1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-21 15:45:02 +00:00
freebsd/sys/kern/sys_process.c
2004-11-27 06:51:39 +00:00

893 lines
19 KiB
C

/*
* Copyright (c) 1994, Sean Eric Fagan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Sean Eric Fagan.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/ptrace.h>
#include <sys/sx.h>
#include <sys/malloc.h>
#include <sys/signalvar.h>
#include <machine/reg.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
/*
* Functions implemented using PROC_ACTION():
*
* proc_read_regs(proc, regs)
* Get the current user-visible register set from the process
* and copy it into the regs structure (<machine/reg.h>).
* The process is stopped at the time read_regs is called.
*
* proc_write_regs(proc, regs)
* Update the current register set from the passed in regs
* structure. Take care to avoid clobbering special CPU
* registers or privileged bits in the PSL.
* Depending on the architecture this may have fix-up work to do,
* especially if the IAR or PCW are modified.
* The process is stopped at the time write_regs is called.
*
* proc_read_fpregs, proc_write_fpregs
* deal with the floating point register set, otherwise as above.
*
* proc_read_dbregs, proc_write_dbregs
* deal with the processor debug register set, otherwise as above.
*
* proc_sstep(proc)
* Arrange for the process to trap after executing a single instruction.
*/
#define PROC_ACTION(action) do { \
int error; \
\
PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \
if ((td->td_proc->p_sflag & PS_INMEM) == 0) \
error = EIO; \
else \
error = (action); \
return (error); \
} while(0)
int
proc_read_regs(struct thread *td, struct reg *regs)
{
PROC_ACTION(fill_regs(td, regs));
}
int
proc_write_regs(struct thread *td, struct reg *regs)
{
PROC_ACTION(set_regs(td, regs));
}
int
proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
{
PROC_ACTION(fill_dbregs(td, dbregs));
}
int
proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
{
PROC_ACTION(set_dbregs(td, dbregs));
}
/*
* Ptrace doesn't support fpregs at all, and there are no security holes
* or translations for fpregs, so we can just copy them.
*/
int
proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
{
PROC_ACTION(fill_fpregs(td, fpregs));
}
int
proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
{
PROC_ACTION(set_fpregs(td, fpregs));
}
int
proc_sstep(struct thread *td)
{
PROC_ACTION(ptrace_single_step(td));
}
int
proc_rwmem(struct proc *p, struct uio *uio)
{
struct vmspace *vm;
vm_map_t map;
vm_object_t backing_object, object = NULL;
vm_offset_t pageno = 0; /* page number */
vm_prot_t reqprot;
int error, refcnt, writing;
/*
* if the vmspace is in the midst of being deallocated or the
* process is exiting, don't try to grab anything. The page table
* usage in that process can be messed up.
*/
vm = p->p_vmspace;
if ((p->p_flag & P_WEXIT))
return (EFAULT);
do {
if ((refcnt = vm->vm_refcnt) < 1)
return (EFAULT);
} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
/*
* The map we want...
*/
map = &vm->vm_map;
writing = uio->uio_rw == UIO_WRITE;
reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) :
VM_PROT_READ;
/*
* Only map in one page at a time. We don't have to, but it
* makes things easier. This way is trivial - right?
*/
do {
vm_map_t tmap;
vm_offset_t uva;
int page_offset; /* offset into page */
vm_map_entry_t out_entry;
vm_prot_t out_prot;
boolean_t wired;
vm_pindex_t pindex;
u_int len;
vm_page_t m;
object = NULL;
uva = (vm_offset_t)uio->uio_offset;
/*
* Get the page number of this segment.
*/
pageno = trunc_page(uva);
page_offset = uva - pageno;
/*
* How many bytes to copy
*/
len = min(PAGE_SIZE - page_offset, uio->uio_resid);
/*
* Fault the page on behalf of the process
*/
error = vm_fault(map, pageno, reqprot, VM_FAULT_NORMAL);
if (error) {
error = EFAULT;
break;
}
/*
* Now we need to get the page. out_entry, out_prot, wired,
* and single_use aren't used. One would think the vm code
* would be a *bit* nicer... We use tmap because
* vm_map_lookup() can change the map argument.
