mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-30 12:04:07 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
3204 lines
102 KiB
C
3204 lines
102 KiB
C
/* Convert function calls to rtl insns, for GNU C compiler.
|
||
Copyright (C) 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#ifdef __STDC__
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
#include "insn-flags.h"
|
||
|
||
/* Decide whether a function's arguments should be processed
|
||
from first to last or from last to first.
|
||
|
||
They should if the stack and args grow in opposite directions, but
|
||
only if we have push insns. */
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
|
||
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
|
||
#define PUSH_ARGS_REVERSED /* If it's last to first */
|
||
#endif
|
||
|
||
#endif
|
||
|
||
/* Like STACK_BOUNDARY but in units of bytes, not bits. */
|
||
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
|
||
|
||
/* Data structure and subroutines used within expand_call. */
|
||
|
||
struct arg_data
|
||
{
|
||
/* Tree node for this argument. */
|
||
tree tree_value;
|
||
/* Mode for value; TYPE_MODE unless promoted. */
|
||
enum machine_mode mode;
|
||
/* Current RTL value for argument, or 0 if it isn't precomputed. */
|
||
rtx value;
|
||
/* Initially-compute RTL value for argument; only for const functions. */
|
||
rtx initial_value;
|
||
/* Register to pass this argument in, 0 if passed on stack, or an
|
||
EXPR_LIST if the arg is to be copied into multiple different
|
||
registers. */
|
||
rtx reg;
|
||
/* If REG was promoted from the actual mode of the argument expression,
|
||
indicates whether the promotion is sign- or zero-extended. */
|
||
int unsignedp;
|
||
/* Number of registers to use. 0 means put the whole arg in registers.
|
||
Also 0 if not passed in registers. */
|
||
int partial;
|
||
/* Non-zero if argument must be passed on stack.
|
||
Note that some arguments may be passed on the stack
|
||
even though pass_on_stack is zero, just because FUNCTION_ARG says so.
|
||
pass_on_stack identifies arguments that *cannot* go in registers. */
|
||
int pass_on_stack;
|
||
/* Offset of this argument from beginning of stack-args. */
|
||
struct args_size offset;
|
||
/* Similar, but offset to the start of the stack slot. Different from
|
||
OFFSET if this arg pads downward. */
|
||
struct args_size slot_offset;
|
||
/* Size of this argument on the stack, rounded up for any padding it gets,
|
||
parts of the argument passed in registers do not count.
|
||
If REG_PARM_STACK_SPACE is defined, then register parms
|
||
are counted here as well. */
|
||
struct args_size size;
|
||
/* Location on the stack at which parameter should be stored. The store
|
||
has already been done if STACK == VALUE. */
|
||
rtx stack;
|
||
/* Location on the stack of the start of this argument slot. This can
|
||
differ from STACK if this arg pads downward. This location is known
|
||
to be aligned to FUNCTION_ARG_BOUNDARY. */
|
||
rtx stack_slot;
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* Place that this stack area has been saved, if needed. */
|
||
rtx save_area;
|
||
#endif
|
||
#ifdef STRICT_ALIGNMENT
|
||
/* If an argument's alignment does not permit direct copying into registers,
|
||
copy in smaller-sized pieces into pseudos. These are stored in a
|
||
block pointed to by this field. The next field says how many
|
||
word-sized pseudos we made. */
|
||
rtx *aligned_regs;
|
||
int n_aligned_regs;
|
||
#endif
|
||
};
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* A vector of one char per byte of stack space. A byte if non-zero if
|
||
the corresponding stack location has been used.
|
||
This vector is used to prevent a function call within an argument from
|
||
clobbering any stack already set up. */
|
||
static char *stack_usage_map;
|
||
|
||
/* Size of STACK_USAGE_MAP. */
|
||
static int highest_outgoing_arg_in_use;
|
||
|
||
/* stack_arg_under_construction is nonzero when an argument may be
|
||
initialized with a constructor call (including a C function that
|
||
returns a BLKmode struct) and expand_call must take special action
|
||
to make sure the object being constructed does not overlap the
|
||
argument list for the constructor call. */
|
||
int stack_arg_under_construction;
|
||
#endif
|
||
|
||
static int calls_function PROTO((tree, int));
|
||
static int calls_function_1 PROTO((tree, int));
|
||
static void emit_call_1 PROTO((rtx, tree, tree, int, int, rtx, rtx,
|
||
int, rtx, int));
|
||
static void store_one_arg PROTO ((struct arg_data *, rtx, int, int,
|
||
tree, int));
|
||
|
||
/* If WHICH is 1, return 1 if EXP contains a call to the built-in function
|
||
`alloca'.
|
||
|
||
If WHICH is 0, return 1 if EXP contains a call to any function.
|
||
Actually, we only need return 1 if evaluating EXP would require pushing
|
||
arguments on the stack, but that is too difficult to compute, so we just
|
||
assume any function call might require the stack. */
|
||
|
||
static tree calls_function_save_exprs;
|
||
|
||
static int
|
||
calls_function (exp, which)
|
||
tree exp;
|
||
int which;
|
||
{
|
||
int val;
|
||
calls_function_save_exprs = 0;
|
||
val = calls_function_1 (exp, which);
|
||
calls_function_save_exprs = 0;
|
||
return val;
|
||
}
|
||
|
||
static int
|
||
calls_function_1 (exp, which)
|
||
tree exp;
|
||
int which;
|
||
{
|
||
register int i;
|
||
enum tree_code code = TREE_CODE (exp);
|
||
int type = TREE_CODE_CLASS (code);
|
||
int length = tree_code_length[(int) code];
|
||
|
||
/* If this code is language-specific, we don't know what it will do. */
|
||
if ((int) code >= NUM_TREE_CODES)
|
||
return 1;
|
||
|
||
/* Only expressions and references can contain calls. */
|
||
if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r'
|
||
&& type != 'b')
|
||
return 0;
|
||
|
||
switch (code)
|
||
{
|
||
case CALL_EXPR:
|
||
if (which == 0)
|
||
return 1;
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL))
|
||
{
|
||
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
|
||
if ((DECL_BUILT_IN (fndecl)
|
||
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
|
||
|| (DECL_SAVED_INSNS (fndecl)
|
||
&& (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl))
|
||
& FUNCTION_FLAGS_CALLS_ALLOCA)))
|
||
return 1;
|
||
}
|
||
|
||
/* Third operand is RTL. */
|
||
length = 2;
|
||
break;
|
||
|
||
case SAVE_EXPR:
|
||
if (SAVE_EXPR_RTL (exp) != 0)
|
||
return 0;
|
||
if (value_member (exp, calls_function_save_exprs))
|
||
return 0;
|
||
calls_function_save_exprs = tree_cons (NULL_TREE, exp,
|
||
calls_function_save_exprs);
|
||
return (TREE_OPERAND (exp, 0) != 0
|
||
&& calls_function_1 (TREE_OPERAND (exp, 0), which));
|
||
|
||
case BLOCK:
|
||
{
|
||
register tree local;
|
||
|
||
for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
|
||
if (DECL_INITIAL (local) != 0
|
||
&& calls_function_1 (DECL_INITIAL (local), which))
|
||
return 1;
|
||
}
|
||
{
|
||
register tree subblock;
|
||
|
||
for (subblock = BLOCK_SUBBLOCKS (exp);
|
||
subblock;
|
||
subblock = TREE_CHAIN (subblock))
|
||
if (calls_function_1 (subblock, which))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
|
||
case METHOD_CALL_EXPR:
|
||
length = 3;
|
||
break;
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
length = 1;
|
||
break;
|
||
|
||
case RTL_EXPR:
|
||
return 0;
|
||
}
|
||
|
||
for (i = 0; i < length; i++)
|
||
if (TREE_OPERAND (exp, i) != 0
|
||
&& calls_function_1 (TREE_OPERAND (exp, i), which))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Force FUNEXP into a form suitable for the address of a CALL,
|
||
and return that as an rtx. Also load the static chain register
|
||
if FNDECL is a nested function.
