If no time was provided, we're done. */
|
|
if (!archive_entry_atime_is_set(a->entry)
|
|
#if HAVE_STRUCT_STAT_ST_BIRTHTIME
|
|
&& !archive_entry_birthtime_is_set(a->entry)
|
|
#endif
|
|
&& !archive_entry_mtime_is_set(a->entry))
|
|
return (ARCHIVE_OK);
|
|
|
|
/* If no atime was specified, use start time instead. */
|
|
/* In theory, it would be marginally more correct to use
|
|
* time(NULL) here, but that would cost us an extra syscall
|
|
* for little gain. */
|
|
if (archive_entry_atime_is_set(a->entry)) {
|
|
atime = archive_entry_atime(a->entry);
|
|
atime_nsec = archive_entry_atime_nsec(a->entry);
|
|
}
|
|
|
|
/*
|
|
* If you have struct stat.st_birthtime, we assume BSD birthtime
|
|
* semantics, in which {f,l,}utimes() updates birthtime to earliest
|
|
* mtime. So we set the time twice, first using the birthtime,
|
|
* then using the mtime.
|
|
*/
|
|
#if HAVE_STRUCT_STAT_ST_BIRTHTIME
|
|
/* If birthtime is set, flush that through to disk first. */
|
|
if (archive_entry_birthtime_is_set(a->entry))
|
|
if (set_time(a->fd, a->mode, a->name, atime, atime_nsec,
|
|
archive_entry_birthtime(a->entry),
|
|
archive_entry_birthtime_nsec(a->entry))) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't update time for %s",
|
|
a->name);
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
#endif
|
|
|
|
if (archive_entry_mtime_is_set(a->entry)) {
|
|
mtime = archive_entry_mtime(a->entry);
|
|
mtime_nsec = archive_entry_mtime_nsec(a->entry);
|
|
}
|
|
if (set_time(a->fd, a->mode, a->name,
|
|
atime, atime_nsec, mtime, mtime_nsec)) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't update time for %s",
|
|
a->name);
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
/*
|
|
* Note: POSIX does not provide a portable way to restore ctime.
|
|
* (Apart from resetting the system clock, which is distasteful.)
|
|
* So, any restoration of ctime will necessarily be OS-specific.
|
|
*/
|
|
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
static int
|
|
set_mode(struct archive_write_disk *a, int mode)
|
|
{
|
|
int r = ARCHIVE_OK;
|
|
mode &= 07777; /* Strip off file type bits. */
|
|
|
|
if (a->todo & TODO_SGID_CHECK) {
|
|
/*
|
|
* If we don't know the GID is right, we must stat()
|
|
* to verify it. We can't just check the GID of this
|
|
* process, since systems sometimes set GID from
|
|
* the enclosing dir or based on ACLs.
|
|
*/
|
|
if ((r = _archive_write_disk_lazy_stat(a)) != ARCHIVE_OK)
|
|
return (r);
|
|
if (a->pst->st_gid != a->gid) {
|
|
mode &= ~ S_ISGID;
|
|
if (a->flags & ARCHIVE_EXTRACT_OWNER) {
|
|
/*
|
|
* This is only an error if you
|
|
* requested owner restore. If you
|
|
* didn't, we'll try to restore
|
|
* sgid/suid, but won't consider it a
|
|
* problem if we can't.
|
|
*/
|
|
archive_set_error(&a->archive, -1,
|
|
"Can't restore SGID bit");
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
}
|
|
/* While we're here, double-check the UID. */
|
|
if (a->pst->st_uid != a->uid
|
|
&& (a->todo & TODO_SUID)) {
|
|
mode &= ~ S_ISUID;
|
|
if (a->flags & ARCHIVE_EXTRACT_OWNER) {
|
|
archive_set_error(&a->archive, -1,
|
|
"Can't restore SUID bit");
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
}
|
|
a->todo &= ~TODO_SGID_CHECK;
|
|
a->todo &= ~TODO_SUID_CHECK;
|
|
} else if (a->todo & TODO_SUID_CHECK) {
|
|
/*
|
|
* If we don't know the UID is right, we can just check
|
|
* the user, since all systems set the file UID from
|
|
* the process UID.
