mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-20 11:11:24 +00:00
a34c6aeb85
setting (either default or if supported as set by SIOCSIFFIB, e.g. from ifconfig). Submitted by: Alexander V. Chernikov (melifaro ipfw.ru) Reviewed by: julian MFC after: 2 weeks
1405 lines
34 KiB
C
1405 lines
34 KiB
C
/*-
|
|
* Copyright (c) 1982, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_atalk.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipx.h"
|
|
#include "opt_netgraph.h"
|
|
#include "opt_mbuf_profiling.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/random.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_bridgevar.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/pf_mtag.h>
|
|
#include <net/vnet.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip_carp.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ipfw/ip_fw_private.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#ifdef IPX
|
|
#include <netipx/ipx.h>
|
|
#include <netipx/ipx_if.h>
|
|
#endif
|
|
|
|
int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m);
|
|
int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp,
|
|
struct sockaddr *dst, short *tp, int *hlen);
|
|
|
|
#ifdef NETATALK
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
#define llc_snap_org_code llc_un.type_snap.org_code
|
|
#define llc_snap_ether_type llc_un.type_snap.ether_type
|
|
|
|
extern u_char at_org_code[3];
|
|
extern u_char aarp_org_code[3];
|
|
#endif /* NETATALK */
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#ifdef CTASSERT
|
|
CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
|
|
CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
|
|
#endif
|
|
|
|
/* netgraph node hooks for ng_ether(4) */
|
|
void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
|
|
void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
|
|
int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
|
|
void (*ng_ether_attach_p)(struct ifnet *ifp);
|
|
void (*ng_ether_detach_p)(struct ifnet *ifp);
|
|
|
|
void (*vlan_input_p)(struct ifnet *, struct mbuf *);
|
|
|
|
/* if_bridge(4) support */
|
|
struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
|
|
int (*bridge_output_p)(struct ifnet *, struct mbuf *,
|
|
struct sockaddr *, struct rtentry *);
|
|
void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
|
|
|
|
/* if_lagg(4) support */
|
|
struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
|
|
|
|
static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
|
|
static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
|
|
struct sockaddr *);
|
|
#ifdef VIMAGE
|
|
static void ether_reassign(struct ifnet *, struct vnet *, char *);
|
|
#endif
|
|
|
|
/* XXX: should be in an arp support file, not here */
|
|
MALLOC_DEFINE(M_ARPCOM, "arpcom", "802.* interface internals");
|
|
|
|
#define ETHER_IS_BROADCAST(addr) \
|
|
(bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0)
|
|
|
|
#define senderr(e) do { error = (e); goto bad;} while (0)
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
int
|
|
ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared);
|
|
static VNET_DEFINE(int, ether_ipfw);
|
|
#define V_ether_ipfw VNET(ether_ipfw)
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Ethernet output routine.
|
|
* Encapsulate a packet of type family for the local net.
|
|
* Use trailer local net encapsulation if enough data in first
|
|
* packet leaves a multiple of 512 bytes of data in remainder.
|
|
*/
|
|
int
|
|
ether_output(struct ifnet *ifp, struct mbuf *m,
|
|
struct sockaddr *dst, struct route *ro)
|
|
{
|
|
short type;
|
|
int error = 0, hdrcmplt = 0;
|
|
u_char esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
|
|
struct llentry *lle = NULL;
|
|
struct rtentry *rt0 = NULL;
|
|
struct ether_header *eh;
|
|
struct pf_mtag *t;
|
|
int loop_copy = 1;
|
|
int hlen; /* link layer header length */
|
|
|
|
if (ro != NULL) {
|
|
if (!(m->m_flags & (M_BCAST | M_MCAST)))
|
|
lle = ro->ro_lle;
|
|
rt0 = ro->ro_rt;
|
|
}
|
|
#ifdef MAC
|
|
error = mac_ifnet_check_transmit(ifp, m);
|
|
if (error)
|
|
senderr(error);
|
|
#endif
|
|
|
|
M_PROFILE(m);
|
|
if (ifp->if_flags & IFF_MONITOR)
|
|
senderr(ENETDOWN);
|
|
if (!((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING)))
