1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-13 10:02:38 +00:00
freebsd/sys/kern/kern_timeout.c
Mitchell Horne c84c5e00ac ddb: annotate some commands with DB_CMD_MEMSAFE
This is not completely exhaustive, but covers a large majority of
commands in the tree.

Reviewed by:	markj
Sponsored by:	Juniper Networks, Inc.
Sponsored by:	Klara, Inc.
Differential Revision:	https://reviews.freebsd.org/D35583
2022-07-18 22:06:09 +00:00

1555 lines
44 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_callout_profiling.h"
#include "opt_ddb.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/domainset.h>
#include <sys/file.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/sleepqueue.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/unistd.h>
#ifdef DDB
#include <ddb/ddb.h>
#include <ddb/db_sym.h>
#include <machine/_inttypes.h>
#endif
#ifdef SMP
#include <machine/cpu.h>
#endif
DPCPU_DECLARE(sbintime_t, hardclocktime);
SDT_PROVIDER_DEFINE(callout_execute);
SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
static void softclock_thread(void *arg);
#ifdef CALLOUT_PROFILING
static int avg_depth;
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
"Average number of items examined per softclock call. Units = 1/1000");
static int avg_gcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
"Average number of Giant callouts made per softclock call. Units = 1/1000");
static int avg_lockcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
"Average number of lock callouts made per softclock call. Units = 1/1000");
static int avg_mpcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
"Average number of MP callouts made per softclock call. Units = 1/1000");
static int avg_depth_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
"Average number of direct callouts examined per callout_process call. "
"Units = 1/1000");
static int avg_lockcalls_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
&avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
"callout_process call. Units = 1/1000");
static int avg_mpcalls_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
0, "Average number of MP direct callouts made per callout_process call. "
"Units = 1/1000");
#endif
static int ncallout;
SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
"Number of entries in callwheel and size of timeout() preallocation");
#ifdef RSS
static int pin_default_swi = 1;
static int pin_pcpu_swi = 1;
#else
static int pin_default_swi = 0;
static int pin_pcpu_swi = 0;
#endif
SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
/*
* TODO:
* allocate more timeout table slots when table overflows.
*/
static u_int __read_mostly callwheelsize;
static u_int __read_mostly callwheelmask;
/*
* The callout cpu exec entities represent informations necessary for
* describing the state of callouts currently running on the CPU and the ones
* necessary for migrating callouts to the new callout cpu. In particular,
* the first entry of the array cc_exec_entity holds informations for callout
* running in SWI thread context, while the second one holds informations
* for callout running directly from hardware interrupt context.
* The cached informations are very important for deferring migration when
* the migrating callout is already running.
*/
struct cc_exec {
struct callout *cc_curr;
callout_func_t *cc_drain;
void *cc_last_func;
void *cc_last_arg;
#ifdef SMP
callout_func_t *ce_migration_func;
void *ce_migration_arg;
sbintime_t ce_migration_time;
sbintime_t ce_migration_prec;
int ce_migration_cpu;
#endif
bool cc_cancel;
bool cc_waiting;
};
/*
* There is one struct callout_cpu per cpu, holding all relevant
* state for the callout processing thread on the individual CPU.
*/
struct callout_cpu {
struct mtx_padalign cc_lock;
struct cc_exec cc_exec_entity[2];
struct callout *cc_next;
struct callout_list *cc_callwheel;
struct callout_tailq cc_expireq;
sbintime_t cc_firstevent;
sbintime_t cc_lastscan;
struct thread *cc_thread;
u_int cc_bucket;
#ifdef KTR
char cc_ktr_event_name[20];
#endif
};
#define callout_migrating(c) ((c)->c_iflags & CALLOUT_DFRMIGRATION)
#define cc_exec_curr(cc, dir) cc->cc_exec_entity[dir].cc_curr
#define cc_exec_last_func(cc, dir) cc->cc_exec_entity[dir].cc_last_func
#define cc_exec_last_arg(cc, dir) cc->cc_exec_entity[dir].cc_last_arg
#define cc_exec_drain(cc, dir) cc->cc_exec_entity[dir].cc_drain
#define cc_exec_next(cc) cc->cc_next
#define cc_exec_cancel(cc, dir) cc->cc_exec_entity[dir].cc_cancel
#define cc_exec_waiting(cc, dir) cc->cc_exec_entity[dir].cc_waiting
#ifdef SMP
#define cc_migration_func(cc, dir) cc->cc_exec_entity[dir].ce_migration_func
#define cc_migration_arg(cc, dir) cc->cc_exec_entity[dir].ce_migration_arg
#define cc_migration_cpu(cc, dir) cc->cc_exec_entity[dir].ce_migration_cpu
#define cc_migration_time(cc, dir) cc->cc_exec_entity[dir].ce_migration_time
#define cc_migration_prec(cc, dir) cc->cc_exec_entity[dir].ce_migration_prec
static struct callout_cpu cc_cpu[MAXCPU];
#define CPUBLOCK MAXCPU
#define CC_CPU(cpu) (&cc_cpu[(cpu)])
#define CC_SELF() CC_CPU(PCPU_GET(cpuid))
#else
static struct callout_cpu cc_cpu;
#define CC_CPU(cpu) (&cc_cpu)
#define CC_SELF() (&cc_cpu)
#endif
#define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock)
#define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock)
#define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED)
static int __read_mostly cc_default_cpu;
static void callout_cpu_init(struct callout_cpu *cc, int cpu);
static void softclock_call_cc(struct callout *c, struct callout_cpu *cc,
#ifdef CALLOUT_PROFILING
int *mpcalls, int *lockcalls, int *gcalls,
#endif
int direct);
static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
/**
* Locked by cc_lock:
* cc_curr - If a callout is in progress, it is cc_curr.