*/
tmap = map;
error = vm_map_lookup(&tmap, pageno, reqprot, &out_entry,
&object, &pindex, &out_prot, &wired);
if (error) {
error = EFAULT;
break;
}
VM_OBJECT_LOCK(object);
while ((m = vm_page_lookup(object, pindex)) == NULL &&
!writing &&
(backing_object = object->backing_object) != NULL) {
/*
* Allow fallback to backing objects if we are reading.
*/
VM_OBJECT_LOCK(backing_object);
pindex += OFF_TO_IDX(object->backing_object_offset);
VM_OBJECT_UNLOCK(object);
object = backing_object;
}
VM_OBJECT_UNLOCK(object);
if (m == NULL) {
vm_map_lookup_done(tmap, out_entry);
error = EFAULT;
break;
}
/*
* Hold the page in memory.
*/
vm_page_lock_queues();
vm_page_hold(m);
vm_page_unlock_queues();
/*
* We're done with tmap now.
*/
vm_map_lookup_done(tmap, out_entry);
/*
* Now do the i/o move.
*/
error = uiomove_fromphys(&m, page_offset, len, uio);
/*
* Release the page.
*/
vm_page_lock_queues();
vm_page_unhold(m);
vm_page_unlock_queues();
} while (error == 0 && uio->uio_resid > 0);
vmspace_free(vm);
return (error);
}
/*
* Process debugging system call.
*/
#ifndef _SYS_SYSPROTO_H_
struct ptrace_args {
int req;
pid_t pid;
caddr_t addr;
int data;
};
#endif
/*
* MPSAFE
*/
int
ptrace(struct thread *td, struct ptrace_args *uap)
{
/*
* XXX this obfuscation is to reduce stack usage, but the register
* structs may be too large to put on the stack anyway.
*/
union {
struct ptrace_io_desc piod;
struct ptrace_lwpinfo pl;
struct dbreg dbreg;
struct fpreg fpreg;
struct reg reg;
} r;
void *addr;
int error = 0;
addr = &r;
switch (uap->req) {
case PT_GETREGS:
case PT_GETFPREGS:
case PT_GETDBREGS:
case PT_LWPINFO:
break;
case PT_SETREGS:
error = copyin(uap->addr, &r.reg, sizeof r.reg);
break;
case PT_SETFPREGS:
error = copyin(uap->addr, &r.fpreg, sizeof r.fpreg);
break;
case PT_SETDBREGS:
error = copyin(uap->addr, &r.dbreg, sizeof r.dbreg);
break;
case PT_IO:
error = copyin(uap->addr, &r.piod, sizeof r.piod);
break;
default:
addr = uap->addr;
break;
}
if (error)
return (error);
error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
if (error)
return (error);
switch (uap->req) {
case PT_IO:
(void)copyout(&r.piod, uap->addr, sizeof r.piod);
break;
case PT_GETREGS:
error = copyout(&r.reg, uap->addr, sizeof r.reg);
break;
case PT_GETFPREGS:
error = copyout(&r.fpreg, uap->addr, sizeof r.fpreg);
break;
case PT_GETDBREGS:
error = copyout(&r.dbreg, uap->addr, sizeof r.dbreg);
break;
case PT_LWPINFO:
error = copyout(&r.pl, uap->addr, uap->data);
break;
}
return (error);
}
int
kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
{
struct iovec iov;
struct uio uio;
struct proc *curp, *p, *pp;
struct thread *td2 = NULL;
struct ptrace_io_desc *piod;
struct ptrace_lwpinfo *pl;
int error, write, tmp, num;
int proctree_locked = 0;
lwpid_t tid = 0, *buf;
pid_t saved_pid = pid;
curp = td->td_proc;
/* Lock proctree before locking the process. */
switch (req) {
case PT_TRACE_ME:
case PT_ATTACH:
case PT_STEP:
case PT_CONTINUE:
case PT_TO_SCE:
case PT_TO_SCX:
case PT_DETACH:
sx_xlock(&proctree_lock);
proctree_locked = 1;
break;
default:
break;
}
write = 0;
if (req == PT_TRACE_ME) {
p = td->td_proc;
PROC_LOCK(p);
} else {
if (pid <= PID_MAX) {
if ((p = pfind(pid)) == NULL) {
if (proctree_locked)
sx_xunlock(&proctree_lock);
return (ESRCH);
}
} else {
/* this is slow, should be optimized */
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
FOREACH_THREAD_IN_PROC(p, td2) {
if (td2->td_tid == pid)
break;
}
mtx_unlock_spin(&sched_lock);
if (td2 != NULL)
break; /* proc lock held */
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
if (p == NULL) {
if (proctree_locked)
sx_xunlock(&proctree_lock);
return (ESRCH);
}
tid = pid;
pid = p->p_pid;
}
}
if ((error = p_cansee(td, p)) != 0)
goto fail;
if ((error = p_candebug(td, p)) != 0)
goto fail;
/*
* System processes can't be debugged.