|
|
senderr(ENETDOWN);
|
|
|
|
hlen = ETHER_HDR_LEN;
|
|
switch (dst->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (lle != NULL && (lle->la_flags & LLE_VALID))
|
|
memcpy(edst, &lle->ll_addr.mac16, sizeof(edst));
|
|
else
|
|
error = arpresolve(ifp, rt0, m, dst, edst, &lle);
|
|
if (error)
|
|
return (error == EWOULDBLOCK ? 0 : error);
|
|
type = htons(ETHERTYPE_IP);
|
|
break;
|
|
case AF_ARP:
|
|
{
|
|
struct arphdr *ah;
|
|
ah = mtod(m, struct arphdr *);
|
|
ah->ar_hrd = htons(ARPHRD_ETHER);
|
|
|
|
loop_copy = 0; /* if this is for us, don't do it */
|
|
|
|
switch(ntohs(ah->ar_op)) {
|
|
case ARPOP_REVREQUEST:
|
|
case ARPOP_REVREPLY:
|
|
type = htons(ETHERTYPE_REVARP);
|
|
break;
|
|
case ARPOP_REQUEST:
|
|
case ARPOP_REPLY:
|
|
default:
|
|
type = htons(ETHERTYPE_ARP);
|
|
break;
|
|
}
|
|
|
|
if (m->m_flags & M_BCAST)
|
|
bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN);
|
|
else
|
|
bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN);
|
|
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (lle != NULL && (lle->la_flags & LLE_VALID))
|
|
memcpy(edst, &lle->ll_addr.mac16, sizeof(edst));
|
|
else
|
|
error = nd6_storelladdr(ifp, m, dst, (u_char *)edst, &lle);
|
|
if (error)
|
|
return error;
|
|
type = htons(ETHERTYPE_IPV6);
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
case AF_IPX:
|
|
if (ef_outputp) {
|
|
error = ef_outputp(ifp, &m, dst, &type, &hlen);
|
|
if (error)
|
|
goto bad;
|
|
} else
|
|
type = htons(ETHERTYPE_IPX);
|
|
bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
|
|
(caddr_t)edst, sizeof (edst));
|
|
break;
|
|
#endif
|
|
#ifdef NETATALK
|
|
case AF_APPLETALK:
|
|
{
|
|
struct at_ifaddr *aa;
|
|
|
|
if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL)
|
|
senderr(EHOSTUNREACH); /* XXX */
|
|
if (!aarpresolve(ifp, m, (struct sockaddr_at *)dst, edst)) {
|
|
ifa_free(&aa->aa_ifa);
|
|
return (0);
|
|
}
|
|
/*
|
|
* In the phase 2 case, need to prepend an mbuf for the llc header.
|
|
*/
|
|
if ( aa->aa_flags & AFA_PHASE2 ) {
|
|
struct llc llc;
|
|
|
|
ifa_free(&aa->aa_ifa);
|
|
M_PREPEND(m, LLC_SNAPFRAMELEN, M_DONTWAIT);
|
|
if (m == NULL)
|
|
senderr(ENOBUFS);
|
|
llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
|
|
llc.llc_control = LLC_UI;
|
|
bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code));
|
|
llc.llc_snap_ether_type = htons( ETHERTYPE_AT );
|
|
bcopy(&llc, mtod(m, caddr_t), LLC_SNAPFRAMELEN);
|
|
type = htons(m->m_pkthdr.len);
|
|
hlen = LLC_SNAPFRAMELEN + ETHER_HDR_LEN;
|
|
} else {
|
|
ifa_free(&aa->aa_ifa);
|
|
type = htons(ETHERTYPE_AT);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* NETATALK */
|
|
|
|
case pseudo_AF_HDRCMPLT:
|
|
hdrcmplt = 1;
|
|
eh = (struct ether_header *)dst->sa_data;
|
|
(void)memcpy(esrc, eh->ether_shost, sizeof (esrc));
|
|
/* FALLTHROUGH */
|
|
|
|
case AF_UNSPEC:
|
|
loop_copy = 0; /* if this is for us, don't do it */
|
|
eh = (struct ether_header *)dst->sa_data;
|
|
(void)memcpy(edst, eh->ether_dhost, sizeof (edst));
|
|
type = eh->ether_type;
|
|
break;
|
|
|
|
default:
|
|
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
|
|
senderr(EAFNOSUPPORT);
|
|
}
|
|
|
|
if (lle != NULL && (lle->la_flags & LLE_IFADDR)) {
|
|
int csum_flags = 0;
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
|
|
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
csum_flags |= CSUM_SCTP_VALID;
|
|
m->m_pkthdr.csum_flags |= csum_flags;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
return (if_simloop(ifp, m, dst->sa_family, 0));
|
|
}
|
|
|
|
/*
|
|
* Add local net header. If no space in first mbuf,
|
|
* allocate another.
|
|
*/
|
|
M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
|
|
if (m == NULL)
|
|
senderr(ENOBUFS);
|
|
eh = mtod(m, struct ether_header *);
|
|
(void)memcpy(&eh->ether_type, &type,
|
|
sizeof(eh->ether_type));
|
|
(void)memcpy(eh->ether_dhost, edst, sizeof (edst));
|
|
if (hdrcmplt)
|
|
(void)memcpy(eh->ether_shost, esrc,
|
|
sizeof(eh->ether_shost));
|
|
else
|
|
(void)memcpy(eh->ether_shost, IF_LLADDR(ifp),
|
|
sizeof(eh->ether_shost));
|
|
|
|
/*
|
|
* If a simplex interface, and the packet is being sent to our
|
|
* Ethernet address or a broadcast address, loopback a copy.