* If cc_curr is non-NULL, threads waiting in
* callout_drain() will be woken up as soon as the
* relevant callout completes.
* cc_cancel - Changing to 1 with both callout_lock and cc_lock held
* guarantees that the current callout will not run.
* The softclock_call_cc() function sets this to 0 before it
* drops callout_lock to acquire c_lock, and it calls
* the handler only if curr_cancelled is still 0 after
* cc_lock is successfully acquired.
* cc_waiting - If a thread is waiting in callout_drain(), then
* callout_wait is nonzero. Set only when
* cc_curr is non-NULL.
*/
/*
* Resets the execution entity tied to a specific callout cpu.
*/
static void
cc_cce_cleanup(struct callout_cpu *cc, int direct)
{
cc_exec_curr(cc, direct) = NULL;
cc_exec_cancel(cc, direct) = false;
cc_exec_waiting(cc, direct) = false;
#ifdef SMP
cc_migration_cpu(cc, direct) = CPUBLOCK;
cc_migration_time(cc, direct) = 0;
cc_migration_prec(cc, direct) = 0;
cc_migration_func(cc, direct) = NULL;
cc_migration_arg(cc, direct) = NULL;
#endif
}
/*
* Checks if migration is requested by a specific callout cpu.
*/
static int
cc_cce_migrating(struct callout_cpu *cc, int direct)
{
#ifdef SMP
return (cc_migration_cpu(cc, direct) != CPUBLOCK);
#else
return (0);
#endif
}
/*
* Kernel low level callwheel initialization
* called on the BSP during kernel startup.
*/
static void
callout_callwheel_init(void *dummy)
{
struct callout_cpu *cc;
int cpu;
/*
* Calculate the size of the callout wheel and the preallocated
* timeout() structures.
* XXX: Clip callout to result of previous function of maxusers
* maximum 384. This is still huge, but acceptable.
*/
ncallout = imin(16 + maxproc + maxfiles, 18508);
TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
/*
* Calculate callout wheel size, should be next power of two higher
* than 'ncallout'.
*/
callwheelsize = 1 << fls(ncallout);
callwheelmask = callwheelsize - 1;
/*
* Fetch whether we're pinning the swi's or not.
*/
TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
/*
* Initialize callout wheels. The software interrupt threads
* are created later.
*/
cc_default_cpu = PCPU_GET(cpuid);
CPU_FOREACH(cpu) {
cc = CC_CPU(cpu);
callout_cpu_init(cc, cpu);
}
}
SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
/*
* Initialize the per-cpu callout structures.
*/
static void
callout_cpu_init(struct callout_cpu *cc, int cpu)
{
int i;
mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
callwheelsize, M_CALLOUT,
DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
for (i = 0; i < callwheelsize; i++)
LIST_INIT(&cc->cc_callwheel[i]);
TAILQ_INIT(&cc->cc_expireq);
cc->cc_firstevent = SBT_MAX;
for (i = 0; i < 2; i++)
cc_cce_cleanup(cc, i);
#ifdef KTR
snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
"callwheel cpu %d", cpu);
#endif
}
#ifdef SMP
/*
* Switches the cpu tied to a specific callout.
* The function expects a locked incoming callout cpu and returns with
* locked outcoming callout cpu.
*/
static struct callout_cpu *
callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
{
struct callout_cpu *new_cc;
MPASS(c != NULL && cc != NULL);
CC_LOCK_ASSERT(cc);
/*
* Avoid interrupts and preemption firing after the callout cpu
* is blocked in order to avoid deadlocks as the new thread
* may be willing to acquire the callout cpu lock.
*/
c->c_cpu = CPUBLOCK;
spinlock_enter();
CC_UNLOCK(cc);
new_cc = CC_CPU(new_cpu);
CC_LOCK(new_cc);
spinlock_exit();
c->c_cpu = new_cpu;
return (new_cc);
}
#endif
/*
* Start softclock threads.
*/
static void
start_softclock(void *dummy)
{
struct proc *p;
struct thread *td;
struct callout_cpu *cc;
int cpu, error;
bool pin_swi;
p = NULL;
CPU_FOREACH(cpu) {
cc = CC_CPU(cpu);
error = kproc_kthread_add(softclock_thread, cc, &p, &td,
RFSTOPPED, 0, "clock", "clock (%d)", cpu);
if (error != 0)
panic("failed to create softclock thread for cpu %d: %d",
cpu, error);
CC_LOCK(cc);
cc->cc_thread = td;
thread_lock(td);
sched_class(td, PRI_ITHD);
sched_ithread_prio(td, PI_SOFTCLOCK);
TD_SET_IWAIT(td);
thread_lock_set(td, (struct mtx *)&cc->cc_lock);
thread_unlock(td);
if (cpu == cc_default_cpu)
pin_swi = pin_default_swi;
else
pin_swi = pin_pcpu_swi;
if (pin_swi) {
error = cpuset_setithread(td->td_tid, cpu);
if (error != 0)
printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
__func__, cpu == cc_default_cpu ?
"default" : "per-cpu", cpu, error);
}
}
}
SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
#define CC_HASH_SHIFT 8
static inline u_int
callout_hash(sbintime_t sbt)
{
return (sbt >> (32 - CC_HASH_SHIFT));
}
static inline u_int
callout_get_bucket(sbintime_t sbt)
{
return (callout_hash(sbt) & callwheelmask);
}
void
callout_process(sbintime_t now)
{
struct callout_entropy {
struct callout_cpu *cc;
struct thread *td;
sbintime_t now;
} entropy;
struct callout *c, *next;
struct callout_cpu *cc;
struct callout_list *sc;
struct thread *td;
sbintime_t first, last, lookahead, max, tmp_max;
u_int firstb, lastb, nowb;
#ifdef CALLOUT_PROFILING
int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
#endif
cc = CC_SELF();
mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
/* Compute the buckets of the last scan and present times. */
firstb = callout_hash(cc->cc_lastscan);
cc->cc_lastscan = now;
nowb = callout_hash(now);
/* Compute the last bucket and minimum time of the bucket after it. */
if (nowb == firstb)
lookahead = (SBT_1S / 16);
else if (nowb - firstb == 1)
lookahead = (SBT_1S / 8);
else
lookahead = SBT_1S;
first = last = now;
first += (lookahead / 2);
last += lookahead;
last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
lastb = callout_hash(last) - 1;
max = last;
/*
* Check if we wrapped around the entire wheel from the last scan.
* In case, we need to scan entirely the wheel for pending callouts.
*/
if (lastb - firstb >= callwheelsize) {
lastb = firstb + callwheelsize - 1;
if (nowb - firstb >= callwheelsize)
nowb = lastb;
}
/* Iterate callwheel from firstb to nowb and then up to lastb. */
do {
sc = &cc->cc_callwheel[firstb & callwheelmask];
LIST_FOREACH_SAFE(c, sc, c_links.le, next) {
/* Run the callout if present time within allowed. */
if (c->c_time <= now) {
/*
* Consumer told us the callout may be run
* directly from hardware interrupt context.
*/
if (c->c_iflags & CALLOUT_DIRECT) {
#ifdef CALLOUT_PROFILING
++depth_dir;
#endif
cc_exec_next(cc) = next;
cc->cc_bucket = firstb & callwheelmask;
LIST_REMOVE(c, c_links.le);
softclock_call_cc(c, cc,
#ifdef CALLOUT_PROFILING
&mpcalls_dir, &lockcalls_dir, NULL,
#endif
1);
next = cc_exec_next(cc);
cc_exec_next(cc) = NULL;
} else {
LIST_REMOVE(c, c_links.le);
TAILQ_INSERT_TAIL(&cc->cc_expireq,
c, c_links.tqe);
c->c_iflags |= CALLOUT_PROCESSED;
}
} else if (c->c_time >= max) {
/*
* Skip events in the distant future.
*/
;
} else if (c->c_time > last) {
/*
* Event minimal time is bigger than present
* maximal time, so it cannot be aggregated.
*/
lastb = nowb;
} else {
/*
* Update first and last time, respecting this
* event.
*/
if (c->c_time < first)
first = c->c_time;
tmp_max = c->c_time + c->c_precision;
if (tmp_max < last)
last = tmp_max;
}
}
/* Proceed with the next bucket. */
firstb++;
/*
* Stop if we looked after present time and found
* some event we can't execute at now.
* Stop if we looked far enough into the future.
*/
} while (((int)(firstb - lastb)) <= 0);
cc->cc_firstevent = last;
cpu_new_callout(curcpu, last, first);
#ifdef CALLOUT_PROFILING
avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
#endif
if (!TAILQ_EMPTY(&cc->cc_expireq)) {
entropy.cc = cc;
entropy.td = curthread;
entropy.now = now;
random_harvest_queue(&entropy, sizeof(entropy), RANDOM_CALLOUT);
td = cc->cc_thread;
if (TD_AWAITING_INTR(td)) {
thread_lock_block_wait(td);
THREAD_LOCK_ASSERT(td, MA_OWNED);
TD_CLR_IWAIT(td);
sched_wakeup(td, SRQ_INTR);
} else
mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
} else
mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
}
static struct callout_cpu *
callout_lock(struct callout *c)
{
struct callout_cpu *cc;
int cpu;
for (;;) {
cpu = c->c_cpu;
#ifdef SMP
if (cpu == CPUBLOCK) {
while (c->c_cpu == CPUBLOCK)
cpu_spinwait();
continue;
}
#endif
cc = CC_CPU(cpu);
CC_LOCK(cc);
if (cpu == c->c_cpu)
break;
CC_UNLOCK(cc);
}
return (cc);
}
static void
callout_cc_add(struct callout *c, struct callout_cpu *cc,
sbintime_t sbt, sbintime_t precision, void (*func)(void *),
void *arg, int flags)
{
int bucket;
CC_LOCK_ASSERT(cc);
if (sbt < cc->cc_lastscan)
sbt = cc->cc_lastscan;
c->c_arg = arg;
c->c_iflags |= CALLOUT_PENDING;
c->c_iflags &= ~CALLOUT_PROCESSED;
c->c_flags |= CALLOUT_ACTIVE;
if (flags & C_DIRECT_EXEC)
c->c_iflags |= CALLOUT_DIRECT;
c->c_func = func;
c->c_time = sbt;
c->c_precision = precision;
bucket = callout_get_bucket(c->c_time);
CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
c, (int)(c->c_precision >> 32),
(u_int)(c->c_precision & 0xffffffff));
LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
if (cc->cc_bucket == bucket)
cc_exec_next(cc) = c;
/*
* Inform the eventtimers(4) subsystem there's a new callout
* that has been inserted, but only if really required.