|
||
|
||
CALL_FUSAGE points to a variable holding the prospective
|
||
CALL_INSN_FUNCTION_USAGE information. */
|
||
|
||
rtx
|
||
prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen)
|
||
rtx funexp;
|
||
tree fndecl;
|
||
rtx *call_fusage;
|
||
int reg_parm_seen;
|
||
{
|
||
rtx static_chain_value = 0;
|
||
|
||
funexp = protect_from_queue (funexp, 0);
|
||
|
||
if (fndecl != 0)
|
||
/* Get possible static chain value for nested function in C. */
|
||
static_chain_value = lookup_static_chain (fndecl);
|
||
|
||
/* Make a valid memory address and copy constants thru pseudo-regs,
|
||
but not for a constant address if -fno-function-cse. */
|
||
if (GET_CODE (funexp) != SYMBOL_REF)
|
||
funexp =
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* If we are using registers for parameters, force the
|
||
function address into a register now. */
|
||
reg_parm_seen ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
|
||
:
|
||
#endif
|
||
memory_address (FUNCTION_MODE, funexp);
|
||
else
|
||
{
|
||
#ifndef NO_FUNCTION_CSE
|
||
if (optimize && ! flag_no_function_cse)
|
||
#ifdef NO_RECURSIVE_FUNCTION_CSE
|
||
if (fndecl != current_function_decl)
|
||
#endif
|
||
funexp = force_reg (Pmode, funexp);
|
||
#endif
|
||
}
|
||
|
||
if (static_chain_value != 0)
|
||
{
|
||
emit_move_insn (static_chain_rtx, static_chain_value);
|
||
|
||
if (GET_CODE (static_chain_rtx) == REG)
|
||
use_reg (call_fusage, static_chain_rtx);
|
||
}
|
||
|
||
return funexp;
|
||
}
|
||
|
||
/* Generate instructions to call function FUNEXP,
|
||
and optionally pop the results.
|
||
The CALL_INSN is the first insn generated.
|
||
|
||
FNDECL is the declaration node of the function. This is given ot the
|
||
macro RETURN_POPS_ARGS to determine whether this function pops its own args.
|
||
|
||
FUNTYPE is the data type of the function, or, for a library call,
|
||
the identifier for the name of the call. This is given to the
|
||
macro RETURN_POPS_ARGS to determine whether this function pops its own args.
|
||
|
||
STACK_SIZE is the number of bytes of arguments on the stack,
|
||
rounded up to STACK_BOUNDARY; zero if the size is variable.
|
||
This is both to put into the call insn and
|
||
to generate explicit popping code if necessary.
|
||
|
||
STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
|
||
It is zero if this call doesn't want a structure value.
|
||
|
||
NEXT_ARG_REG is the rtx that results from executing
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
|
||
just after all the args have had their registers assigned.
|
||
This could be whatever you like, but normally it is the first
|
||
arg-register beyond those used for args in this call,
|
||
or 0 if all the arg-registers are used in this call.
|
||
It is passed on to `gen_call' so you can put this info in the call insn.
|
||
|
||
VALREG is a hard register in which a value is returned,
|
||
or 0 if the call does not return a value.
|
||
|
||
OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
|
||
the args to this call were processed.
|
||
We restore `inhibit_defer_pop' to that value.
|
||
|
||
CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
|
||
denote registers used by the called function.
|
||
|
||
IS_CONST is true if this is a `const' call. */
|
||
|
||
static void
|
||
emit_call_1 (funexp, fndecl, funtype, stack_size, struct_value_size,
|
||
next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
|
||
is_const)
|
||
rtx funexp;
|
||
tree fndecl;
|
||
tree funtype;
|
||
int stack_size;
|
||
int struct_value_size;
|
||
rtx next_arg_reg;
|
||
rtx valreg;
|
||
int old_inhibit_defer_pop;
|
||
rtx call_fusage;
|
||
int is_const;
|
||
{
|
||
rtx stack_size_rtx = GEN_INT (stack_size);
|
||
rtx struct_value_size_rtx = GEN_INT (struct_value_size);
|
||
rtx call_insn;
|
||
int already_popped = 0;
|
||
|
||
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
|
||
and we don't want to load it into a register as an optimization,
|
||
because prepare_call_address already did it if it should be done. */
|
||
if (GET_CODE (funexp) != SYMBOL_REF)
|
||
funexp = memory_address (FUNCTION_MODE, funexp);
|
||
|
||
#ifndef ACCUMULATE_OUTGOING_ARGS
|
||
#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
|
||
if (HAVE_call_pop && HAVE_call_value_pop
|
||
&& (RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0
|
||
|| stack_size == 0))
|
||
{
|
||
rtx n_pop = GEN_INT (RETURN_POPS_ARGS (fndecl, funtype, stack_size));
|
||
rtx pat;
|
||
|
||
/* If this subroutine pops its own args, record that in the call insn
|
||
if possible, for the sake of frame pointer elimination. */
|
||
|
||
if (valreg)
|
||
pat = gen_call_value_pop (valreg,
|
||
gen_rtx (MEM, FUNCTION_MODE, funexp),
|
||
stack_size_rtx, next_arg_reg, n_pop);
|
||
else
|
||
pat = gen_call_pop (gen_rtx (MEM, FUNCTION_MODE, funexp),
|
||
stack_size_rtx, next_arg_reg, n_pop);
|
||
|
||
emit_call_insn (pat);
|
||
already_popped = 1;
|
||
}
|
||
else
|
||
#endif
|
||
#endif
|
||
|
||
#if defined (HAVE_call) && defined (HAVE_call_value)
|
||
if (HAVE_call && HAVE_call_value)
|
||
{
|
||
if (valreg)
|
||
emit_call_insn (gen_call_value (valreg,
|
||
gen_rtx (MEM, FUNCTION_MODE, funexp),
|
||
stack_size_rtx, next_arg_reg,
|
||
NULL_RTX));
|
||
else
|
||
emit_call_insn (gen_call (gen_rtx (MEM, FUNCTION_MODE, funexp),
|
||
stack_size_rtx, next_arg_reg,
|
||
struct_value_size_rtx));
|
||
}
|
||
else
|
||
#endif
|
||
abort ();
|
||
|
||
/* Find the CALL insn we just emitted. */
|
||
for (call_insn = get_last_insn ();
|
||
call_insn && GET_CODE (call_insn) != CALL_INSN;
|
||
call_insn = PREV_INSN (call_insn))
|
||
;
|
||
|
||
if (! call_insn)
|
||
abort ();
|
||
|
||
/* Put the register usage information on the CALL. If there is already
|
||
some usage information, put ours at the end. */
|
||
if (CALL_INSN_FUNCTION_USAGE (call_insn))
|
||
{
|
||
rtx link;
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
|
||
link = XEXP (link, 1))
|
||
;
|
||
|
||
XEXP (link, 1) = call_fusage;
|
||
}
|
||
else
|
||
CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
|
||
|
||
/* If this is a const call, then set the insn's unchanging bit. */
|
||
if (is_const)
|
||
CONST_CALL_P (call_insn) = 1;
|
||
|
||
/* Restore this now, so that we do defer pops for this call's args
|
||
if the context of the call as a whole permits. */
|
||
inhibit_defer_pop = old_inhibit_defer_pop;
|
||
|
||
#ifndef ACCUMULATE_OUTGOING_ARGS
|
||
/* If returning from the subroutine does not automatically pop the args,
|
||
we need an instruction to pop them sooner or later.