|
|
* XXX To make a simplex device behave exactly like a duplex
|
|
* device, we should copy in the case of sending to our own
|
|
* ethernet address (thus letting the original actually appear
|
|
* on the wire). However, we don't do that here for security
|
|
* reasons and compatibility with the original behavior.
|
|
*/
|
|
if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy &&
|
|
((t = pf_find_mtag(m)) == NULL || !t->routed)) {
|
|
int csum_flags = 0;
|
|
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
|
|
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
csum_flags |= CSUM_SCTP_VALID;
|
|
|
|
if (m->m_flags & M_BCAST) {
|
|
struct mbuf *n;
|
|
|
|
/*
|
|
* Because if_simloop() modifies the packet, we need a
|
|
* writable copy through m_dup() instead of a readonly
|
|
* one as m_copy[m] would give us. The alternative would
|
|
* be to modify if_simloop() to handle the readonly mbuf,
|
|
* but performancewise it is mostly equivalent (trading
|
|
* extra data copying vs. extra locking).
|
|
*
|
|
* XXX This is a local workaround. A number of less
|
|
* often used kernel parts suffer from the same bug.
|
|
* See PR kern/105943 for a proposed general solution.
|
|
*/
|
|
if ((n = m_dup(m, M_DONTWAIT)) != NULL) {
|
|
n->m_pkthdr.csum_flags |= csum_flags;
|
|
if (csum_flags & CSUM_DATA_VALID)
|
|
n->m_pkthdr.csum_data = 0xffff;
|
|
(void)if_simloop(ifp, n, dst->sa_family, hlen);
|
|
} else
|
|
ifp->if_iqdrops++;
|
|
} else if (bcmp(eh->ether_dhost, eh->ether_shost,
|
|
ETHER_ADDR_LEN) == 0) {
|
|
m->m_pkthdr.csum_flags |= csum_flags;
|
|
if (csum_flags & CSUM_DATA_VALID)
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
(void) if_simloop(ifp, m, dst->sa_family, hlen);
|
|
return (0); /* XXX */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bridges require special output handling.
|
|
*/
|
|
if (ifp->if_bridge) {
|
|
BRIDGE_OUTPUT(ifp, m, error);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
if (ifp->if_carp &&
|
|
(error = (*carp_output_p)(ifp, m, dst, NULL)))
|
|
goto bad;
|
|
#endif
|
|
|
|
/* Handle ng_ether(4) processing, if any */
|
|
if (IFP2AC(ifp)->ac_netgraph != NULL) {
|
|
KASSERT(ng_ether_output_p != NULL,
|
|
("ng_ether_output_p is NULL"));
|
|
if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
|
|
bad: if (m != NULL)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
if (m == NULL)
|
|
return (0);
|
|
}
|
|
|
|
/* Continue with link-layer output */
|
|
return ether_output_frame(ifp, m);
|
|
}
|
|
|
|
/*
|
|
* Ethernet link layer output routine to send a raw frame to the device.
|
|
*
|
|
* This assumes that the 14 byte Ethernet header is present and contiguous
|
|
* in the first mbuf (if BRIDGE'ing).
|
|
*/
|
|
int
|
|
ether_output_frame(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
#if defined(INET) || defined(INET6)
|
|
|
|
if (V_ip_fw_chk_ptr && V_ether_ipfw != 0) {
|
|
if (ether_ipfw_chk(&m, ifp, 0) == 0) {
|
|
if (m) {
|
|
m_freem(m);
|
|
return EACCES; /* pkt dropped */
|
|
} else
|
|
return 0; /* consumed e.g. in a pipe */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Queue message on interface, update output statistics if
|
|
* successful, and start output if interface not yet active.
|
|
*/
|
|
return ((ifp->if_transmit)(ifp, m));
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
* ipfw processing for ethernet packets (in and out).
|
|
* The second parameter is NULL from ether_demux, and ifp from
|
|
* ether_output_frame.
|
|
*/
|
|
int
|
|
ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared)
|
|
{
|
|
struct ether_header *eh;
|
|
struct ether_header save_eh;
|
|
struct mbuf *m;
|
|
int i;
|
|
struct ip_fw_args args;
|
|
struct m_tag *mtag;
|
|
|
|
/* fetch start point from rule, if any */
|
|
mtag = m_tag_locate(*m0, MTAG_IPFW_RULE, 0, NULL);
|
|
if (mtag == NULL) {
|
|
args.rule.slot = 0;
|
|
} else {
|
|
/* dummynet packet, already partially processed */
|
|
struct ipfw_rule_ref *r;
|
|
|
|
/* XXX can we free it after use ? */
|
|
mtag->m_tag_id = PACKET_TAG_NONE;
|
|
r = (struct ipfw_rule_ref *)(mtag + 1);
|
|
if (r->info & IPFW_ONEPASS)
|
|
return (1);
|
|
args.rule = *r;
|
|
}
|
|
|
|
/*
|
|
* I need some amt of data to be contiguous, and in case others need
|
|
* the packet (shared==1) also better be in the first mbuf.