*/
if (SBT_MAX - c->c_time < c->c_precision)
c->c_precision = SBT_MAX - c->c_time;
sbt = c->c_time + c->c_precision;
if (sbt < cc->cc_firstevent) {
cc->cc_firstevent = sbt;
cpu_new_callout(c->c_cpu, sbt, c->c_time);
}
}
static void
softclock_call_cc(struct callout *c, struct callout_cpu *cc,
#ifdef CALLOUT_PROFILING
int *mpcalls, int *lockcalls, int *gcalls,
#endif
int direct)
{
struct rm_priotracker tracker;
callout_func_t *c_func, *drain;
void *c_arg;
struct lock_class *class;
struct lock_object *c_lock;
uintptr_t lock_status;
int c_iflags;
#ifdef SMP
struct callout_cpu *new_cc;
callout_func_t *new_func;
void *new_arg;
int flags, new_cpu;
sbintime_t new_prec, new_time;
#endif
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbintime_t sbt1, sbt2;
struct timespec ts2;
static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */
static callout_func_t *lastfunc;
#endif
KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
("softclock_call_cc: pend %p %x", c, c->c_iflags));
KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
("softclock_call_cc: act %p %x", c, c->c_flags));
class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
lock_status = 0;
if (c->c_iflags & CALLOUT_SHAREDLOCK) {
if (class == &lock_class_rm)
lock_status = (uintptr_t)&tracker;
else
lock_status = 1;
}
c_lock = c->c_lock;
c_func = c->c_func;
c_arg = c->c_arg;
c_iflags = c->c_iflags;
c->c_iflags &= ~CALLOUT_PENDING;
cc_exec_curr(cc, direct) = c;
cc_exec_last_func(cc, direct) = c_func;
cc_exec_last_arg(cc, direct) = c_arg;
cc_exec_cancel(cc, direct) = false;
cc_exec_drain(cc, direct) = NULL;
CC_UNLOCK(cc);
if (c_lock != NULL) {
class->lc_lock(c_lock, lock_status);
/*
* The callout may have been cancelled
* while we switched locks.
*/
if (cc_exec_cancel(cc, direct)) {
class->lc_unlock(c_lock);
goto skip;
}
/* The callout cannot be stopped now. */
cc_exec_cancel(cc, direct) = true;
if (c_lock == &Giant.lock_object) {
#ifdef CALLOUT_PROFILING
(*gcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
c, c_func, c_arg);
} else {
#ifdef CALLOUT_PROFILING
(*lockcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
c, c_func, c_arg);
}
} else {
#ifdef CALLOUT_PROFILING
(*mpcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
c, c_func, c_arg);
}
KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
"func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbt1 = sbinuptime();
#endif
THREAD_NO_SLEEPING();
SDT_PROBE1(callout_execute, , , callout__start, c);
c_func(c_arg);
SDT_PROBE1(callout_execute, , , callout__end, c);
THREAD_SLEEPING_OK();
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbt2 = sbinuptime();
sbt2 -= sbt1;
if (sbt2 > maxdt) {
if (lastfunc != c_func || sbt2 > maxdt * 2) {
ts2 = sbttots(sbt2);
printf(
"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
}
maxdt = sbt2;
lastfunc = c_func;
}
#endif
KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
CTR1(KTR_CALLOUT, "callout %p finished", c);
if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
class->lc_unlock(c_lock);
skip:
CC_LOCK(cc);
KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
cc_exec_curr(cc, direct) = NULL;
if (cc_exec_drain(cc, direct)) {
drain = cc_exec_drain(cc, direct);
cc_exec_drain(cc, direct) = NULL;
CC_UNLOCK(cc);
drain(c_arg);
CC_LOCK(cc);
}
if (cc_exec_waiting(cc, direct)) {
/*
* There is someone waiting for the
* callout to complete.
* If the callout was scheduled for
* migration just cancel it.
*/
if (cc_cce_migrating(cc, direct)) {
cc_cce_cleanup(cc, direct);
/*
* It should be assert here that the callout is not
* destroyed but that is not easy.
*/
c->c_iflags &= ~CALLOUT_DFRMIGRATION;
}
cc_exec_waiting(cc, direct) = false;
CC_UNLOCK(cc);
wakeup(&cc_exec_waiting(cc, direct));
CC_LOCK(cc);
} else if (cc_cce_migrating(cc, direct)) {
#ifdef SMP
/*
* If the callout was scheduled for
* migration just perform it now.
*/
new_cpu = cc_migration_cpu(cc, direct);
new_time = cc_migration_time(cc, direct);
new_prec = cc_migration_prec(cc, direct);
new_func = cc_migration_func(cc, direct);
new_arg = cc_migration_arg(cc, direct);
cc_cce_cleanup(cc, direct);
/*
* It should be assert here that the callout is not destroyed
* but that is not easy.