|
||
Perhaps do it now; perhaps just record how much space to pop later.
|
||
|
||
If returning from the subroutine does pop the args, indicate that the
|
||
stack pointer will be changed. */
|
||
|
||
if (stack_size != 0 && RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0)
|
||
{
|
||
if (!already_popped)
|
||
CALL_INSN_FUNCTION_USAGE (call_insn) =
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx),
|
||
CALL_INSN_FUNCTION_USAGE (call_insn));
|
||
stack_size -= RETURN_POPS_ARGS (fndecl, funtype, stack_size);
|
||
stack_size_rtx = GEN_INT (stack_size);
|
||
}
|
||
|
||
if (stack_size != 0)
|
||
{
|
||
if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const)
|
||
pending_stack_adjust += stack_size;
|
||
else
|
||
adjust_stack (stack_size_rtx);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Generate all the code for a function call
|
||
and return an rtx for its value.
|
||
Store the value in TARGET (specified as an rtx) if convenient.
|
||
If the value is stored in TARGET then TARGET is returned.
|
||
If IGNORE is nonzero, then we ignore the value of the function call. */
|
||
|
||
rtx
|
||
expand_call (exp, target, ignore)
|
||
tree exp;
|
||
rtx target;
|
||
int ignore;
|
||
{
|
||
/* List of actual parameters. */
|
||
tree actparms = TREE_OPERAND (exp, 1);
|
||
/* RTX for the function to be called. */
|
||
rtx funexp;
|
||
/* Tree node for the function to be called (not the address!). */
|
||
tree funtree;
|
||
/* Data type of the function. */
|
||
tree funtype;
|
||
/* Declaration of the function being called,
|
||
or 0 if the function is computed (not known by name). */
|
||
tree fndecl = 0;
|
||
char *name = 0;
|
||
|
||
/* Register in which non-BLKmode value will be returned,
|
||
or 0 if no value or if value is BLKmode. */
|
||
rtx valreg;
|
||
/* Address where we should return a BLKmode value;
|
||
0 if value not BLKmode. */
|
||
rtx structure_value_addr = 0;
|
||
/* Nonzero if that address is being passed by treating it as
|
||
an extra, implicit first parameter. Otherwise,
|
||
it is passed by being copied directly into struct_value_rtx. */
|
||
int structure_value_addr_parm = 0;
|
||
/* Size of aggregate value wanted, or zero if none wanted
|
||
or if we are using the non-reentrant PCC calling convention
|
||
or expecting the value in registers. */
|
||
int struct_value_size = 0;
|
||
/* Nonzero if called function returns an aggregate in memory PCC style,
|
||
by returning the address of where to find it. */
|
||
int pcc_struct_value = 0;
|
||
|
||
/* Number of actual parameters in this call, including struct value addr. */
|
||
int num_actuals;
|
||
/* Number of named args. Args after this are anonymous ones
|
||
and they must all go on the stack. */
|
||
int n_named_args;
|
||
/* Count arg position in order args appear. */
|
||
int argpos;
|
||
|
||
/* Vector of information about each argument.
|
||
Arguments are numbered in the order they will be pushed,
|
||
not the order they are written. */
|
||
struct arg_data *args;
|
||
|
||
/* Total size in bytes of all the stack-parms scanned so far. */
|
||
struct args_size args_size;
|
||
/* Size of arguments before any adjustments (such as rounding). */
|
||
struct args_size original_args_size;
|
||
/* Data on reg parms scanned so far. */
|
||
CUMULATIVE_ARGS args_so_far;
|
||
/* Nonzero if a reg parm has been scanned. */
|
||
int reg_parm_seen;
|
||
/* Nonzero if this is an indirect function call. */
|
||
int current_call_is_indirect = 0;
|
||
|
||
/* Nonzero if we must avoid push-insns in the args for this call.
|
||
If stack space is allocated for register parameters, but not by the
|
||
caller, then it is preallocated in the fixed part of the stack frame.
|
||
So the entire argument block must then be preallocated (i.e., we
|
||
ignore PUSH_ROUNDING in that case). */
|
||
|
||
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
|
||
int must_preallocate = 1;
|
||
#else
|
||
#ifdef PUSH_ROUNDING
|
||
int must_preallocate = 0;
|
||
#else
|
||
int must_preallocate = 1;
|
||
#endif
|
||
#endif
|
||
|
||
/* Size of the stack reserved for parameter registers. */
|
||
int reg_parm_stack_space = 0;
|
||
|
||
/* 1 if scanning parms front to back, -1 if scanning back to front. */
|
||
int inc;
|
||
/* Address of space preallocated for stack parms
|
||
(on machines that lack push insns), or 0 if space not preallocated. */
|
||
rtx argblock = 0;
|
||
|
||
/* Nonzero if it is plausible that this is a call to alloca. */
|
||
int may_be_alloca;
|
||
/* Nonzero if this is a call to setjmp or a related function. */
|
||
int returns_twice;
|
||
/* Nonzero if this is a call to `longjmp'. */
|
||
int is_longjmp;
|
||
/* Nonzero if this is a call to an inline function. */
|
||
int is_integrable = 0;
|
||
/* Nonzero if this is a call to a `const' function.
|
||
Note that only explicitly named functions are handled as `const' here. */
|
||
int is_const = 0;
|
||
/* Nonzero if this is a call to a `volatile' function. */
|
||
int is_volatile = 0;
|
||
#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
|
||
/* Define the boundary of the register parm stack space that needs to be
|
||
save, if any. */
|
||
int low_to_save = -1, high_to_save;
|
||
rtx save_area = 0; /* Place that it is saved */
|
||
#endif
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
|
||
char *initial_stack_usage_map = stack_usage_map;
|
||
#endif
|
||
|
||
rtx old_stack_level = 0;
|
||
int old_pending_adj = 0;
|
||
int old_stack_arg_under_construction;
|
||
int old_inhibit_defer_pop = inhibit_defer_pop;
|
||
tree old_cleanups = cleanups_this_call;
|
||
rtx call_fusage = 0;
|
||
register tree p;
|
||
register int i, j;
|
||
|
||
/* See if we can find a DECL-node for the actual function.
|
||
As a result, decide whether this is a call to an integrable function. */
|
||
|
||
p = TREE_OPERAND (exp, 0);
|
||
if (TREE_CODE (p) == ADDR_EXPR)
|
||
{
|
||
fndecl = TREE_OPERAND (p, 0);
|
||
if (TREE_CODE (fndecl) != FUNCTION_DECL)
|
||
fndecl = 0;
|
||
else
|
||
{
|
||
if (!flag_no_inline
|
||
&& fndecl != current_function_decl
|
||
&& DECL_INLINE (fndecl)
|
||
&& DECL_SAVED_INSNS (fndecl))
|
||
is_integrable = 1;
|
||
else if (! TREE_ADDRESSABLE (fndecl))
|
||
{
|
||
/* In case this function later becomes inlinable,
|
||
record that there was already a non-inline call to it.