|
|
*/
|
|
if (a->user_uid != a->uid) {
|
|
mode &= ~ S_ISUID;
|
|
if (a->flags & ARCHIVE_EXTRACT_OWNER) {
|
|
archive_set_error(&a->archive, -1,
|
|
"Can't make file SUID");
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
}
|
|
a->todo &= ~TODO_SUID_CHECK;
|
|
}
|
|
|
|
if (S_ISLNK(a->mode)) {
|
|
#ifdef HAVE_LCHMOD
|
|
/*
|
|
* If this is a symlink, use lchmod(). If the
|
|
* platform doesn't support lchmod(), just skip it. A
|
|
* platform that doesn't provide a way to set
|
|
* permissions on symlinks probably ignores
|
|
* permissions on symlinks, so a failure here has no
|
|
* impact.
|
|
*/
|
|
if (lchmod(a->name, mode) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set permissions to 0%o", (int)mode);
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
#endif
|
|
} else if (!S_ISDIR(a->mode)) {
|
|
/*
|
|
* If it's not a symlink and not a dir, then use
|
|
* fchmod() or chmod(), depending on whether we have
|
|
* an fd. Dirs get their perms set during the
|
|
* post-extract fixup, which is handled elsewhere.
|
|
*/
|
|
#ifdef HAVE_FCHMOD
|
|
if (a->fd >= 0) {
|
|
if (fchmod(a->fd, mode) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set permissions to 0%o", (int)mode);
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
} else
|
|
#endif
|
|
/* If this platform lacks fchmod(), then
|
|
* we'll just use chmod(). */
|
|
if (chmod(a->name, mode) != 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set permissions to 0%o", (int)mode);
|
|
r = ARCHIVE_WARN;
|
|
}
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
set_fflags(struct archive_write_disk *a)
|
|
{
|
|
struct fixup_entry *le;
|
|
unsigned long set, clear;
|
|
int r;
|
|
int critical_flags;
|
|
mode_t mode = archive_entry_mode(a->entry);
|
|
|
|
/*
|
|
* Make 'critical_flags' hold all file flags that can't be
|
|
* immediately restored. For example, on BSD systems,
|
|
* SF_IMMUTABLE prevents hardlinks from being created, so
|
|
* should not be set until after any hardlinks are created. To
|
|
* preserve some semblance of portability, this uses #ifdef
|
|
* extensively. Ugly, but it works.
|
|
*
|
|
* Yes, Virginia, this does create a security race. It's mitigated
|
|
* somewhat by the practice of creating dirs 0700 until the extract
|
|
* is done, but it would be nice if we could do more than that.
|
|
* People restoring critical file systems should be wary of
|
|
* other programs that might try to muck with files as they're
|
|
* being restored.
|
|
*/
|
|
/* Hopefully, the compiler will optimize this mess into a constant. */
|
|
critical_flags = 0;
|
|
#ifdef SF_IMMUTABLE
|
|
critical_flags |= SF_IMMUTABLE;
|
|
#endif
|
|
#ifdef UF_IMMUTABLE
|
|
critical_flags |= UF_IMMUTABLE;
|
|
#endif
|
|
#ifdef SF_APPEND
|
|
critical_flags |= SF_APPEND;
|
|
#endif
|
|
#ifdef UF_APPEND
|
|
critical_flags |= UF_APPEND;
|
|
#endif
|
|
#ifdef EXT2_APPEND_FL
|
|
critical_flags |= EXT2_APPEND_FL;
|
|
#endif
|
|
#ifdef EXT2_IMMUTABLE_FL
|
|
critical_flags |= EXT2_IMMUTABLE_FL;
|
|
#endif
|
|
|
|
if (a->todo & TODO_FFLAGS) {
|
|
archive_entry_fflags(a->entry, &set, &clear);
|
|
|
|
/*
|
|
* The first test encourages the compiler to eliminate
|
|
* all of this if it's not necessary.