*
* As first thing, handle deferred callout stops.
*/
if (!callout_migrating(c)) {
CTR3(KTR_CALLOUT,
"deferred cancelled %p func %p arg %p",
c, new_func, new_arg);
return;
}
c->c_iflags &= ~CALLOUT_DFRMIGRATION;
new_cc = callout_cpu_switch(c, cc, new_cpu);
flags = (direct) ? C_DIRECT_EXEC : 0;
callout_cc_add(c, new_cc, new_time, new_prec, new_func,
new_arg, flags);
CC_UNLOCK(new_cc);
CC_LOCK(cc);
#else
panic("migration should not happen");
#endif
}
}
/*
* The callout mechanism is based on the work of Adam M. Costello and
* George Varghese, published in a technical report entitled "Redesigning
* the BSD Callout and Timer Facilities" and modified slightly for inclusion
* in FreeBSD by Justin T. Gibbs. The original work on the data structures
* used in this implementation was published by G. Varghese and T. Lauck in
* the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
* the Efficient Implementation of a Timer Facility" in the Proceedings of
* the 11th ACM Annual Symposium on Operating Systems Principles,
* Austin, Texas Nov 1987.
*/
/*
* Software (low priority) clock interrupt thread handler.
* Run periodic events from timeout queue.
*/
static void
softclock_thread(void *arg)
{
struct thread *td = curthread;
struct callout_cpu *cc;
struct callout *c;
#ifdef CALLOUT_PROFILING
int depth, gcalls, lockcalls, mpcalls;
#endif
cc = (struct callout_cpu *)arg;
CC_LOCK(cc);
for (;;) {
while (TAILQ_EMPTY(&cc->cc_expireq)) {
/*
* Use CC_LOCK(cc) as the thread_lock while
* idle.
*/
thread_lock(td);
thread_lock_set(td, (struct mtx *)&cc->cc_lock);
TD_SET_IWAIT(td);
mi_switch(SW_VOL | SWT_IWAIT);
/* mi_switch() drops thread_lock(). */
CC_LOCK(cc);
}
#ifdef CALLOUT_PROFILING
depth = gcalls = lockcalls = mpcalls = 0;
#endif
while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
softclock_call_cc(c, cc,
#ifdef CALLOUT_PROFILING
&mpcalls, &lockcalls, &gcalls,
#endif
0);
#ifdef CALLOUT_PROFILING
++depth;
#endif
}
#ifdef CALLOUT_PROFILING
avg_depth += (depth * 1000 - avg_depth) >> 8;
avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
#endif
}
}
void
callout_when(sbintime_t sbt, sbintime_t precision, int flags,
sbintime_t *res, sbintime_t *prec_res)
{
sbintime_t to_sbt, to_pr;
if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
*res = sbt;
*prec_res = precision;
return;
}
if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
sbt = tick_sbt;
if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
/*
* Obtain the time of the last hardclock() call on
* this CPU directly from the kern_clocksource.c.
* This value is per-CPU, but it is equal for all
* active ones.
*/
#ifdef __LP64__
to_sbt = DPCPU_GET(hardclocktime);
#else
spinlock_enter();
to_sbt = DPCPU_GET(hardclocktime);
spinlock_exit();
#endif
if (cold && to_sbt == 0)
to_sbt = sbinuptime();
if ((flags & C_HARDCLOCK) == 0)
to_sbt += tick_sbt;
} else
to_sbt = sbinuptime();
if (SBT_MAX - to_sbt < sbt)
to_sbt = SBT_MAX;
else
to_sbt += sbt;
*res = to_sbt;
to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
sbt >> C_PRELGET(flags));
*prec_res = to_pr > precision ? to_pr : precision;
}
/*
* New interface; clients allocate their own callout structures.
*
* callout_reset() - establish or change a timeout
* callout_stop() - disestablish a timeout
* callout_init() - initialize a callout structure so that it can
* safely be passed to callout_reset() and callout_stop()
*
* <sys/callout.h> defines three convenience macros:
*
* callout_active() - returns truth if callout has not been stopped,
* drained, or deactivated since the last time the callout was
* reset.
* callout_pending() - returns truth if callout is still waiting for timeout
* callout_deactivate() - marks the callout as having been serviced
*/
int
callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
callout_func_t *ftn, void *arg, int cpu, int flags)
{
sbintime_t to_sbt, precision;
struct callout_cpu *cc;
int cancelled, direct;
cancelled = 0;
callout_when(sbt, prec, flags, &to_sbt, &precision);
/*
* This flag used to be added by callout_cc_add, but the
* first time you call this we could end up with the
* wrong direct flag if we don't do it before we add.
*/
if (flags & C_DIRECT_EXEC) {
direct = 1;
} else {
direct = 0;
}
KASSERT(!direct || c->c_lock == NULL ||
(LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
("%s: direct callout %p has non-spin lock", __func__, c));
cc = callout_lock(c);
if (cpu == -1)
cpu = c->c_cpu;
KASSERT(cpu >= 0 && cpu <= mp_maxid && !CPU_ABSENT(cpu),
("%s: invalid cpu %d", __func__, cpu));
if (cc_exec_curr(cc, direct) == c) {
/*
* We're being asked to reschedule a callout which is
* currently in progress. If there is a lock then we
* can cancel the callout if it has not really started.