|
|
*/
|
|
m = *m0;
|
|
i = min( m->m_pkthdr.len, max_protohdr);
|
|
if ( shared || m->m_len < i) {
|
|
m = m_pullup(m, i);
|
|
if (m == NULL) {
|
|
*m0 = m;
|
|
return 0;
|
|
}
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
save_eh = *eh; /* save copy for restore below */
|
|
m_adj(m, ETHER_HDR_LEN); /* strip ethernet header */
|
|
|
|
args.m = m; /* the packet we are looking at */
|
|
args.oif = dst; /* destination, if any */
|
|
args.next_hop = NULL; /* we do not support forward yet */
|
|
args.eh = &save_eh; /* MAC header for bridged/MAC packets */
|
|
args.inp = NULL; /* used by ipfw uid/gid/jail rules */
|
|
i = V_ip_fw_chk_ptr(&args);
|
|
m = args.m;
|
|
if (m != NULL) {
|
|
/*
|
|
* Restore Ethernet header, as needed, in case the
|
|
* mbuf chain was replaced by ipfw.
|
|
*/
|
|
M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
*m0 = m;
|
|
return 0;
|
|
}
|
|
if (eh != mtod(m, struct ether_header *))
|
|
bcopy(&save_eh, mtod(m, struct ether_header *),
|
|
ETHER_HDR_LEN);
|
|
}
|
|
*m0 = m;
|
|
|
|
if (i == IP_FW_DENY) /* drop */
|
|
return 0;
|
|
|
|
KASSERT(m != NULL, ("ether_ipfw_chk: m is NULL"));
|
|
|
|
if (i == IP_FW_PASS) /* a PASS rule. */
|
|
return 1;
|
|
|
|
if (ip_dn_io_ptr && (i == IP_FW_DUMMYNET)) {
|
|
int dir;
|
|
/*
|
|
* Pass the pkt to dummynet, which consumes it.
|
|
* If shared, make a copy and keep the original.
|
|
*/
|
|
if (shared) {
|
|
m = m_copypacket(m, M_DONTWAIT);
|
|
if (m == NULL)
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* Pass the original to dummynet and
|
|
* nothing back to the caller
|
|
*/
|
|
*m0 = NULL ;
|
|
}
|
|
dir = PROTO_LAYER2 | (dst ? DIR_OUT : DIR_IN);
|
|
ip_dn_io_ptr(&m, dir, &args);
|
|
return 0;
|
|
}
|
|
/*
|
|
* XXX at some point add support for divert/forward actions.
|
|
* If none of the above matches, we have to drop the pkt.
|
|
*/
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Process a received Ethernet packet; the packet is in the
|
|
* mbuf chain m with the ethernet header at the front.
|
|
*/
|
|
static void
|
|
ether_input_internal(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ether_header *eh;
|
|
u_short etype;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#endif
|
|
/*
|
|
* Do consistency checks to verify assumptions
|
|
* made by code past this point.
|
|
*/
|
|
if ((m->m_flags & M_PKTHDR) == 0) {
|
|
if_printf(ifp, "discard frame w/o packet header\n");
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (m->m_len < ETHER_HDR_LEN) {
|
|
/* XXX maybe should pullup? */
|
|
if_printf(ifp, "discard frame w/o leading ethernet "
|
|
"header (len %u pkt len %u)\n",
|
|
m->m_len, m->m_pkthdr.len);
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
etype = ntohs(eh->ether_type);
|
|
if (m->m_pkthdr.rcvif == NULL) {
|
|
if_printf(ifp, "discard frame w/o interface pointer\n");
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (m->m_pkthdr.rcvif != ifp) {
|
|
if_printf(ifp, "Warning, frame marked as received on %s\n",
|
|
m->m_pkthdr.rcvif->if_xname);
|
|
}
|
|
#endif
|
|
|
|
CURVNET_SET_QUIET(ifp->if_vnet);
|
|
|
|
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
|
|
if (ETHER_IS_BROADCAST(eh->ether_dhost))
|
|
m->m_flags |= M_BCAST;
|
|
else
|
|
m->m_flags |= M_MCAST;
|
|
ifp->if_imcasts++;
|
|
}
|
|
|
|
#ifdef MAC
|
|
/*
|
|
* Tag the mbuf with an appropriate MAC label before any other
|
|
* consumers can get to it.
|
|
*/
|
|
mac_ifnet_create_mbuf(ifp, m);
|
|
#endif
|
|
|
|
/*
|
|
* Give bpf a chance at the packet.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m);
|
|
|
|
/*
|
|
* If the CRC is still on the packet, trim it off. We do this once
|
|
* and once only in case we are re-entered. Nothing else on the
|
|
* Ethernet receive path expects to see the FCS.