|
||
|
||
Use abstraction instead of setting TREE_ADDRESSABLE
|
||
directly. */
|
||
if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline)
|
||
{
|
||
warning_with_decl (fndecl, "can't inline call to `%s'");
|
||
warning ("called from here");
|
||
}
|
||
mark_addressable (fndecl);
|
||
}
|
||
|
||
if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl)
|
||
&& TYPE_MODE (TREE_TYPE (exp)) != VOIDmode)
|
||
is_const = 1;
|
||
|
||
if (TREE_THIS_VOLATILE (fndecl))
|
||
is_volatile = 1;
|
||
}
|
||
}
|
||
|
||
/* If we don't have specific function to call, see if we have a
|
||
constant or `noreturn' function from the type. */
|
||
if (fndecl == 0)
|
||
{
|
||
is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p)));
|
||
is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p)));
|
||
}
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
||
#endif
|
||
#endif
|
||
|
||
/* Warn if this value is an aggregate type,
|
||
regardless of which calling convention we are using for it. */
|
||
if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
|
||
warning ("function call has aggregate value");
|
||
|
||
/* Set up a place to return a structure. */
|
||
|
||
/* Cater to broken compilers. */
|
||
if (aggregate_value_p (exp))
|
||
{
|
||
/* This call returns a big structure. */
|
||
is_const = 0;
|
||
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
{
|
||
pcc_struct_value = 1;
|
||
/* Easier than making that case work right. */
|
||
if (is_integrable)
|
||
{
|
||
/* In case this is a static function, note that it has been
|
||
used. */
|
||
if (! TREE_ADDRESSABLE (fndecl))
|
||
mark_addressable (fndecl);
|
||
is_integrable = 0;
|
||
}
|
||
}
|
||
#else /* not PCC_STATIC_STRUCT_RETURN */
|
||
{
|
||
struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
|
||
|
||
if (target && GET_CODE (target) == MEM)
|
||
structure_value_addr = XEXP (target, 0);
|
||
else
|
||
{
|
||
/* Assign a temporary on the stack to hold the value. */
|
||
|
||
/* For variable-sized objects, we must be called with a target
|
||
specified. If we were to allocate space on the stack here,
|
||
we would have no way of knowing when to free it. */
|
||
|
||
if (struct_value_size < 0)
|
||
abort ();
|
||
|
||
structure_value_addr
|
||
= XEXP (assign_stack_temp (BLKmode, struct_value_size, 1), 0);
|
||
MEM_IN_STRUCT_P (structure_value_addr)
|
||
= AGGREGATE_TYPE_P (TREE_TYPE (exp));
|
||
target = 0;
|
||
}
|
||
}
|
||
#endif /* not PCC_STATIC_STRUCT_RETURN */
|
||
}
|
||
|
||
/* If called function is inline, try to integrate it. */
|
||
|
||
if (is_integrable)
|
||
{
|
||
rtx temp;
|
||
rtx before_call = get_last_insn ();
|
||
|
||
temp = expand_inline_function (fndecl, actparms, target,
|
||
ignore, TREE_TYPE (exp),
|
||
structure_value_addr);
|
||
|
||
/* If inlining succeeded, return. */
|
||
if ((HOST_WIDE_INT) temp != -1)
|
||
{
|
||
if (flag_short_temps)
|
||
{
|
||
/* Perform all cleanups needed for the arguments of this
|
||
call (i.e. destructors in C++). It is ok if these
|
||
destructors clobber RETURN_VALUE_REG, because the
|
||
only time we care about this is when TARGET is that
|
||
register. But in C++, we take care to never return
|
||
that register directly. */
|
||
expand_cleanups_to (old_cleanups);
|
||
}
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* If the outgoing argument list must be preserved, push
|
||
the stack before executing the inlined function if it
|
||
makes any calls. */
|
||
|
||
for (i = reg_parm_stack_space - 1; i >= 0; i--)
|
||
if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0)
|
||
break;
|
||
|
||
if (stack_arg_under_construction || i >= 0)
|
||
{
|
||
rtx insn = NEXT_INSN (before_call), seq;
|
||
|
||
/* Look for a call in the inline function code.
|
||
If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is
|
||
nonzero then there is a call and it is not necessary
|
||
to scan the insns. */
|
||
|
||
if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0)
|
||
for (; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
break;
|
||
|
||
if (insn)
|
||
{
|
||
/* Reserve enough stack space so that the largest
|
||
argument list of any function call in the inline
|
||
function does not overlap the argument list being
|
||
evaluated. This is usually an overestimate because
|
||
allocate_dynamic_stack_space reserves space for an
|
||
outgoing argument list in addition to the requested
|
||
space, but there is no way to ask for stack space such
|
||
that an argument list of a certain length can be
|
||
safely constructed. */
|
||
|
||
int adjust = OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl));
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
/* Add the stack space reserved for register arguments
|
||
in the inline function. What is really needed is the
|
||
largest value of reg_parm_stack_space in the inline
|
||
function, but that is not available. Using the current
|
||
value of reg_parm_stack_space is wrong, but gives
|
||
correct results on all supported machines. */
|
||
adjust += reg_parm_stack_space;
|
||
#endif
|
||
start_sequence ();
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
allocate_dynamic_stack_space (GEN_INT (adjust),
|
||
NULL_RTX, BITS_PER_UNIT);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insns_before (seq, NEXT_INSN (before_call));
|
||
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If the result is equivalent to TARGET, return TARGET to simplify
|
||
checks in store_expr. They can be equivalent but not equal in the
|
||
case of a function that returns BLKmode. */
|
||
if (temp != target && rtx_equal_p (temp, target))
|
||
return target;
|
||
return temp;
|
||
}
|
||
|
||
/* If inlining failed, mark FNDECL as needing to be compiled
|
||
separately after all. If function was declared inline,
|
||
give a warning. */
|
||
if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
|
||
&& ! TREE_ADDRESSABLE (fndecl))
|
||
{
|
||
warning_with_decl (fndecl, "inlining failed in call to `%s'");
|
||
warning ("called from here");
|
||
}
|
||
mark_addressable (fndecl);
|
||
}
|
||
|
||
/* When calling a const function, we must pop the stack args right away,
|
||
so that the pop is deleted or moved with the call. */
|
||
if (is_const)
|
||
NO_DEFER_POP;
|
||
|
||
function_call_count++;
|
||
|
||
if (fndecl && DECL_NAME (fndecl))
|
||
name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
|
||
|
||
/* On some machines (such as the PA) indirect calls have a different
|
||
calling convention than normal calls. FUNCTION_ARG in the target
|
||
description can look at current_call_is_indirect to determine which
|
||
calling convention to use. */
|
||
current_call_is_indirect = (fndecl == 0);
|
||
#if 0
|
||
= TREE_CODE (TREE_OPERAND (exp, 0)) == NON_LVALUE_EXPR ? 1 : 0;
|
||
#endif
|
||
|
||
#if 0
|
||
/* Unless it's a call to a specific function that isn't alloca,
|
||
if it has one argument, we must assume it might be alloca. */
|
||
|
||
may_be_alloca =
|
||
(!(fndecl != 0 && strcmp (name, "alloca"))
|
||
&& actparms != 0
|
||
&& TREE_CHAIN (actparms) == 0);
|
||
#else
|
||
/* We assume that alloca will always be called by name. It
|
||
makes no sense to pass it as a pointer-to-function to
|
||
anything that does not understand its behavior. */
|
||
may_be_alloca =
|
||
(name && ((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
|
||
&& name[0] == 'a'
|
||
&& ! strcmp (name, "alloca"))
|
||
|| (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
|
||
&& name[0] == '_'
|
||
&& ! strcmp (name, "__builtin_alloca"))));
|
||
#endif
|
||
|
||
/* See if this is a call to a function that can return more than once
|
||
or a call to longjmp. */
|
||
|
||
returns_twice = 0;
|
||
is_longjmp = 0;
|
||
|
||
if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15)
|
||
{
|
||
char *tname = name;
|
||
|
||
/* Disregard prefix _, __ or __x. */
|
||
if (name[0] == '_')
|
||
{
|
||
if (name[1] == '_' && name[2] == 'x')
|
||
tname += 3;
|
||
else if (name[1] == '_')
|
||
tname += 2;
|
||
else
|
||
tname += 1;
|
||
}
|
||
|
||
if (tname[0] == 's')
|
||
{
|
||
returns_twice
|
||
= ((tname[1] == 'e'
|
||
&& (! strcmp (tname, "setjmp")
|
||
|| ! strcmp (tname, "setjmp_syscall")))
|
||
|| (tname[1] == 'i'
|
||
&& ! strcmp (tname, "sigsetjmp"))
|
||
|| (tname[1] == 'a'
|
||
&& ! strcmp (tname, "savectx")));
|
||
if (tname[1] == 'i'
|
||
&& ! strcmp (tname, "siglongjmp"))
|
||
is_longjmp = 1;
|
||
}
|
||
else if ((tname[0] == 'q' && tname[1] == 's'
|
||
&& ! strcmp (tname, "qsetjmp"))
|
||
|| (tname[0] == 'v' && tname[1] == 'f'
|
||
&& ! strcmp (tname, "vfork")))
|
||
returns_twice = 1;
|
||
|
||
else if (tname[0] == 'l' && tname[1] == 'o'
|
||
&& ! strcmp (tname, "longjmp"))
|
||
is_longjmp = 1;
|
||
}
|
||
|
||
if (may_be_alloca)
|
||
current_function_calls_alloca = 1;
|
||
|
||
/* Don't let pending stack adjusts add up to too much.