|
|
*/
|
|
if ((critical_flags != 0) && (set & critical_flags)) {
|
|
le = current_fixup(a, a->name);
|
|
le->fixup |= TODO_FFLAGS;
|
|
le->fflags_set = set;
|
|
/* Store the mode if it's not already there. */
|
|
if ((le->fixup & TODO_MODE) == 0)
|
|
le->mode = mode;
|
|
} else {
|
|
r = set_fflags_platform(a, a->fd,
|
|
a->name, mode, set, clear);
|
|
if (r != ARCHIVE_OK)
|
|
return (r);
|
|
}
|
|
}
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
|
|
#if ( defined(HAVE_LCHFLAGS) || defined(HAVE_CHFLAGS) || defined(HAVE_FCHFLAGS) ) && defined(HAVE_STRUCT_STAT_ST_FLAGS)
|
|
/*
|
|
* BSD reads flags using stat() and sets them with one of {f,l,}chflags()
|
|
*/
|
|
static int
|
|
set_fflags_platform(struct archive_write_disk *a, int fd, const char *name,
|
|
mode_t mode, unsigned long set, unsigned long clear)
|
|
{
|
|
int r;
|
|
|
|
(void)mode; /* UNUSED */
|
|
if (set == 0 && clear == 0)
|
|
return (ARCHIVE_OK);
|
|
|
|
/*
|
|
* XXX Is the stat here really necessary? Or can I just use
|
|
* the 'set' flags directly? In particular, I'm not sure
|
|
* about the correct approach if we're overwriting an existing
|
|
* file that already has flags on it. XXX
|
|
*/
|
|
if ((r = _archive_write_disk_lazy_stat(a)) != ARCHIVE_OK)
|
|
return (r);
|
|
|
|
a->st.st_flags &= ~clear;
|
|
a->st.st_flags |= set;
|
|
#ifdef HAVE_FCHFLAGS
|
|
/* If platform has fchflags() and we were given an fd, use it. */
|
|
if (fd >= 0 && fchflags(fd, a->st.st_flags) == 0)
|
|
return (ARCHIVE_OK);
|
|
#endif
|
|
/*
|
|
* If we can't use the fd to set the flags, we'll use the
|
|
* pathname to set flags. We prefer lchflags() but will use
|
|
* chflags() if we must.
|
|
*/
|
|
#ifdef HAVE_LCHFLAGS
|
|
if (lchflags(name, a->st.st_flags) == 0)
|
|
return (ARCHIVE_OK);
|
|
#elif defined(HAVE_CHFLAGS)
|
|
if (S_ISLNK(a->st.st_mode)) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Can't set file flags on symlink.");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
if (chflags(name, a->st.st_flags) == 0)
|
|
return (ARCHIVE_OK);
|
|
#endif
|
|
archive_set_error(&a->archive, errno,
|
|
"Failed to set file flags");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
|
|
#elif defined(EXT2_IOC_GETFLAGS) && defined(EXT2_IOC_SETFLAGS)
|
|
/*
|
|
* Linux uses ioctl() to read and write file flags.
|
|
*/
|
|
static int
|
|
set_fflags_platform(struct archive_write_disk *a, int fd, const char *name,
|
|
mode_t mode, unsigned long set, unsigned long clear)
|
|
{
|
|
int ret;
|
|
int myfd = fd;
|
|
unsigned long newflags, oldflags;
|
|
unsigned long sf_mask = 0;
|
|
|
|
if (set == 0 && clear == 0)
|
|
return (ARCHIVE_OK);
|
|
/* Only regular files and dirs can have flags. */
|
|
if (!S_ISREG(mode) && !S_ISDIR(mode))
|
|
return (ARCHIVE_OK);
|
|
|
|
/* If we weren't given an fd, open it ourselves. */
|
|
if (myfd < 0)
|
|
myfd = open(name, O_RDONLY | O_NONBLOCK | O_BINARY);
|
|
if (myfd < 0)
|
|
return (ARCHIVE_OK);
|
|
|
|
/*
|
|
* Linux has no define for the flags that are only settable by
|
|
* the root user. This code may seem a little complex, but
|
|
* there seem to be some Linux systems that lack these
|
|
* defines. (?) The code below degrades reasonably gracefully
|
|
* if sf_mask is incomplete.