*/
if ((p->p_flag & P_SYSTEM) != 0) {
error = EINVAL;
goto fail;
}
if (tid == 0) {
td2 = FIRST_THREAD_IN_PROC(p);
tid = td2->td_tid;
}
/*
* Permissions check
*/
switch (req) {
case PT_TRACE_ME:
/* Always legal. */
break;
case PT_ATTACH:
/* Self */
if (p->p_pid == td->td_proc->p_pid) {
error = EINVAL;
goto fail;
}
/* Already traced */
if (p->p_flag & P_TRACED) {
error = EBUSY;
goto fail;
}
/* Can't trace an ancestor if you're being traced. */
if (curp->p_flag & P_TRACED) {
for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
if (pp == p) {
error = EINVAL;
goto fail;
}
}
}
/* OK */
break;
case PT_CLEARSTEP:
/* Allow thread to clear single step for itself */
if (td->td_tid == tid)
break;
/* FALLTHROUGH */
default:
/* not being traced... */
if ((p->p_flag & P_TRACED) == 0) {
error = EPERM;
goto fail;
}
/* not being traced by YOU */
if (p->p_pptr != td->td_proc) {
error = EBUSY;
goto fail;
}
/* not currently stopped */
if (!P_SHOULDSTOP(p) || p->p_suspcount != p->p_numthreads ||
(p->p_flag & P_WAITED) == 0) {
error = EBUSY;
goto fail;
}
/* OK */
break;
}
#ifdef FIX_SSTEP
/*
* Single step fixup ala procfs
*/
FIX_SSTEP(td2); /* XXXKSE */
#endif
/*
* Actually do the requests
*/
td->td_retval[0] = 0;
switch (req) {
case PT_TRACE_ME:
/* set my trace flag and "owner" so it can read/write me */
p->p_flag |= P_TRACED;
p->p_oppid = p->p_pptr->p_pid;
PROC_UNLOCK(p);
sx_xunlock(&proctree_lock);
return (0);
case PT_ATTACH:
/* security check done above */
p->p_flag |= P_TRACED;
p->p_oppid = p->p_pptr->p_pid;
if (p->p_pptr != td->td_proc)
proc_reparent(p, td->td_proc);
data = SIGSTOP;
goto sendsig; /* in PT_CONTINUE below */
case PT_CLEARSTEP:
_PHOLD(p);
error = ptrace_clear_single_step(td2);
_PRELE(p);
if (error)
goto fail;
PROC_UNLOCK(p);
return (0);
case PT_SETSTEP:
_PHOLD(p);
error = ptrace_single_step(td2);
_PRELE(p);
if (error)
goto fail;
PROC_UNLOCK(p);
return (0);
case PT_SUSPEND:
_PHOLD(p);
mtx_lock_spin(&sched_lock);
td2->td_flags |= TDF_DBSUSPEND;
mtx_unlock_spin(&sched_lock);
_PRELE(p);
PROC_UNLOCK(p);
return (0);
case PT_RESUME:
_PHOLD(p);
mtx_lock_spin(&sched_lock);
td2->td_flags &= ~TDF_DBSUSPEND;
mtx_unlock_spin(&sched_lock);
_PRELE(p);
PROC_UNLOCK(p);
return (0);
case PT_STEP:
case PT_CONTINUE:
case PT_TO_SCE:
case PT_TO_SCX:
case PT_DETACH:
/* Zero means do not send any signal */
if (data < 0 || data > _SIG_MAXSIG) {
error = EINVAL;
goto fail;
}
_PHOLD(p);