|
||
Also, do all pending adjustments now
|
||
if there is any chance this might be a call to alloca. */
|
||
|
||
if (pending_stack_adjust >= 32
|
||
|| (pending_stack_adjust > 0 && may_be_alloca))
|
||
do_pending_stack_adjust ();
|
||
|
||
/* Operand 0 is a pointer-to-function; get the type of the function. */
|
||
funtype = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
if (TREE_CODE (funtype) != POINTER_TYPE)
|
||
abort ();
|
||
funtype = TREE_TYPE (funtype);
|
||
|
||
/* Push the temporary stack slot level so that we can free any temporaries
|
||
we make. */
|
||
push_temp_slots ();
|
||
|
||
/* Start updating where the next arg would go. */
|
||
INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX);
|
||
|
||
/* If struct_value_rtx is 0, it means pass the address
|
||
as if it were an extra parameter. */
|
||
if (structure_value_addr && struct_value_rtx == 0)
|
||
{
|
||
/* If structure_value_addr is a REG other than
|
||
virtual_outgoing_args_rtx, we can use always use it. If it
|
||
is not a REG, we must always copy it into a register.
|
||
If it is virtual_outgoing_args_rtx, we must copy it to another
|
||
register in some cases. */
|
||
rtx temp = (GET_CODE (structure_value_addr) != REG
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
|| (stack_arg_under_construction
|
||
&& structure_value_addr == virtual_outgoing_args_rtx)
|
||
#endif
|
||
? copy_addr_to_reg (structure_value_addr)
|
||
: structure_value_addr);
|
||
|
||
actparms
|
||
= tree_cons (error_mark_node,
|
||
make_tree (build_pointer_type (TREE_TYPE (funtype)),
|
||
temp),
|
||
actparms);
|
||
structure_value_addr_parm = 1;
|
||
}
|
||
|
||
/* Count the arguments and set NUM_ACTUALS. */
|
||
for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++;
|
||
num_actuals = i;
|
||
|
||
/* Compute number of named args.
|
||
Normally, don't include the last named arg if anonymous args follow.
|
||
We do include the last named arg if STRICT_ARGUMENT_NAMING is defined.
|
||
(If no anonymous args follow, the result of list_length is actually
|
||
one too large. This is harmless.)
|
||
|
||
If SETUP_INCOMING_VARARGS is defined and STRICT_ARGUMENT_NAMING is not,
|
||
this machine will be able to place unnamed args that were passed in
|
||
registers into the stack. So treat all args as named. This allows the
|
||
insns emitting for a specific argument list to be independent of the
|
||
function declaration.
|
||
|
||
If SETUP_INCOMING_VARARGS is not defined, we do not have any reliable
|
||
way to pass unnamed args in registers, so we must force them into
|
||
memory. */
|
||
#if !defined(SETUP_INCOMING_VARARGS) || defined(STRICT_ARGUMENT_NAMING)
|
||
if (TYPE_ARG_TYPES (funtype) != 0)
|
||
n_named_args
|
||
= (list_length (TYPE_ARG_TYPES (funtype))
|
||
#ifndef STRICT_ARGUMENT_NAMING
|
||
/* Don't include the last named arg. */
|
||
- 1
|
||
#endif
|
||
/* Count the struct value address, if it is passed as a parm. */
|
||
+ structure_value_addr_parm);
|
||
else
|
||
#endif
|
||
/* If we know nothing, treat all args as named. */
|
||
n_named_args = num_actuals;
|
||
|
||
/* Make a vector to hold all the information about each arg. */
|
||
args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
|
||
bzero ((char *) args, num_actuals * sizeof (struct arg_data));
|
||
|
||
args_size.constant = 0;
|
||
args_size.var = 0;
|
||
|
||
/* In this loop, we consider args in the order they are written.
|
||
We fill up ARGS from the front or from the back if necessary
|
||
so that in any case the first arg to be pushed ends up at the front. */
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
i = num_actuals - 1, inc = -1;
|
||
/* In this case, must reverse order of args
|
||
so that we compute and push the last arg first. */
|
||
#else
|
||
i = 0, inc = 1;
|
||
#endif
|
||
|
||
/* I counts args in order (to be) pushed; ARGPOS counts in order written. */
|
||
for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
|
||
{
|
||
tree type = TREE_TYPE (TREE_VALUE (p));
|
||
int unsignedp;
|
||
enum machine_mode mode;
|
||
|
||
args[i].tree_value = TREE_VALUE (p);
|
||
|
||
/* Replace erroneous argument with constant zero. */
|
||
if (type == error_mark_node || TYPE_SIZE (type) == 0)
|
||
args[i].tree_value = integer_zero_node, type = integer_type_node;
|
||
|
||
/* If TYPE is a transparent union, pass things the way we would
|
||
pass the first field of the union. We have already verified that
|
||
the modes are the same. */
|
||
if (TYPE_TRANSPARENT_UNION (type))
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
|
||
/* Decide where to pass this arg.
|
||
|
||
args[i].reg is nonzero if all or part is passed in registers.
|
||
|
||
args[i].partial is nonzero if part but not all is passed in registers,
|
||
and the exact value says how many words are passed in registers.
|
||
|
||
args[i].pass_on_stack is nonzero if the argument must at least be
|
||
computed on the stack. It may then be loaded back into registers
|
||
if args[i].reg is nonzero.