*/
if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
cancelled = cc_exec_cancel(cc, direct) = true;
if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
/*
* Someone has called callout_drain to kill this
* callout. Don't reschedule.
*/
CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
cancelled ? "cancelled" : "failed to cancel",
c, c->c_func, c->c_arg);
CC_UNLOCK(cc);
return (cancelled);
}
#ifdef SMP
if (callout_migrating(c)) {
/*
* This only occurs when a second callout_reset_sbt_on
* is made after a previous one moved it into
* deferred migration (below). Note we do *not* change
* the prev_cpu even though the previous target may
* be different.
*/
cc_migration_cpu(cc, direct) = cpu;
cc_migration_time(cc, direct) = to_sbt;
cc_migration_prec(cc, direct) = precision;
cc_migration_func(cc, direct) = ftn;
cc_migration_arg(cc, direct) = arg;
cancelled = 1;
CC_UNLOCK(cc);
return (cancelled);
}
#endif
}
if (c->c_iflags & CALLOUT_PENDING) {
if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
if (cc_exec_next(cc) == c)
cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
LIST_REMOVE(c, c_links.le);
} else {
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
}
cancelled = 1;
c->c_iflags &= ~ CALLOUT_PENDING;
c->c_flags &= ~ CALLOUT_ACTIVE;
}
#ifdef SMP
/*
* If the callout must migrate try to perform it immediately.
* If the callout is currently running, just defer the migration
* to a more appropriate moment.
*/
if (c->c_cpu != cpu) {
if (cc_exec_curr(cc, direct) == c) {
/*
* Pending will have been removed since we are
* actually executing the callout on another
* CPU. That callout should be waiting on the
* lock the caller holds. If we set both
* active/and/pending after we return and the
* lock on the executing callout proceeds, it
* will then see pending is true and return.
* At the return from the actual callout execution
* the migration will occur in softclock_call_cc
* and this new callout will be placed on the
* new CPU via a call to callout_cpu_switch() which
* will get the lock on the right CPU followed
* by a call callout_cc_add() which will add it there.
* (see above in softclock_call_cc()).
*/
cc_migration_cpu(cc, direct) = cpu;
cc_migration_time(cc, direct) = to_sbt;
cc_migration_prec(cc, direct) = precision;
cc_migration_func(cc, direct) = ftn;
cc_migration_arg(cc, direct) = arg;
c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
c->c_flags |= CALLOUT_ACTIVE;
CTR6(KTR_CALLOUT,
"migration of %p func %p arg %p in %d.%08x to %u deferred",
c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
(u_int)(to_sbt & 0xffffffff), cpu);
CC_UNLOCK(cc);
return (cancelled);
}
cc = callout_cpu_switch(c, cc, cpu);
}
#endif
callout_cc_add(c, cc, to_sbt, precision, ftn, arg, flags);
CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
(u_int)(to_sbt & 0xffffffff));
CC_UNLOCK(cc);
return (cancelled);
}
/*
* Common idioms that can be optimized in the future.
*/
int
callout_schedule_on(struct callout *c, int to_ticks, int cpu)
{
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
}
int
callout_schedule(struct callout *c, int to_ticks)
{
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
}
int
_callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
{
struct callout_cpu *cc, *old_cc;
struct lock_class *class;
int direct, sq_locked, use_lock;
int cancelled, not_on_a_list;
if ((flags & CS_DRAIN) != 0)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
"calling %s", __func__);
KASSERT((flags & CS_DRAIN) == 0 || drain == NULL,
("Cannot set drain callback and CS_DRAIN flag at the same time"));
/*
* Some old subsystems don't hold Giant while running a callout_stop(),
* so just discard this check for the moment.
*/
if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
if (c->c_lock == &Giant.lock_object)
use_lock = mtx_owned(&Giant);
else {
use_lock = 1;
class = LOCK_CLASS(c->c_lock);
class->lc_assert(c->c_lock, LA_XLOCKED);
}
} else
use_lock = 0;
if (c->c_iflags & CALLOUT_DIRECT) {
direct = 1;
} else {
direct = 0;
}
sq_locked = 0;
old_cc = NULL;
again:
cc = callout_lock(c);
if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
(CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
/*
* Special case where this slipped in while we
* were migrating *as* the callout is about to
* execute. The caller probably holds the lock
* the callout wants.
*
* Get rid of the migration first. Then set
* the flag that tells this code *not* to
* try to remove it from any lists (its not
* on one yet). When the callout wheel runs,
* it will ignore this callout.
*/
c->c_iflags &= ~CALLOUT_PENDING;
c->c_flags &= ~CALLOUT_ACTIVE;
not_on_a_list = 1;
} else {
not_on_a_list = 0;
}
/*
* If the callout was migrating while the callout cpu lock was
* dropped, just drop the sleepqueue lock and check the states
* again.
*/
if (sq_locked != 0 && cc != old_cc) {
#ifdef SMP
CC_UNLOCK(cc);
sleepq_release(&cc_exec_waiting(old_cc, direct));
sq_locked = 0;
old_cc = NULL;
goto again;
#else
panic("migration should not happen");
#endif
}
/*
* If the callout is running, try to stop it or drain it.