switch (req) {
case PT_STEP:
PROC_UNLOCK(p);
error = ptrace_single_step(td2);
if (error) {
PRELE(p);
goto fail_noproc;
}
PROC_LOCK(p);
break;
case PT_TO_SCE:
p->p_stops |= S_PT_SCE;
break;
case PT_TO_SCX:
p->p_stops |= S_PT_SCX;
break;
case PT_SYSCALL:
p->p_stops |= S_PT_SCE | S_PT_SCX;
break;
}
if (addr != (void *)1) {
PROC_UNLOCK(p);
error = ptrace_set_pc(td2, (u_long)(uintfptr_t)addr);
if (error) {
PRELE(p);
goto fail_noproc;
}
PROC_LOCK(p);
}
_PRELE(p);
if (req == PT_DETACH) {
/* reset process parent */
if (p->p_oppid != p->p_pptr->p_pid) {
struct proc *pp;
PROC_UNLOCK(p);
pp = pfind(p->p_oppid);
if (pp == NULL)
pp = initproc;
else
PROC_UNLOCK(pp);
PROC_LOCK(p);
proc_reparent(p, pp);
if (pp == initproc)
p->p_sigparent = SIGCHLD;
}
p->p_flag &= ~(P_TRACED | P_WAITED);
p->p_oppid = 0;
/* should we send SIGCHLD? */
}
sendsig:
if (proctree_locked)
sx_xunlock(&proctree_lock);
/* deliver or queue signal */
if (P_SHOULDSTOP(p)) {
p->p_xstat = data;
p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG);
mtx_lock_spin(&sched_lock);
if (saved_pid <= PID_MAX) {
p->p_xthread->td_flags &= ~TDF_XSIG;
p->p_xthread->td_xsig = data;
} else {
td2->td_flags &= ~TDF_XSIG;
td2->td_xsig = data;
}
p->p_xthread = NULL;
if (req == PT_DETACH) {
struct thread *td3;
FOREACH_THREAD_IN_PROC(p, td3)
td3->td_flags &= ~TDF_DBSUSPEND;
}
/*
* unsuspend all threads, to not let a thread run,
* you should use PT_SUSPEND to suspend it before
* continuing process.
*/
thread_unsuspend(p);
thread_continued(p);
mtx_unlock_spin(&sched_lock);
} else if (data) {
psignal(p, data);
}
PROC_UNLOCK(p);
return (0);
case PT_WRITE_I:
case PT_WRITE_D:
write = 1;
/* FALLTHROUGH */
case PT_READ_I:
case PT_READ_D:
PROC_UNLOCK(p);
tmp = 0;
/* write = 0 set above */
iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp;
iov.iov_len = sizeof(int);
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(uintptr_t)addr;
uio.uio_resid = sizeof(int);
uio.uio_segflg = UIO_SYSSPACE; /* i.e.: the uap */
uio.uio_rw = write ? UIO_WRITE : UIO_READ;
uio.uio_td = td;
error = proc_rwmem(p, &uio);
if (uio.uio_resid != 0) {
/*
* XXX proc_rwmem() doesn't currently return ENOSPC,
* so I think write() can bogusly return 0.
* XXX what happens for short writes? We don't want
* to write partial data.
* XXX proc_rwmem() returns EPERM for other invalid
* addresses. Convert this to EINVAL. Does this
* clobber returns of EPERM for other reasons?
