mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
8e2e767b1f
userland. The per thread ucred reference is immutable and thus needs no locks to be read. However, until all the proc locking associated with writes to p_ucred are completed, it is still not safe to use the per-thread reference. Tested on: x86 (SMP), alpha, sparc64
208 lines
6.0 KiB
C
208 lines
6.0 KiB
C
/*-
|
|
* Copyright (C) 1994, David Greenman
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the University of Utah, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifdef __i386__
|
|
#include "opt_npx.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/pcb.h>
|
|
|
|
/*
|
|
* Define the code needed before returning to user mode, for
|
|
* trap and syscall.
|
|
*
|
|
* MPSAFE
|
|
*/
|
|
void
|
|
userret(td, frame, oticks)
|
|
struct thread *td;
|
|
struct trapframe *frame;
|
|
u_int oticks;
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct kse *ke = td->td_kse;
|
|
struct ksegrp *kg = td->td_ksegrp;
|
|
int sig;
|
|
|
|
mtx_lock(&Giant);
|
|
PROC_LOCK(p);
|
|
while ((sig = CURSIG(p)) != 0)
|
|
postsig(sig);
|
|
PROC_UNLOCK(p);
|
|
mtx_unlock(&Giant);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
kg->kg_pri.pri_level = kg->kg_pri.pri_user;
|
|
if (ke->ke_flags & KEF_NEEDRESCHED) {
|
|
/*
|
|
* Since we are curproc, a clock interrupt could
|
|
* change our priority without changing run queues
|
|
* (the running process is not kept on a run queue).
|
|
* If this happened after we setrunqueue ourselves but
|
|
* before we switch()'ed, we might not be on the queue
|
|
* indicated by our priority.
|
|
*/
|
|
DROP_GIANT_NOSWITCH();
|
|
setrunqueue(td);
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
mi_switch();
|
|
mtx_unlock_spin(&sched_lock);
|
|
PICKUP_GIANT();
|
|
mtx_lock(&Giant);
|
|
PROC_LOCK(p);
|
|
while ((sig = CURSIG(p)) != 0)
|
|
postsig(sig);
|
|
mtx_unlock(&Giant);
|
|
PROC_UNLOCK(p);
|
|
} else
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
/*
|
|
* Charge system time if profiling.
|
|
*/
|
|
if (p->p_sflag & PS_PROFIL) {
|
|
addupc_task(ke, TRAPF_PC(frame),
|
|
(u_int)(ke->ke_sticks - oticks) * psratio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an asynchronous software trap.
|
|
* This is relatively easy.
|
|
* This function will return with preemption disabled.
|
|
*/
|
|
void
|
|
ast(framep)
|
|
struct trapframe *framep;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct proc *p = td->td_proc;
|
|
struct kse *ke = td->td_kse;
|
|
u_int prticks, sticks;
|
|
critical_t s;
|
|
int sflag;
|
|
int flags;
|
|
#if defined(DEV_NPX) && !defined(SMP)
|
|
int ucode;
|
|
#endif
|
|
|
|
KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
|
|
KASSERT(td->td_ucred == NULL, ("leaked ucred"));
|
|
#ifdef WITNESS
|
|
if (witness_list(td))
|
|
panic("Returning to user mode with mutex(s) held");
|
|
#endif
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
s = critical_enter();
|
|
while ((ke->ke_flags & (KEF_ASTPENDING | KEF_NEEDRESCHED)) != 0) {
|
|
critical_exit(s);
|
|
td->td_frame = framep;
|
|
/*
|
|
* This updates the p_sflag's for the checks below in one
|
|
* "atomic" operation with turning off the astpending flag.
|
|
* If another AST is triggered while we are handling the
|
|
* AST's saved in sflag, the astpending flag will be set and
|
|
* we will loop again.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
sticks = ke->ke_sticks;
|
|
sflag = p->p_sflag;
|
|
flags = ke->ke_flags;
|
|
p->p_sflag &= ~(PS_PROFPEND | PS_ALRMPEND);
|
|
ke->ke_flags &= ~(KEF_OWEUPC | KEF_ASTPENDING);
|
|
cnt.v_soft++;
|
|
if (flags & KEF_OWEUPC) {
|
|
prticks = p->p_stats->p_prof.pr_ticks;
|
|
p->p_stats->p_prof.pr_ticks = 0;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
td->td_ucred = crhold(p->p_ucred);
|
|
PROC_UNLOCK(p);
|
|
if (flags & KEF_OWEUPC)
|
|
addupc_task(ke, p->p_stats->p_prof.pr_addr, prticks);
|
|
if (sflag & PS_ALRMPEND) {
|
|
PROC_LOCK(p);
|
|
psignal(p, SIGVTALRM);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
#if defined(DEV_NPX) && !defined(SMP)
|
|
if (PCPU_GET(curpcb)->pcb_flags & PCB_NPXTRAP) {
|
|
atomic_clear_char(&PCPU_GET(curpcb)->pcb_flags,
|
|
PCB_NPXTRAP);
|
|
ucode = npxtrap();
|
|
if (ucode != -1) {
|
|
trapsignal(p, SIGFPE, ucode);
|
|
}
|
|
}
|
|
#endif
|
|
if (sflag & PS_PROFPEND) {
|
|
PROC_LOCK(p);
|
|
psignal(p, SIGPROF);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
userret(td, framep, sticks);
|
|
mtx_lock(&Giant);
|
|
crfree(td->td_ucred);
|
|
mtx_unlock(&Giant);
|
|
td->td_ucred = NULL;
|
|
s = critical_enter();
|
|
}
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
/*
|
|
* We need to keep interrupts disabled so that if any further AST's
|
|
* come in, the interrupt they come in on will be delayed until we
|
|
* finish returning to userland. We assume that the return to userland
|
|
* will perform the equivalent of critical_exit().
|
|
*/
|
|
}
|