*/
if (cc_exec_curr(cc, direct) == c) {
/*
* Succeed we to stop it or not, we must clear the
* active flag - this is what API users expect. If we're
* draining and the callout is currently executing, first wait
* until it finishes.
*/
if ((flags & CS_DRAIN) == 0)
c->c_flags &= ~CALLOUT_ACTIVE;
if ((flags & CS_DRAIN) != 0) {
/*
* The current callout is running (or just
* about to run) and blocking is allowed, so
* just wait for the current invocation to
* finish.
*/
if (cc_exec_curr(cc, direct) == c) {
/*
* Use direct calls to sleepqueue interface
* instead of cv/msleep in order to avoid
* a LOR between cc_lock and sleepqueue
* chain spinlocks. This piece of code
* emulates a msleep_spin() call actually.
*
* If we already have the sleepqueue chain
* locked, then we can safely block. If we
* don't already have it locked, however,
* we have to drop the cc_lock to lock
* it. This opens several races, so we
* restart at the beginning once we have
* both locks. If nothing has changed, then
* we will end up back here with sq_locked
* set.
*/
if (!sq_locked) {
CC_UNLOCK(cc);
sleepq_lock(
&cc_exec_waiting(cc, direct));
sq_locked = 1;
old_cc = cc;
goto again;
}
/*
* Migration could be cancelled here, but
* as long as it is still not sure when it
* will be packed up, just let softclock()
* take care of it.
*/
cc_exec_waiting(cc, direct) = true;
DROP_GIANT();
CC_UNLOCK(cc);
sleepq_add(
&cc_exec_waiting(cc, direct),
&cc->cc_lock.lock_object, "codrain",
SLEEPQ_SLEEP, 0);
sleepq_wait(
&cc_exec_waiting(cc, direct),
0);
sq_locked = 0;
old_cc = NULL;
/* Reacquire locks previously released. */
PICKUP_GIANT();
goto again;
}
c->c_flags &= ~CALLOUT_ACTIVE;
} else if (use_lock &&
!cc_exec_cancel(cc, direct) && (drain == NULL)) {
/*
* The current callout is waiting for its
* lock which we hold. Cancel the callout
* and return. After our caller drops the
* lock, the callout will be skipped in
* softclock(). This *only* works with a
* callout_stop() *not* callout_drain() or
* callout_async_drain().
*/
cc_exec_cancel(cc, direct) = true;
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
c, c->c_func, c->c_arg);
KASSERT(!cc_cce_migrating(cc, direct),
("callout wrongly scheduled for migration"));
if (callout_migrating(c)) {
c->c_iflags &= ~CALLOUT_DFRMIGRATION;
#ifdef SMP
cc_migration_cpu(cc, direct) = CPUBLOCK;
cc_migration_time(cc, direct) = 0;
cc_migration_prec(cc, direct) = 0;
cc_migration_func(cc, direct) = NULL;
cc_migration_arg(cc, direct) = NULL;
#endif
}
CC_UNLOCK(cc);
KASSERT(!sq_locked, ("sleepqueue chain locked"));
return (1);
} else if (callout_migrating(c)) {
/*
* The callout is currently being serviced
* and the "next" callout is scheduled at
* its completion with a migration. We remove
* the migration flag so it *won't* get rescheduled,
* but we can't stop the one thats running so
* we return 0.
*/
c->c_iflags &= ~CALLOUT_DFRMIGRATION;
#ifdef SMP
/*
* We can't call cc_cce_cleanup here since
* if we do it will remove .ce_curr and
* its still running. This will prevent a
* reschedule of the callout when the
* execution completes.
*/
cc_migration_cpu(cc, direct) = CPUBLOCK;
cc_migration_time(cc, direct) = 0;
cc_migration_prec(cc, direct) = 0;
cc_migration_func(cc, direct) = NULL;
cc_migration_arg(cc, direct) = NULL;
#endif
CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
c, c->c_func, c->c_arg);
if (drain) {
KASSERT(cc_exec_drain(cc, direct) == NULL,
("callout drain function already set to %p",
cc_exec_drain(cc, direct)));
cc_exec_drain(cc, direct) = drain;
}
CC_UNLOCK(cc);
return (0);
} else {
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
c, c->c_func, c->c_arg);
if (drain) {
KASSERT(cc_exec_drain(cc, direct) == NULL,
("callout drain function already set to %p",
cc_exec_drain(cc, direct)));
cc_exec_drain(cc, direct) = drain;
}
}
KASSERT(!sq_locked, ("sleepqueue chain still locked"));
cancelled = 0;
} else
cancelled = 1;
if (sq_locked)
sleepq_release(&cc_exec_waiting(cc, direct));
if ((c->c_iflags & CALLOUT_PENDING) == 0) {
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
c, c->c_func, c->c_arg);
/*
* For not scheduled and not executing callout return
* negative value.