|
||
|
||
These decisions are driven by the FUNCTION_... macros and must agree
|
||
with those made by function.c. */
|
||
|
||
/* See if this argument should be passed by invisible reference. */
|
||
if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|
||
&& contains_placeholder_p (TYPE_SIZE (type)))
|
||
|| TREE_ADDRESSABLE (type)
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
|| FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, TYPE_MODE (type),
|
||
type, argpos < n_named_args)
|
||
#endif
|
||
)
|
||
{
|
||
#ifdef FUNCTION_ARG_CALLEE_COPIES
|
||
if (FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (type), type,
|
||
argpos < n_named_args)
|
||
/* If it's in a register, we must make a copy of it too. */
|
||
/* ??? Is this a sufficient test? Is there a better one? */
|
||
&& !(TREE_CODE (args[i].tree_value) == VAR_DECL
|
||
&& REG_P (DECL_RTL (args[i].tree_value)))
|
||
&& ! TREE_ADDRESSABLE (type))
|
||
{
|
||
args[i].tree_value = build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
args[i].tree_value);
|
||
type = build_pointer_type (type);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* We make a copy of the object and pass the address to the
|
||
function being called. */
|
||
rtx copy;
|
||
|
||
if (TYPE_SIZE (type) == 0
|
||
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
{
|
||
/* This is a variable-sized object. Make space on the stack
|
||
for it. */
|
||
rtx size_rtx = expr_size (TREE_VALUE (p));
|
||
|
||
if (old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
copy = gen_rtx (MEM, BLKmode,
|
||
allocate_dynamic_stack_space (size_rtx,
|
||
NULL_RTX,
|
||
TYPE_ALIGN (type)));
|
||
}
|
||
else
|
||
{
|
||
int size = int_size_in_bytes (type);
|
||
copy = assign_stack_temp (TYPE_MODE (type), size, 0);
|
||
}
|
||
|
||
MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
|
||
|
||
store_expr (args[i].tree_value, copy, 0);
|
||
|
||
args[i].tree_value = build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
make_tree (type, copy));
|
||
type = build_pointer_type (type);
|
||
}
|
||
}
|
||
|
||
mode = TYPE_MODE (type);
|
||
unsignedp = TREE_UNSIGNED (type);
|
||
|
||
#ifdef PROMOTE_FUNCTION_ARGS
|
||
mode = promote_mode (type, mode, &unsignedp, 1);
|
||
#endif
|
||
|
||
args[i].unsignedp = unsignedp;
|
||
args[i].mode = mode;
|
||
args[i].reg = FUNCTION_ARG (args_so_far, mode, type,
|
||
argpos < n_named_args);
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
if (args[i].reg)
|
||
args[i].partial
|
||
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, type,
|
||
argpos < n_named_args);
|
||
#endif
|
||
|
||
args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
|
||
|
||
/* If FUNCTION_ARG returned an (expr_list (nil) FOO), it means that
|
||
we are to pass this arg in the register(s) designated by FOO, but
|
||
also to pass it in the stack. */
|
||
if (args[i].reg && GET_CODE (args[i].reg) == EXPR_LIST
|
||
&& XEXP (args[i].reg, 0) == 0)
|
||
args[i].pass_on_stack = 1, args[i].reg = XEXP (args[i].reg, 1);
|
||
|
||
/* If this is an addressable type, we must preallocate the stack
|
||
since we must evaluate the object into its final location.
|
||
|
||
If this is to be passed in both registers and the stack, it is simpler
|
||
to preallocate. */
|
||
if (TREE_ADDRESSABLE (type)
|
||
|| (args[i].pass_on_stack && args[i].reg != 0))
|
||
must_preallocate = 1;
|
||
|
||
/* If this is an addressable type, we cannot pre-evaluate it. Thus,
|
||
we cannot consider this function call constant. */
|
||
if (TREE_ADDRESSABLE (type))
|
||
is_const = 0;
|
||
|
||
/* Compute the stack-size of this argument. */
|
||
if (args[i].reg == 0 || args[i].partial != 0
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| reg_parm_stack_space > 0
|
||
#endif
|
||
|| args[i].pass_on_stack)
|
||
locate_and_pad_parm (mode, type,
|
||
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
||
1,
|
||
#else
|
||
args[i].reg != 0,
|
||
#endif
|
||
fndecl, &args_size, &args[i].offset,
|
||
&args[i].size);
|
||
|
||
#ifndef ARGS_GROW_DOWNWARD
|
||
args[i].slot_offset = args_size;
|
||
#endif
|
||
|
||
#ifndef REG_PARM_STACK_SPACE
|
||
/* If a part of the arg was put into registers,
|
||
don't include that part in the amount pushed. */
|
||
if (! args[i].pass_on_stack)
|
||
args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
|
||
/ (PARM_BOUNDARY / BITS_PER_UNIT)
|
||
* (PARM_BOUNDARY / BITS_PER_UNIT));
|
||
#endif
|
||
|
||
/* Update ARGS_SIZE, the total stack space for args so far. */
|
||
|
||
args_size.constant += args[i].size.constant;
|
||
if (args[i].size.var)
|
||
{
|
||
ADD_PARM_SIZE (args_size, args[i].size.var);
|
||
}
|
||
|
||
/* Since the slot offset points to the bottom of the slot,
|
||
we must record it after incrementing if the args grow down. */
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
args[i].slot_offset = args_size;
|
||
|
||
args[i].slot_offset.constant = -args_size.constant;
|
||
if (args_size.var)
|
||
{
|
||
SUB_PARM_SIZE (args[i].slot_offset, args_size.var);
|
||
}
|
||
#endif
|
||
|
||
/* Increment ARGS_SO_FAR, which has info about which arg-registers
|
||
have been used, etc. */
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, TYPE_MODE (type), type,
|
||
argpos < n_named_args);
|
||
}
|
||
|
||
#ifdef FINAL_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
|
||
args_size.var);
|
||
#endif
|
||
|
||
/* Compute the actual size of the argument block required. The variable
|
||
and constant sizes must be combined, the size may have to be rounded,
|
||
and there may be a minimum required size. */
|
||
|
||
original_args_size = args_size;
|
||
if (args_size.var)
|
||
{
|
||
/* If this function requires a variable-sized argument list, don't try to
|
||
make a cse'able block for this call. We may be able to do this
|
||
eventually, but it is too complicated to keep track of what insns go
|
||
in the cse'able block and which don't. */
|
||
|
||
is_const = 0;
|
||
must_preallocate = 1;
|
||
|
||
args_size.var = ARGS_SIZE_TREE (args_size);
|
||
args_size.constant = 0;
|
||
|
||
#ifdef STACK_BOUNDARY
|
||
if (STACK_BOUNDARY != BITS_PER_UNIT)
|
||
args_size.var = round_up (args_size.var, STACK_BYTES);
|
||
#endif
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
if (reg_parm_stack_space > 0)
|
||
{
|
||
args_size.var
|
||
= size_binop (MAX_EXPR, args_size.var,
|
||
size_int (REG_PARM_STACK_SPACE (fndecl)));
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
/* The area corresponding to register parameters is not to count in
|
||
the size of the block we need. So make the adjustment. */
|
||
args_size.var
|
||
= size_binop (MINUS_EXPR, args_size.var,
|
||
size_int (reg_parm_stack_space));
|
||
#endif
|
||
}
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifdef STACK_BOUNDARY
|
||
args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
|
||
/ STACK_BYTES) * STACK_BYTES);
|
||
#endif
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
args_size.constant = MAX (args_size.constant,
|
||
reg_parm_stack_space);
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
if (reg_parm_stack_space == 0)
|
||
args_size.constant = 0;
|
||
#endif
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
args_size.constant -= reg_parm_stack_space;
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
/* See if we have or want to preallocate stack space.