|
|
*/
|
|
#ifdef EXT2_IMMUTABLE_FL
|
|
sf_mask |= EXT2_IMMUTABLE_FL;
|
|
#endif
|
|
#ifdef EXT2_APPEND_FL
|
|
sf_mask |= EXT2_APPEND_FL;
|
|
#endif
|
|
/*
|
|
* XXX As above, this would be way simpler if we didn't have
|
|
* to read the current flags from disk. XXX
|
|
*/
|
|
ret = ARCHIVE_OK;
|
|
/* Try setting the flags as given. */
|
|
if (ioctl(myfd, EXT2_IOC_GETFLAGS, &oldflags) >= 0) {
|
|
newflags = (oldflags & ~clear) | set;
|
|
if (ioctl(myfd, EXT2_IOC_SETFLAGS, &newflags) >= 0)
|
|
goto cleanup;
|
|
if (errno != EPERM)
|
|
goto fail;
|
|
}
|
|
/* If we couldn't set all the flags, try again with a subset. */
|
|
if (ioctl(myfd, EXT2_IOC_GETFLAGS, &oldflags) >= 0) {
|
|
newflags &= ~sf_mask;
|
|
oldflags &= sf_mask;
|
|
newflags |= oldflags;
|
|
if (ioctl(myfd, EXT2_IOC_SETFLAGS, &newflags) >= 0)
|
|
goto cleanup;
|
|
}
|
|
/* We couldn't set the flags, so report the failure. */
|
|
fail:
|
|
archive_set_error(&a->archive, errno,
|
|
"Failed to set file flags");
|
|
ret = ARCHIVE_WARN;
|
|
cleanup:
|
|
if (fd < 0)
|
|
close(myfd);
|
|
return (ret);
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* Of course, some systems have neither BSD chflags() nor Linux' flags
|
|
* support through ioctl().
|
|
*/
|
|
static int
|
|
set_fflags_platform(struct archive_write_disk *a, int fd, const char *name,
|
|
mode_t mode, unsigned long set, unsigned long clear)
|
|
{
|
|
(void)a; /* UNUSED */
|
|
(void)fd; /* UNUSED */
|
|
(void)name; /* UNUSED */
|
|
(void)mode; /* UNUSED */
|
|
(void)set; /* UNUSED */
|
|
(void)clear; /* UNUSED */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#endif /* __linux */
|
|
|
|
#ifndef HAVE_POSIX_ACL
|
|
/* Default empty function body to satisfy mainline code. */
|
|
static int
|
|
set_acls(struct archive_write_disk *a)
|
|
{
|
|
(void)a; /* UNUSED */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* XXX TODO: What about ACL types other than ACCESS and DEFAULT?
|
|
*/
|
|
static int
|
|
set_acls(struct archive_write_disk *a)
|
|
{
|
|
int ret;
|
|
|
|
ret = set_acl(a, a->fd, a->entry, ACL_TYPE_ACCESS,
|
|
ARCHIVE_ENTRY_ACL_TYPE_ACCESS, "access");
|
|
if (ret != ARCHIVE_OK)
|
|
return (ret);
|
|
ret = set_acl(a, a->fd, a->entry, ACL_TYPE_DEFAULT,
|
|
ARCHIVE_ENTRY_ACL_TYPE_DEFAULT, "default");
|
|
return (ret);
|
|
}
|
|
|
|
|
|
static int
|
|
set_acl(struct archive_write_disk *a, int fd, struct archive_entry *entry,
|
|
acl_type_t acl_type, int ae_requested_type, const char *tname)
|
|
{
|
|
acl_t acl;
|
|
acl_entry_t acl_entry;
|
|
acl_permset_t acl_permset;
|
|
int ret;
|
|
int ae_type, ae_permset, ae_tag, ae_id;
|
|
uid_t ae_uid;
|
|
gid_t ae_gid;
|
|
const char *ae_name;
|
|
int entries;
|
|
const char *name;
|
|
|
|
ret = ARCHIVE_OK;
|
|
entries = archive_entry_acl_reset(entry, ae_requested_type);
|
|
if (entries == 0)
|
|
return (ARCHIVE_OK);
|
|