|
|
*/
|
|
if (m->m_flags & M_HASFCS) {
|
|
m_adj(m, -ETHER_CRC_LEN);
|
|
m->m_flags &= ~M_HASFCS;
|
|
}
|
|
|
|
ifp->if_ibytes += m->m_pkthdr.len;
|
|
|
|
/* Allow monitor mode to claim this frame, after stats are updated. */
|
|
if (ifp->if_flags & IFF_MONITOR) {
|
|
m_freem(m);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
|
|
/* Handle input from a lagg(4) port */
|
|
if (ifp->if_type == IFT_IEEE8023ADLAG) {
|
|
KASSERT(lagg_input_p != NULL,
|
|
("%s: if_lagg not loaded!", __func__));
|
|
m = (*lagg_input_p)(ifp, m);
|
|
if (m != NULL)
|
|
ifp = m->m_pkthdr.rcvif;
|
|
else
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the hardware did not process an 802.1Q tag, do this now,
|
|
* to allow 802.1P priority frames to be passed to the main input
|
|
* path correctly.
|
|
* TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
|
|
*/
|
|
if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(*evl) &&
|
|
(m = m_pullup(m, sizeof(*evl))) == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
if_printf(ifp, "cannot pullup VLAN header\n");
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
|
|
m->m_flags |= M_VLANTAG;
|
|
|
|
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
|
|
ETHER_HDR_LEN - ETHER_TYPE_LEN);
|
|
m_adj(m, ETHER_VLAN_ENCAP_LEN);
|
|
}
|
|
|
|
M_SETFIB(m, ifp->if_fib);
|
|
|
|
/* Allow ng_ether(4) to claim this frame. */
|
|
if (IFP2AC(ifp)->ac_netgraph != NULL) {
|
|
KASSERT(ng_ether_input_p != NULL,
|
|
("%s: ng_ether_input_p is NULL", __func__));
|
|
m->m_flags &= ~M_PROMISC;
|
|
(*ng_ether_input_p)(ifp, &m);
|
|
if (m == NULL) {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allow if_bridge(4) to claim this frame.
|
|
* The BRIDGE_INPUT() macro will update ifp if the bridge changed it
|
|
* and the frame should be delivered locally.
|
|
*/
|
|
if (ifp->if_bridge != NULL) {
|
|
m->m_flags &= ~M_PROMISC;
|
|
BRIDGE_INPUT(ifp, m);
|
|
if (m == NULL) {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
* Clear M_PROMISC on frame so that carp(4) will see it when the
|
|
* mbuf flows up to Layer 3.
|
|
* FreeBSD's implementation of carp(4) uses the inprotosw
|
|
* to dispatch IPPROTO_CARP. carp(4) also allocates its own
|
|
* Ethernet addresses of the form 00:00:5e:00:01:xx, which
|
|
* is outside the scope of the M_PROMISC test below.
|
|
* TODO: Maintain a hash table of ethernet addresses other than
|
|
* ether_dhost which may be active on this ifp.
|
|
*/
|
|
if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
|
|
m->m_flags &= ~M_PROMISC;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* If the frame received was not for our MAC address, set the
|
|
* M_PROMISC flag on the mbuf chain. The frame may need to
|
|
* be seen by the rest of the Ethernet input path in case of
|
|
* re-entry (e.g. bridge, vlan, netgraph) but should not be
|
|
* seen by upper protocol layers.
|
|
*/
|
|
if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
|
|
bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
|
|
m->m_flags |= M_PROMISC;
|
|
}
|
|
|
|
/* First chunk of an mbuf contains good entropy */
|
|
if (harvest.ethernet)
|
|
random_harvest(m, 16, 3, 0, RANDOM_NET);
|
|
|
|
ether_demux(ifp, m);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Ethernet input dispatch; by default, direct dispatch here regardless of
|
|
* global configuration.
|
|
*/
|
|
static void
|
|
ether_nh_input(struct mbuf *m)
|
|
{
|
|
|
|
ether_input_internal(m->m_pkthdr.rcvif, m);
|
|
}
|
|
|
|
static struct netisr_handler ether_nh = {
|
|
.nh_name = "ether",
|
|
.nh_handler = ether_nh_input,
|
|
.nh_proto = NETISR_ETHER,
|
|
.nh_policy = NETISR_POLICY_SOURCE,
|
|
.nh_dispatch = NETISR_DISPATCH_DIRECT,
|
|
};
|
|
|
|
static void
|
|
ether_init(__unused void *arg)
|
|
{
|
|
|
|
netisr_register(ðer_nh);
|
|
}
|
|
SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
|
|
|
|
static void
|
|
ether_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
|
|
/*
|
|
* We will rely on rcvif being set properly in the deferred context,
|
|
* so assert it is correct here.