*/
if (error == 0 || error == ENOSPC || error == EPERM)
error = EINVAL; /* EOF */
}
if (!write)
td->td_retval[0] = tmp;
return (error);
case PT_IO:
PROC_UNLOCK(p);
piod = addr;
iov.iov_base = piod->piod_addr;
iov.iov_len = piod->piod_len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
uio.uio_resid = piod->piod_len;
uio.uio_segflg = UIO_USERSPACE;
uio.uio_td = td;
switch (piod->piod_op) {
case PIOD_READ_D:
case PIOD_READ_I:
uio.uio_rw = UIO_READ;
break;
case PIOD_WRITE_D:
case PIOD_WRITE_I:
uio.uio_rw = UIO_WRITE;
break;
default:
return (EINVAL);
}
error = proc_rwmem(p, &uio);
piod->piod_len -= uio.uio_resid;
return (error);
case PT_KILL:
data = SIGKILL;
goto sendsig; /* in PT_CONTINUE above */
case PT_SETREGS:
_PHOLD(p);
error = proc_write_regs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_GETREGS:
_PHOLD(p);
error = proc_read_regs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_SETFPREGS:
_PHOLD(p);
error = proc_write_fpregs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_GETFPREGS:
_PHOLD(p);
error = proc_read_fpregs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_SETDBREGS:
_PHOLD(p);
error = proc_write_dbregs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_GETDBREGS:
_PHOLD(p);
error = proc_read_dbregs(td2, addr);
_PRELE(p);
PROC_UNLOCK(p);
return (error);
case PT_LWPINFO:
if (data == 0 || data > sizeof(*pl))
return (EINVAL);
pl = addr;
_PHOLD(p);
if (saved_pid <= PID_MAX) {
pl->pl_lwpid = p->p_xthread->td_tid;
pl->pl_event = PL_EVENT_SIGNAL;
} else {
pl->pl_lwpid = td2->td_tid;
if (td2->td_flags & TDF_XSIG)
pl->pl_event = PL_EVENT_SIGNAL;
else
pl->pl_event = 0;
}
if (td2->td_pflags & TDP_SA) {
pl->pl_flags = PL_FLAG_SA;
if (td2->td_upcall && !TD_CAN_UNBIND(td2))
pl->pl_flags |= PL_FLAG_BOUND;
} else {
pl->pl_flags = 0;
}
_PRELE(p);
PROC_UNLOCK(p);
return (0);
case PT_GETNUMLWPS:
td->td_retval[0] = p->p_numthreads;
PROC_UNLOCK(p);
return (0);
case PT_GETLWPLIST:
if (data <= 0) {
PROC_UNLOCK(p);
return (EINVAL);
}
num = imin(p->p_numthreads, data);
PROC_UNLOCK(p);
buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
tmp = 0;
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
FOREACH_THREAD_IN_PROC(p, td2) {
if (tmp >= num)
break;
buf[tmp++] = td2->td_tid;
}
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
error = copyout(buf, addr, tmp * sizeof(lwpid_t));
free(buf, M_TEMP);
if (!error)
td->td_retval[0] = num;
return (error);
default:
#ifdef __HAVE_PTRACE_MACHDEP
if (req >= PT_FIRSTMACH) {
_PHOLD(p);
PROC_UNLOCK(p);
error = cpu_ptrace(td2, req, addr, data);
PRELE(p);
return (error);
}
#endif
break;
}
/* Unknown request. */
error = EINVAL;
fail:
PROC_UNLOCK(p);
fail_noproc:
if (proctree_locked)
sx_xunlock(&proctree_lock);
return (error);
}
/*
* Stop a process because of a debugging event;
* stay stopped until p->p_step is cleared
* (cleared by PIOCCONT in procfs).
*/
void
stopevent(struct proc *p, unsigned int event, unsigned int val)
{
PROC_LOCK_ASSERT(p, MA_OWNED);
p->p_step = 1;
do {
p->p_xstat = val;
p->p_xthread = NULL;
p->p_stype = event; /* Which event caused the stop? */
wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */
msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0);
} while (p->p_step);
}