acl = acl_init(entries);
|
|
while (archive_entry_acl_next(entry, ae_requested_type, &ae_type,
|
|
&ae_permset, &ae_tag, &ae_id, &ae_name) == ARCHIVE_OK) {
|
|
acl_create_entry(&acl, &acl_entry);
|
|
|
|
switch (ae_tag) {
|
|
case ARCHIVE_ENTRY_ACL_USER:
|
|
acl_set_tag_type(acl_entry, ACL_USER);
|
|
ae_uid = a->lookup_uid(a->lookup_uid_data,
|
|
ae_name, ae_id);
|
|
acl_set_qualifier(acl_entry, &ae_uid);
|
|
break;
|
|
case ARCHIVE_ENTRY_ACL_GROUP:
|
|
acl_set_tag_type(acl_entry, ACL_GROUP);
|
|
ae_gid = a->lookup_gid(a->lookup_gid_data,
|
|
ae_name, ae_id);
|
|
acl_set_qualifier(acl_entry, &ae_gid);
|
|
break;
|
|
case ARCHIVE_ENTRY_ACL_USER_OBJ:
|
|
acl_set_tag_type(acl_entry, ACL_USER_OBJ);
|
|
break;
|
|
case ARCHIVE_ENTRY_ACL_GROUP_OBJ:
|
|
acl_set_tag_type(acl_entry, ACL_GROUP_OBJ);
|
|
break;
|
|
case ARCHIVE_ENTRY_ACL_MASK:
|
|
acl_set_tag_type(acl_entry, ACL_MASK);
|
|
break;
|
|
case ARCHIVE_ENTRY_ACL_OTHER:
|
|
acl_set_tag_type(acl_entry, ACL_OTHER);
|
|
break;
|
|
default:
|
|
/* XXX */
|
|
break;
|
|
}
|
|
|
|
acl_get_permset(acl_entry, &acl_permset);
|
|
acl_clear_perms(acl_permset);
|
|
if (ae_permset & ARCHIVE_ENTRY_ACL_EXECUTE)
|
|
acl_add_perm(acl_permset, ACL_EXECUTE);
|
|
if (ae_permset & ARCHIVE_ENTRY_ACL_WRITE)
|
|
acl_add_perm(acl_permset, ACL_WRITE);
|
|
if (ae_permset & ARCHIVE_ENTRY_ACL_READ)
|
|
acl_add_perm(acl_permset, ACL_READ);
|
|
}
|
|
|
|
name = archive_entry_pathname(entry);
|
|
|
|
/* Try restoring the ACL through 'fd' if we can. */
|
|
#if HAVE_ACL_SET_FD
|
|
if (fd >= 0 && acl_type == ACL_TYPE_ACCESS && acl_set_fd(fd, acl) == 0)
|
|
ret = ARCHIVE_OK;
|
|
else
|
|
#else
|
|
#if HAVE_ACL_SET_FD_NP
|
|
if (fd >= 0 && acl_set_fd_np(fd, acl, acl_type) == 0)
|
|
ret = ARCHIVE_OK;
|
|
else
|
|
#endif
|
|
#endif
|
|
if (acl_set_file(name, acl_type, acl) != 0) {
|
|
archive_set_error(&a->archive, errno, "Failed to set %s acl", tname);
|
|
ret = ARCHIVE_WARN;
|
|
}
|
|
acl_free(acl);
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_LSETXATTR
|
|
/*
|
|
* Restore extended attributes - Linux implementation
|
|
*/
|
|
static int
|
|
set_xattrs(struct archive_write_disk *a)
|
|
{
|
|
struct archive_entry *entry = a->entry;
|
|
static int warning_done = 0;
|
|
int ret = ARCHIVE_OK;
|
|
int i = archive_entry_xattr_reset(entry);
|
|
|
|
while (i--) {
|
|
const char *name;
|
|
const void *value;
|
|
size_t size;
|
|
archive_entry_xattr_next(entry, &name, &value, &size);
|
|
if (name != NULL &&
|
|
strncmp(name, "xfsroot.", 8) != 0 &&
|
|
strncmp(name, "system.", 7) != 0) {
|
|
int e;
|
|
#if HAVE_FSETXATTR
|
|
if (a->fd >= 0)
|
|
e = fsetxattr(a->fd, name, value, size, 0);
|
|
else
|
|
#endif
|
|
{
|
|
e = lsetxattr(archive_entry_pathname(entry),
|
|
name, value, size, 0);
|
|
}
|
|
if (e == -1) {
|
|
if (errno == ENOTSUP) {
|
|
if (!warning_done) {
|
|
warning_done = 1;
|
|