|
|
*/
|
|
KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__));
|
|
|
|
netisr_dispatch(NETISR_ETHER, m);
|
|
}
|
|
|
|
/*
|
|
* Upper layer processing for a received Ethernet packet.
|
|
*/
|
|
void
|
|
ether_demux(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ether_header *eh;
|
|
int isr;
|
|
u_short ether_type;
|
|
#if defined(NETATALK)
|
|
struct llc *l;
|
|
#endif
|
|
|
|
KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
* Allow dummynet and/or ipfw to claim the frame.
|
|
* Do not do this for PROMISC frames in case we are re-entered.
|
|
*/
|
|
if (V_ip_fw_chk_ptr && V_ether_ipfw != 0 && !(m->m_flags & M_PROMISC)) {
|
|
if (ether_ipfw_chk(&m, NULL, 0) == 0) {
|
|
if (m)
|
|
m_freem(m); /* dropped; free mbuf chain */
|
|
return; /* consumed */
|
|
}
|
|
}
|
|
#endif
|
|
eh = mtod(m, struct ether_header *);
|
|
ether_type = ntohs(eh->ether_type);
|
|
|
|
/*
|
|
* If this frame has a VLAN tag other than 0, call vlan_input()
|
|
* if its module is loaded. Otherwise, drop.
|
|
*/
|
|
if ((m->m_flags & M_VLANTAG) &&
|
|
EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
|
|
if (ifp->if_vlantrunk == NULL) {
|
|
ifp->if_noproto++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
|
|
__func__));
|
|
/* Clear before possibly re-entering ether_input(). */
|
|
m->m_flags &= ~M_PROMISC;
|
|
(*vlan_input_p)(ifp, m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pass promiscuously received frames to the upper layer if the user
|
|
* requested this by setting IFF_PPROMISC. Otherwise, drop them.
|
|
*/
|
|
if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Reset layer specific mbuf flags to avoid confusing upper layers.
|
|
* Strip off Ethernet header.
|
|
*/
|
|
m->m_flags &= ~M_VLANTAG;
|
|
m->m_flags &= ~(M_PROTOFLAGS);
|
|
m_adj(m, ETHER_HDR_LEN);
|
|
|
|
/*
|
|
* Dispatch frame to upper layer.
|
|
*/
|
|
switch (ether_type) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
if ((m = ip_fastforward(m)) == NULL)
|
|
return;
|
|
isr = NETISR_IP;
|
|
break;
|
|
|
|
case ETHERTYPE_ARP:
|
|
if (ifp->if_flags & IFF_NOARP) {
|
|
/* Discard packet if ARP is disabled on interface */
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
isr = NETISR_ARP;
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
case ETHERTYPE_IPX:
|
|
if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
|
|
return;
|
|
isr = NETISR_IPX;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
isr = NETISR_IPV6;
|
|
break;
|
|
#endif
|
|
#ifdef NETATALK
|
|
case ETHERTYPE_AT:
|
|
isr = NETISR_ATALK1;
|
|
break;
|
|
case ETHERTYPE_AARP:
|
|
isr = NETISR_AARP;
|
|
break;
|
|
#endif /* NETATALK */
|
|
default:
|
|
#ifdef IPX
|
|
if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
|
|
return;
|
|
#endif /* IPX */
|
|
#if defined(NETATALK)
|
|
if (ether_type > ETHERMTU)
|
|
goto discard;
|
|
l = mtod(m, struct llc *);
|
|
if (l->llc_dsap == LLC_SNAP_LSAP &&
|
|
l->llc_ssap == LLC_SNAP_LSAP &&
|
|
l->llc_control == LLC_UI) {
|
|
if (bcmp(&(l->llc_snap_org_code)[0], at_org_code,
|
|
sizeof(at_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) {
|
|
m_adj(m, LLC_SNAPFRAMELEN);
|
|
isr = NETISR_ATALK2;
|
|
break;
|
|
}
|
|
if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code,
|
|
sizeof(aarp_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) {
|
|
m_adj(m, LLC_SNAPFRAMELEN);
|
|
isr = NETISR_AARP;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* NETATALK */
|
|
goto discard;
|
|
}
|
|
netisr_dispatch(isr, m);
|
|
return;
|
|
|
|
discard:
|
|
/*
|
|
* Packet is to be discarded. If netgraph is present,
|
|
* hand the packet to it for last chance processing;
|
|
* otherwise dispose of it.
|
|
*/
|
|
if (IFP2AC(ifp)->ac_netgraph != NULL) {
|
|
KASSERT(ng_ether_input_orphan_p != NULL,
|
|
("ng_ether_input_orphan_p is NULL"));
|
|
/*
|
|
* Put back the ethernet header so netgraph has a
|
|
* consistent view of inbound packets.
|
|
*/
|
|
M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
|
|
(*ng_ether_input_orphan_p)(ifp, m);
|
|
return;
|
|
}
|
|
m_freem(m);
|
|
}
|
|
|
|
/*
|
|
* Convert Ethernet address to printable (loggable) representation.