|
||
|
||
If we would have to push a partially-in-regs parm
|
||
before other stack parms, preallocate stack space instead.
|
||
|
||
If the size of some parm is not a multiple of the required stack
|
||
alignment, we must preallocate.
|
||
|
||
If the total size of arguments that would otherwise create a copy in
|
||
a temporary (such as a CALL) is more than half the total argument list
|
||
size, preallocation is faster.
|
||
|
||
Another reason to preallocate is if we have a machine (like the m88k)
|
||
where stack alignment is required to be maintained between every
|
||
pair of insns, not just when the call is made. However, we assume here
|
||
that such machines either do not have push insns (and hence preallocation
|
||
would occur anyway) or the problem is taken care of with
|
||
PUSH_ROUNDING. */
|
||
|
||
if (! must_preallocate)
|
||
{
|
||
int partial_seen = 0;
|
||
int copy_to_evaluate_size = 0;
|
||
|
||
for (i = 0; i < num_actuals && ! must_preallocate; i++)
|
||
{
|
||
if (args[i].partial > 0 && ! args[i].pass_on_stack)
|
||
partial_seen = 1;
|
||
else if (partial_seen && args[i].reg == 0)
|
||
must_preallocate = 1;
|
||
|
||
if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
|
||
&& (TREE_CODE (args[i].tree_value) == CALL_EXPR
|
||
|| TREE_CODE (args[i].tree_value) == TARGET_EXPR
|
||
|| TREE_CODE (args[i].tree_value) == COND_EXPR
|
||
|| TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
|
||
copy_to_evaluate_size
|
||
+= int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
||
}
|
||
|
||
if (copy_to_evaluate_size * 2 >= args_size.constant
|
||
&& args_size.constant > 0)
|
||
must_preallocate = 1;
|
||
}
|
||
|
||
/* If the structure value address will reference the stack pointer, we must
|
||
stabilize it. We don't need to do this if we know that we are not going
|
||
to adjust the stack pointer in processing this call. */
|
||
|
||
if (structure_value_addr
|
||
&& (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
|
||
|| reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr))
|
||
&& (args_size.var
|
||
#ifndef ACCUMULATE_OUTGOING_ARGS
|
||
|| args_size.constant
|
||
#endif
|
||
))
|
||
structure_value_addr = copy_to_reg (structure_value_addr);
|
||
|
||
/* If this function call is cse'able, precompute all the parameters.
|
||
Note that if the parameter is constructed into a temporary, this will
|
||
cause an additional copy because the parameter will be constructed
|
||
into a temporary location and then copied into the outgoing arguments.
|
||
If a parameter contains a call to alloca and this function uses the
|
||
stack, precompute the parameter. */
|
||
|
||
/* If we preallocated the stack space, and some arguments must be passed
|
||
on the stack, then we must precompute any parameter which contains a
|
||
function call which will store arguments on the stack.
|
||
Otherwise, evaluating the parameter may clobber previous parameters
|
||
which have already been stored into the stack. */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (is_const
|
||
|| ((args_size.var != 0 || args_size.constant != 0)
|
||
&& calls_function (args[i].tree_value, 1))
|
||
|| (must_preallocate && (args_size.var != 0 || args_size.constant != 0)
|
||
&& calls_function (args[i].tree_value, 0)))
|
||
{
|
||
/* If this is an addressable type, we cannot pre-evaluate it. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
|
||
abort ();
|
||
|
||
push_temp_slots ();
|
||
|
||
args[i].initial_value = args[i].value
|
||
= expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
|
||
|
||
preserve_temp_slots (args[i].value);
|
||
pop_temp_slots ();
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
|
||
args[i].initial_value = args[i].value
|
||
= protect_from_queue (args[i].initial_value, 0);
|
||
|
||
if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode)
|
||
args[i].value
|
||
= convert_modes (args[i].mode,
|
||
TYPE_MODE (TREE_TYPE (args[i].tree_value)),
|
||
args[i].value, args[i].unsignedp);
|
||
}
|
||
|
||
/* Now we are about to start emitting insns that can be deleted
|
||
if a libcall is deleted. */
|
||
if (is_const)
|
||
start_sequence ();
|
||
|
||
/* If we have no actual push instructions, or shouldn't use them,
|
||
make space for all args right now. */
|
||
|
||
if (args_size.var != 0)
|
||
{
|
||
if (old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* stack_arg_under_construction says whether a stack arg is
|
||
being constructed at the old stack level. Pushing the stack
|
||
gets a clean outgoing argument block. */
|
||
old_stack_arg_under_construction = stack_arg_under_construction;
|
||
stack_arg_under_construction = 0;
|
||
#endif
|
||
}
|
||
argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0);
|
||
}
|
||
else
|
||
{
|
||
/* Note that we must go through the motions of allocating an argument
|
||
block even if the size is zero because we may be storing args
|
||
in the area reserved for register arguments, which may be part of
|
||
the stack frame. */
|
||
|
||
int needed = args_size.constant;
|
||
|
||
/* Store the maximum argument space used. It will be pushed by the
|
||
prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow checking). */
|
||
|
||
if (needed > current_function_outgoing_args_size)
|
||
current_function_outgoing_args_size = needed;
|
||
|
||
if (must_preallocate)
|
||
{
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* Since the stack pointer will never be pushed, it is possible for
|
||
the evaluation of a parm to clobber something we have already
|
||
written to the stack. Since most function calls on RISC machines
|
||
do not use the stack, this is uncommon, but must work correctly.
|
||
|
||
Therefore, we save any area of the stack that was already written
|
||
and that we are using. Here we set up to do this by making a new
|
||
stack usage map from the old one. The actual save will be done
|
||
by store_one_arg.
|
||
|
||
Another approach might be to try to reorder the argument
|
||
evaluations to avoid this conflicting stack usage. */
|
||
|
||
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
|
||
/* Since we will be writing into the entire argument area, the
|
||
map must be allocated for its entire size, not just the part that
|
||
is the responsibility of the caller. */
|
||
needed += reg_parm_stack_space;
|
||
#endif
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed + 1);
|
||
#else
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed);
|
||
#endif
|
||
stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use)
|
||
bcopy (initial_stack_usage_map, stack_usage_map,
|
||
initial_highest_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
|
||
bzero (&stack_usage_map[initial_highest_arg_in_use],
|
||
highest_outgoing_arg_in_use - initial_highest_arg_in_use);
|
||
needed = 0;
|
||
|
||
/* The address of the outgoing argument list must not be copied to a
|
||
register here, because argblock would be left pointing to the
|
||
wrong place after the call to allocate_dynamic_stack_space below.
|
||
*/
|
||
|
||
argblock = virtual_outgoing_args_rtx;
|
||
|
||
#else /* not ACCUMULATE_OUTGOING_ARGS */
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
/* Try to reuse some or all of the pending_stack_adjust
|
||
to get this space. Maybe we can avoid any pushing. */
|
||
if (needed > pending_stack_adjust)
|
||
{
|
||
needed -= pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
}
|
||
else
|
||
{
|
||
pending_stack_adjust -= needed;
|
||
needed = 0;
|
||
}
|
||
}
|
||
/* Special case this because overhead of `push_block' in this
|
||
case is non-trivial. */
|
||
if (needed == 0)
|
||
argblock = virtual_outgoing_args_rtx;
|
||
else
|
||
argblock = push_block (GEN_INT (needed), 0, 0);
|
||
|
||
/* We only really need to call `copy_to_reg' in the case where push
|
||
insns are going to be used to pass ARGBLOCK to a function
|
||
call in ARGS. In that case, the stack pointer changes value
|
||
from the allocation point to the call point, and hence
|
||
the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well.