archive_set_error(&a->archive, errno,
|
|
"Cannot restore extended "
|
|
"attributes on this file "
|
|
"system");
|
|
}
|
|
} else
|
|
archive_set_error(&a->archive, errno,
|
|
"Failed to set extended attribute");
|
|
ret = ARCHIVE_WARN;
|
|
}
|
|
} else {
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
|
|
"Invalid extended attribute encountered");
|
|
ret = ARCHIVE_WARN;
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
#else
|
|
/*
|
|
* Restore extended attributes - stub implementation for unsupported systems
|
|
*/
|
|
static int
|
|
set_xattrs(struct archive_write_disk *a)
|
|
{
|
|
static int warning_done = 0;
|
|
|
|
/* If there aren't any extended attributes, then it's okay not
|
|
* to extract them, otherwise, issue a single warning. */
|
|
if (archive_entry_xattr_count(a->entry) != 0 && !warning_done) {
|
|
warning_done = 1;
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
|
|
"Cannot restore extended attributes on this system");
|
|
return (ARCHIVE_WARN);
|
|
}
|
|
/* Warning was already emitted; suppress further warnings. */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Trivial implementations of gid/uid lookup functions.
|
|
* These are normally overridden by the client, but these stub
|
|
* versions ensure that we always have something that works.
|
|
*/
|
|
static gid_t
|
|
trivial_lookup_gid(void *private_data, const char *gname, gid_t gid)
|
|
{
|
|
(void)private_data; /* UNUSED */
|
|
(void)gname; /* UNUSED */
|
|
return (gid);
|
|
}
|
|
|
|
static uid_t
|
|
trivial_lookup_uid(void *private_data, const char *uname, uid_t uid)
|
|
{
|
|
(void)private_data; /* UNUSED */
|
|
(void)uname; /* UNUSED */
|
|
return (uid);
|
|
}
|
|
|
|
/*
|
|
* Test if file on disk is older than entry.
|
|
*/
|
|
static int
|
|
older(struct stat *st, struct archive_entry *entry)
|
|
{
|
|
/* First, test the seconds and return if we have a definite answer. */
|
|
/* Definitely older. */
|
|
if (st->st_mtime < archive_entry_mtime(entry))
|
|
return (1);
|
|
/* Definitely younger. */
|
|
if (st->st_mtime > archive_entry_mtime(entry))
|
|
return (0);
|
|
/* If this platform supports fractional seconds, try those. */
|
|
#if HAVE_STRUCT_STAT_ST_MTIMESPEC_TV_NSEC
|
|
/* Definitely older. */
|
|
if (st->st_mtimespec.tv_nsec < archive_entry_mtime_nsec(entry))
|
|
return (1);
|
|
/* Definitely younger. */
|
|
if (st->st_mtimespec.tv_nsec > archive_entry_mtime_nsec(entry))
|
|
return (0);
|
|
#elif HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC
|
|
/* Definitely older. */
|
|
if (st->st_mtim.tv_nsec < archive_entry_mtime_nsec(entry))
|
|
return (1);
|
|
/* Definitely older. */
|
|
if (st->st_mtim.tv_nsec > archive_entry_mtime_nsec(entry))
|
|
return (0);
|
|
#else
|
|
/* This system doesn't have high-res timestamps. */
|
|
#endif
|
|
/* Same age, so not older. */
|
|
return (0);
|
|
}
|