|
|
* This routine is for compatibility; it's better to just use
|
|
*
|
|
* printf("%6D", <pointer to address>, ":");
|
|
*
|
|
* since there's no static buffer involved.
|
|
*/
|
|
char *
|
|
ether_sprintf(const u_char *ap)
|
|
{
|
|
static char etherbuf[18];
|
|
snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
|
|
return (etherbuf);
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while attaching to interface list
|
|
*/
|
|
void
|
|
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
|
|
{
|
|
int i;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
ifp->if_addrlen = ETHER_ADDR_LEN;
|
|
ifp->if_hdrlen = ETHER_HDR_LEN;
|
|
if_attach(ifp);
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_input = ether_input;
|
|
ifp->if_resolvemulti = ether_resolvemulti;
|
|
#ifdef VIMAGE
|
|
ifp->if_reassign = ether_reassign;
|
|
#endif
|
|
if (ifp->if_baudrate == 0)
|
|
ifp->if_baudrate = IF_Mbps(10); /* just a default */
|
|
ifp->if_broadcastaddr = etherbroadcastaddr;
|
|
|
|
ifa = ifp->if_addr;
|
|
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
|
|
|
|
bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
|
|
if (ng_ether_attach_p != NULL)
|
|
(*ng_ether_attach_p)(ifp);
|
|
|
|
/* Announce Ethernet MAC address if non-zero. */
|
|
for (i = 0; i < ifp->if_addrlen; i++)
|
|
if (lla[i] != 0)
|
|
break;
|
|
if (i != ifp->if_addrlen)
|
|
if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while detaching an Ethernet interface
|
|
*/
|
|
void
|
|
ether_ifdetach(struct ifnet *ifp)
|
|
{
|
|
if (IFP2AC(ifp)->ac_netgraph != NULL) {
|
|
KASSERT(ng_ether_detach_p != NULL,
|
|
("ng_ether_detach_p is NULL"));
|
|
(*ng_ether_detach_p)(ifp);
|
|
}
|
|
|
|
bpfdetach(ifp);
|
|
if_detach(ifp);
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
void
|
|
ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
|
|
{
|
|
|
|
if (IFP2AC(ifp)->ac_netgraph != NULL) {
|
|
KASSERT(ng_ether_detach_p != NULL,
|
|
("ng_ether_detach_p is NULL"));
|
|
(*ng_ether_detach_p)(ifp);
|
|
}
|
|
|
|
if (ng_ether_attach_p != NULL) {
|
|
CURVNET_SET_QUIET(new_vnet);
|
|
(*ng_ether_attach_p)(ifp);
|
|
CURVNET_RESTORE();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
SYSCTL_DECL(_net_link);
|
|
SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
|
|
#if defined(INET) || defined(INET6)
|
|
SYSCTL_VNET_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
|
|
&VNET_NAME(ether_ipfw), 0, "Pass ether pkts through firewall");
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
* This is for reference. We have a table-driven version
|
|
* of the little-endian crc32 generator, which is faster
|
|
* than the double-loop.
|
|
*/
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
uint32_t crc;
|
|
int bit;
|
|
uint8_t data;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
|
|
carry = (crc ^ data) & 1;
|
|
crc >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_LE);
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#else
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
static const uint32_t crctab[] = {
|
|
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
|
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
|
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
|
|
};
|
|
size_t i;
|
|
uint32_t crc;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
crc ^= buf[i];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#endif
|
|
|
|
uint32_t
|
|
ether_crc32_be(const uint8_t *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
uint32_t crc, carry;
|
|
int bit;
|
|
uint8_t data;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
|
|
crc <<= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
int
|
|
ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
ifp->if_init(ifp->if_softc); /* before arpwhohas */
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
/*
|
|
* XXX - This code is probably wrong
|
|
*/
|
|
case AF_IPX:
|
|
{
|
|
struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
|
|
|
|
if (ipx_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ipx_host *)
|
|
IF_LLADDR(ifp);
|
|
else {
|
|
bcopy((caddr_t) ina->x_host.c_host,
|
|
(caddr_t) IF_LLADDR(ifp),
|
|
ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/*
|
|
* Set new address
|
|
*/
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
{
|
|
struct sockaddr *sa;
|
|
|
|
sa = (struct sockaddr *) & ifr->ifr_data;
|
|
bcopy(IF_LLADDR(ifp),
|
|
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
if (ifr->ifr_mtu > ETHERMTU) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL; /* XXX netbsd has ENOTTY??? */
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
|
|
struct sockaddr *sa)
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
#ifdef INET
|
|
struct sockaddr_in *sin;
|
|
#endif
|
|
#ifdef INET6
|
|
struct sockaddr_in6 *sin6;
|
|
#endif
|
|
u_char *e_addr;
|
|
|
|
switch(sa->sa_family) {
|
|
case AF_LINK:
|
|
/*
|
|
* No mapping needed. Just check that it's a valid MC address.