*/
if (cc_exec_curr(cc, direct) != c)
cancelled = -1;
CC_UNLOCK(cc);
return (cancelled);
}
c->c_iflags &= ~CALLOUT_PENDING;
c->c_flags &= ~CALLOUT_ACTIVE;
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
c, c->c_func, c->c_arg);
if (not_on_a_list == 0) {
if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
if (cc_exec_next(cc) == c)
cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
LIST_REMOVE(c, c_links.le);
} else {
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
}
}
CC_UNLOCK(cc);
return (cancelled);
}
void
callout_init(struct callout *c, int mpsafe)
{
bzero(c, sizeof *c);
if (mpsafe) {
c->c_lock = NULL;
c->c_iflags = CALLOUT_RETURNUNLOCKED;
} else {
c->c_lock = &Giant.lock_object;
c->c_iflags = 0;
}
c->c_cpu = cc_default_cpu;
}
void
_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
{
bzero(c, sizeof *c);
c->c_lock = lock;
KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
("callout_init_lock: bad flags %d", flags));
KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
("%s: callout %p has sleepable lock", __func__, c));
c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
c->c_cpu = cc_default_cpu;
}
static int
flssbt(sbintime_t sbt)
{
sbt += (uint64_t)sbt >> 1;
if (sizeof(long) >= sizeof(sbintime_t))
return (flsl(sbt));
if (sbt >= SBT_1S)
return (flsl(((uint64_t)sbt) >> 32) + 32);
return (flsl(sbt));
}
/*
* Dump immediate statistic snapshot of the scheduled callouts.
*/
static int
sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
{
struct callout *tmp;
struct callout_cpu *cc;
struct callout_list *sc;
sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
int ct[64], cpr[64], ccpbk[32];
int error, val, i, count, tcum, pcum, maxc, c, medc;
int cpu;
val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
count = maxc = 0;
st = spr = maxt = maxpr = 0;
bzero(ccpbk, sizeof(ccpbk));
bzero(ct, sizeof(ct));
bzero(cpr, sizeof(cpr));
now = sbinuptime();
CPU_FOREACH(cpu) {
cc = CC_CPU(cpu);
CC_LOCK(cc);
for (i = 0; i < callwheelsize; i++) {
sc = &cc->cc_callwheel[i];
c = 0;
LIST_FOREACH(tmp, sc, c_links.le) {
c++;
t = tmp->c_time - now;
if (t < 0)
t = 0;
st += t / SBT_1US;
spr += tmp->c_precision / SBT_1US;
if (t > maxt)
maxt = t;
if (tmp->c_precision > maxpr)
maxpr = tmp->c_precision;
ct[flssbt(t)]++;
cpr[flssbt(tmp->c_precision)]++;
}
if (c > maxc)
maxc = c;
ccpbk[fls(c + c / 2)]++;
count += c;
}
CC_UNLOCK(cc);
}
for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
tcum += ct[i];
medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
pcum += cpr[i];
medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
for (i = 0, c = 0; i < 32 && c < count / 2; i++)
c += ccpbk[i];
medc = (i >= 2) ? (1 << (i - 2)) : 0;
printf("Scheduled callouts statistic snapshot:\n");
printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n",
count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n",
medc,
count / callwheelsize / mp_ncpus,
(uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
maxc);
printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
(st / count) / 1000000, (st / count) % 1000000,
maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
(spr / count) / 1000000, (spr / count) % 1000000,
maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
printf(" Distribution: \tbuckets\t time\t tcum\t"
" prec\t pcum\n");
for (i = 0, tcum = pcum = 0; i < 64; i++) {
if (ct[i] == 0 && cpr[i] == 0)
continue;
t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
tcum += ct[i];
pcum += cpr[i];
printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
i - 1 - (32 - CC_HASH_SHIFT),
ct[i], tcum, cpr[i], pcum);
}
return (error);
}
SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_callout_stat, "I",
"Dump immediate statistic snapshot of the scheduled callouts");
#ifdef DDB
static void
_show_callout(struct callout *c)
{
db_printf("callout %p\n", c);
#define C_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, c->e);
db_printf(" &c_links = %p\n", &(c->c_links));
C_DB_PRINTF("%" PRId64, c_time);
C_DB_PRINTF("%" PRId64, c_precision);
C_DB_PRINTF("%p", c_arg);
C_DB_PRINTF("%p", c_func);
C_DB_PRINTF("%p", c_lock);
C_DB_PRINTF("%#x", c_flags);
C_DB_PRINTF("%#x", c_iflags);
C_DB_PRINTF("%d", c_cpu);
#undef C_DB_PRINTF
}
DB_SHOW_COMMAND(callout, db_show_callout)
{
if (!have_addr) {
db_printf("usage: show callout <struct callout *>\n");
return;
}
_show_callout((struct callout *)addr);
}
static void
_show_last_callout(int cpu, int direct, const char *dirstr)
{
struct callout_cpu *cc;
void *func, *arg;
cc = CC_CPU(cpu);
func = cc_exec_last_func(cc, direct);
arg = cc_exec_last_arg(cc, direct);
db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
db_printsym((db_expr_t)func, DB_STGY_ANY);
db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
}
DB_SHOW_COMMAND_FLAGS(callout_last, db_show_callout_last, DB_CMD_MEMSAFE)
{
int cpu, last;
if (have_addr) {
if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
db_printf("no such cpu: %d\n", (int)addr);
return;
}
cpu = last = addr;
} else {
cpu = 0;
last = mp_maxid;
}
while (cpu <= last) {
if (!CPU_ABSENT(cpu)) {
_show_last_callout(cpu, 0, "");
_show_last_callout(cpu, 1, " direct");
}
cpu++;
}
}
#endif /* DDB */