1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/netinet/ip_dummynet.h
Luigi Rizzo 988790bfd9 Implement per-flow queueing. Using a single pipe config rule,
now you can dynamically create rate-limited queues for different
flows using masks on dst/src IP, port and protocols.
Read the ipfw(8) manpage for details and examples.

Restructure the internals of the traffic shaper to use heaps,
so that it manages efficiently large number of queues.

Fix a bug which was present in the previous versions which could
cause, under certain unfrequent conditions, to send out very large
bursts of traffic.

All in all, this new code is much cleaner than the previous one and
should also perform better.

Work supported by Akamba Corp.
2000-01-08 11:24:46 +00:00

166 lines
5.2 KiB
C

/*
* Copyright (c) 1998-2000 Luigi Rizzo, Universita` di Pisa
* Portions Copyright (c) 2000 Akamba Corp.
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _IP_DUMMYNET_H
#define _IP_DUMMYNET_H
/*
* Definition of dummynet data structures.
* We first start with the heap which is used by the scheduler.
*
* Each list contains a set of parameters identifying the pipe, and
* a set of packets queued on the pipe itself.
*
* I could have used queue macros, but the management i have
* is pretty simple and this makes the code more portable.
*/
typedef u_int32_t dn_key ; /* sorting key */
#define DN_KEY_LT(a,b) ((int)((a)-(b)) < 0)
#define DN_KEY_LEQ(a,b) ((int)((a)-(b)) <= 0)
#define DN_KEY_GT(a,b) ((int)((a)-(b)) > 0)
#define DN_KEY_GEQ(a,b) ((int)((a)-(b)) >= 0)
struct dn_heap_entry {
dn_key key ; /* sorting key. Topmost element is smallest one */
void *object ; /* object pointer */
} ;
struct dn_heap {
int size ;
int elements ;
struct dn_heap_entry *p ; /* really an array of "size" entries */
} ;
/*
* MT_DUMMYNET is a new (fake) mbuf type that is prepended to the
* packet when it comes out of a pipe. The definition
* ought to go in /sys/sys/mbuf.h but here it is less intrusive.
*/
#define MT_DUMMYNET MT_CONTROL
/*
* struct dn_pkt identifies a packet in the dummynet queue. The
* first part is really an m_hdr for implementation purposes, and some
* fields are saved there. When passing the packet back to the ip_input/
* ip_output(), the struct is prepended to the mbuf chain with type
* MT_DUMMYNET, and contains the pointer to the matching rule.
*/
struct dn_pkt {
struct m_hdr hdr ;
#define dn_next hdr.mh_nextpkt /* next element in queue */
#define DN_NEXT(x) (struct dn_pkt *)(x)->dn_next
#define dn_m hdr.mh_next /* packet to be forwarded */
/* #define dn_dst hdr.mh_len -* dst, for ip_output */
#define dn_dir hdr.mh_flags /* action when pkt extracted from a queue */
#define DN_TO_IP_OUT 1
#define DN_TO_IP_IN 2
#define DN_TO_BDG_FWD 3
dn_key output_time; /* when the pkt is due for delivery */
struct ifnet *ifp; /* interface, for ip_output */
struct sockaddr_in *dn_dst ;
struct route ro; /* route, for ip_output. MUST COPY */
int flags ; /* flags, for ip_output (IPv6 ?) */
};
struct dn_queue {
struct dn_pkt *head, *tail;
} ;
/*
* Flow mask/flow id for each queue.
*/
struct dn_flow_id {
u_int32_t dst_ip, src_ip ;
u_int16_t dst_port, src_port ;
u_int8_t proto ;
} ;
/*
* We use per flow queues. Hashing is used to select the right slot,
* then we scan the list to match the flow-id.
* The pipe is shared as it is only a delay line and thus one is enough.
*/
struct dn_flow_queue {
struct dn_flow_queue *next ;
struct dn_flow_id id ;
struct dn_pipe *p ; /* parent pipe */
struct dn_queue r;
long numbytes ;
u_int len ;
u_int len_bytes ;
u_int64_t tot_pkts ; /* statistics counters */
u_int64_t tot_bytes ;
u_int32_t drops ;
int hash_slot ; /* debugging/diagnostic */
} ;
/*
* Pipe descriptor. Contains global parameters, delay-line queue,
* and the hash array of the per-flow queues.
*/
struct dn_pipe { /* a pipe */
struct dn_pipe *next ;
u_short pipe_nr ; /* number */
u_short flags ; /* to speed up things */
#define DN_HAVE_FLOW_MASK 8
int bandwidth; /* really, bytes/tick. */
int queue_size ;
int queue_size_bytes ;
int delay ; /* really, ticks */
int plr ; /* pkt loss rate (2^31-1 means 100%) */
struct dn_queue p ;
struct dn_flow_id flow_mask ;
int rq_size ;
int rq_elements ;
struct dn_flow_queue **rq ; /* array of rq_size entries */
};
#ifdef _KERNEL
MALLOC_DECLARE(M_IPFW);
typedef int ip_dn_ctl_t __P((struct sockopt *)) ;
extern ip_dn_ctl_t *ip_dn_ctl_ptr;
extern struct dn_flow_id dn_last_pkt ;
void dn_rule_delete(void *r); /* used in ip_fw.c */
int dummynet_io(int pipe, int dir,
struct mbuf *m, struct ifnet *ifp, struct route *ro,
struct sockaddr_in * dst,
struct ip_fw_chain *rule, int flags);
#endif
#endif /* _IP_DUMMYNET_H */