|
|
*/
|
|
sdl = (struct sockaddr_dl *)sa;
|
|
e_addr = LLADDR(sdl);
|
|
if (!ETHER_IS_MULTICAST(e_addr))
|
|
return EADDRNOTAVAIL;
|
|
*llsa = 0;
|
|
return 0;
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
|
|
return EADDRNOTAVAIL;
|
|
sdl = malloc(sizeof *sdl, M_IFMADDR,
|
|
M_NOWAIT|M_ZERO);
|
|
if (sdl == NULL)
|
|
return ENOMEM;
|
|
sdl->sdl_len = sizeof *sdl;
|
|
sdl->sdl_family = AF_LINK;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sin6 = (struct sockaddr_in6 *)sa;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
|
|
/*
|
|
* An IP6 address of 0 means listen to all
|
|
* of the Ethernet multicast address used for IP6.
|
|
* (This is used for multicast routers.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
*llsa = 0;
|
|
return 0;
|
|
}
|
|
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
|
|
return EADDRNOTAVAIL;
|
|
sdl = malloc(sizeof *sdl, M_IFMADDR,
|
|
M_NOWAIT|M_ZERO);
|
|
if (sdl == NULL)
|
|
return (ENOMEM);
|
|
sdl->sdl_len = sizeof *sdl;
|
|
sdl->sdl_family = AF_LINK;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
|
|
default:
|
|
/*
|
|
* Well, the text isn't quite right, but it's the name
|
|
* that counts...
|
|
*/
|
|
return EAFNOSUPPORT;
|
|
}
|
|
}
|
|
|
|
static void*
|
|
ether_alloc(u_char type, struct ifnet *ifp)
|
|
{
|
|
struct arpcom *ac;
|
|
|
|
ac = malloc(sizeof(struct arpcom), M_ARPCOM, M_WAITOK | M_ZERO);
|
|
ac->ac_ifp = ifp;
|
|
|
|
return (ac);
|
|
}
|
|
|
|
static void
|
|
ether_free(void *com, u_char type)
|
|
{
|
|
|
|
free(com, M_ARPCOM);
|
|
}
|
|
|
|
static int
|
|
ether_modevent(module_t mod, int type, void *data)
|
|
{
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if_register_com_alloc(IFT_ETHER, ether_alloc, ether_free);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
if_deregister_com_alloc(IFT_ETHER);
|
|
break;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static moduledata_t ether_mod = {
|
|
"ether",
|
|
ether_modevent,
|
|
0
|
|
};
|
|
|
|
void
|
|
ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
|
|
{
|
|
struct ether_vlan_header vlan;
|
|
struct mbuf mv, mb;
|
|
|
|
KASSERT((m->m_flags & M_VLANTAG) != 0,
|
|
("%s: vlan information not present", __func__));
|
|
KASSERT(m->m_len >= sizeof(struct ether_header),
|
|
("%s: mbuf not large enough for header", __func__));
|
|
bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
|
|
vlan.evl_proto = vlan.evl_encap_proto;
|
|
vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
|
|
m->m_len -= sizeof(struct ether_header);
|
|
m->m_data += sizeof(struct ether_header);
|
|
/*
|
|
* If a data link has been supplied by the caller, then we will need to
|
|
* re-create a stack allocated mbuf chain with the following structure:
|
|
*
|
|
* (1) mbuf #1 will contain the supplied data link
|
|
* (2) mbuf #2 will contain the vlan header
|
|
* (3) mbuf #3 will contain the original mbuf's packet data
|
|
*
|
|
* Otherwise, submit the packet and vlan header via bpf_mtap2().
|
|
*/
|
|
if (data != NULL) {
|
|
mv.m_next = m;
|
|
mv.m_data = (caddr_t)&vlan;
|
|
mv.m_len = sizeof(vlan);
|
|
mb.m_next = &mv;
|
|
mb.m_data = data;
|
|
mb.m_len = dlen;
|
|
bpf_mtap(bp, &mb);
|
|
} else
|
|
bpf_mtap2(bp, &vlan, sizeof(vlan), m);
|
|
m->m_len += sizeof(struct ether_header);
|
|
m->m_data -= sizeof(struct ether_header);
|
|
}
|
|
|
|
struct mbuf *
|
|
ether_vlanencap(struct mbuf *m, uint16_t tag)
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
|
|
|
|
if (m->m_len < sizeof(*evl)) {
|
|
m = m_pullup(m, sizeof(*evl));
|
|
if (m == NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an Ethernet header
|
|
* with 802.1Q encapsulation.
|
|
*/
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
|
|
(char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
|
|
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl->evl_tag = htons(tag);
|
|
return (m);
|
|
}
|
|
|
|
DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
|
|
MODULE_VERSION(ether, 1);
|