|
||
But might as well always do it. */
|
||
argblock = copy_to_reg (argblock);
|
||
#endif /* not ACCUMULATE_OUTGOING_ARGS */
|
||
}
|
||
}
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* The save/restore code in store_one_arg handles all cases except one:
|
||
a constructor call (including a C function returning a BLKmode struct)
|
||
to initialize an argument. */
|
||
if (stack_arg_under_construction)
|
||
{
|
||
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
|
||
rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant);
|
||
#else
|
||
rtx push_size = GEN_INT (args_size.constant);
|
||
#endif
|
||
if (old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
/* stack_arg_under_construction says whether a stack arg is
|
||
being constructed at the old stack level. Pushing the stack
|
||
gets a clean outgoing argument block. */
|
||
old_stack_arg_under_construction = stack_arg_under_construction;
|
||
stack_arg_under_construction = 0;
|
||
/* Make a new map for the new argument list. */
|
||
stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use);
|
||
bzero (stack_usage_map, highest_outgoing_arg_in_use);
|
||
highest_outgoing_arg_in_use = 0;
|
||
}
|
||
allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT);
|
||
}
|
||
/* If argument evaluation might modify the stack pointer, copy the
|
||
address of the argument list to a register. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].pass_on_stack)
|
||
{
|
||
argblock = copy_addr_to_reg (argblock);
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
|
||
/* If we preallocated stack space, compute the address of each argument.
|
||
We need not ensure it is a valid memory address here; it will be
|
||
validized when it is used. */
|
||
if (argblock)
|
||
{
|
||
rtx arg_reg = argblock;
|
||
int arg_offset = 0;
|
||
|
||
if (GET_CODE (argblock) == PLUS)
|
||
arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
{
|
||
rtx offset = ARGS_SIZE_RTX (args[i].offset);
|
||
rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
|
||
rtx addr;
|
||
|
||
/* Skip this parm if it will not be passed on the stack. */
|
||
if (! args[i].pass_on_stack && args[i].reg != 0)
|
||
continue;
|
||
|
||
if (GET_CODE (offset) == CONST_INT)
|
||
addr = plus_constant (arg_reg, INTVAL (offset));
|
||
else
|
||
addr = gen_rtx (PLUS, Pmode, arg_reg, offset);
|
||
|
||
addr = plus_constant (addr, arg_offset);
|
||
args[i].stack = gen_rtx (MEM, args[i].mode, addr);
|
||
MEM_IN_STRUCT_P (args[i].stack)
|
||
= AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value));
|
||
|
||
if (GET_CODE (slot_offset) == CONST_INT)
|
||
addr = plus_constant (arg_reg, INTVAL (slot_offset));
|
||
else
|
||
addr = gen_rtx (PLUS, Pmode, arg_reg, slot_offset);
|
||
|
||
addr = plus_constant (addr, arg_offset);
|
||
args[i].stack_slot = gen_rtx (MEM, args[i].mode, addr);
|
||
}
|
||
}
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we push args individually in reverse order, perform stack alignment
|
||
before the first push (the last arg). */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
/* Don't try to defer pops if preallocating, not even from the first arg,
|
||
since ARGBLOCK probably refers to the SP. */
|
||
if (argblock)
|
||
NO_DEFER_POP;
|
||
|
||
/* Get the function to call, in the form of RTL. */
|
||
if (fndecl)
|
||
{
|
||
/* If this is the first use of the function, see if we need to
|
||
make an external definition for it. */
|
||
if (! TREE_USED (fndecl))
|
||
{
|
||
assemble_external (fndecl);
|
||
TREE_USED (fndecl) = 1;
|
||
}
|
||
|
||
/* Get a SYMBOL_REF rtx for the function address. */
|
||
funexp = XEXP (DECL_RTL (fndecl), 0);
|
||
}
|
||
else
|
||
/* Generate an rtx (probably a pseudo-register) for the address. */
|
||
{
|
||
push_temp_slots ();
|
||
funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
|
||
pop_temp_slots (); /* FUNEXP can't be BLKmode */
|
||
emit_queue ();
|
||
}
|
||
|
||
/* Figure out the register where the value, if any, will come back. */
|
||
valreg = 0;
|
||
if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
|
||
&& ! structure_value_addr)
|
||
{
|
||
if (pcc_struct_value)
|
||
valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
|
||
fndecl);
|
||
else
|
||
valreg = hard_function_value (TREE_TYPE (exp), fndecl);
|
||
}
|
||
|
||
/* Precompute all register parameters. It isn't safe to compute anything
|
||
once we have started filling any specific hard regs. */
|
||
reg_parm_seen = 0;
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg != 0 && ! args[i].pass_on_stack)
|
||
{
|
||
reg_parm_seen = 1;
|
||
|
||
if (args[i].value == 0)
|
||
{
|
||
push_temp_slots ();
|
||
args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
|
||
VOIDmode, 0);
|
||
preserve_temp_slots (args[i].value);
|
||
pop_temp_slots ();
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
}
|
||
|
||
/* If we are to promote the function arg to a wider mode,
|
||
do it now. */
|
||
|
||
if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
|
||
args[i].value
|
||
= convert_modes (args[i].mode,
|
||
TYPE_MODE (TREE_TYPE (args[i].tree_value)),
|
||
args[i].value, args[i].unsignedp);
|
||
|
||
/* If the value is expensive, and we are inside an appropriately
|
||
short loop, put the value into a pseudo and then put the pseudo
|
||
into the hard reg.
|
||
|
||
For small register classes, also do this if this call uses
|
||
register parameters. This is to avoid reload conflicts while
|
||
loading the parameters registers. */
|
||
|
||
if ((! (GET_CODE (args[i].value) == REG
|
||
|| (GET_CODE (args[i].value) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (args[i].value)) == REG)))
|
||
&& args[i].mode != BLKmode
|
||
&& rtx_cost (args[i].value, SET) > 2
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
&& (reg_parm_seen || preserve_subexpressions_p ())
|
||
#else
|
||
&& preserve_subexpressions_p ()
|
||
#endif
|
||
)
|
||
args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
|
||
}
|
||
|
||
#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
|
||
/* The argument list is the property of the called routine and it
|
||
may clobber it. If the fixed area has been used for previous
|
||
parameters, we must save and restore it.
|
||
|
||
Here we compute the boundary of the that needs to be saved, if any. */
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
for (i = 0; i < reg_parm_stack_space + 1; i++)
|
||
#else
|
||
for (i = 0; i < reg_parm_stack_space; i++)
|
||
#endif
|
||
{
|
||
if (i >= highest_outgoing_arg_in_use
|
||
|| stack_usage_map[i] == 0)
|
||
continue;
|
||
|
||
if (low_to_save == -1)
|
||
low_to_save = i;
|
||
|
||
high_to_save = i;
|
||
}
|
||
|
||
if (low_to_save >= 0)
|
||
{
|
||
int num_to_save = high_to_save - low_to_save + 1;
|
||
enum machine_mode save_mode
|
||
= mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
|
||
rtx stack_area;
|
||
|
||
/* If we don't have the required alignment, must do this in BLKmode. */
|
||
if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
|
||
BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
|
||
save_mode = BLKmode;
|
||
|
||
stack_area = gen_rtx (MEM, save_mode,
|
||
memory_address (save_mode,
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
plus_constant (argblock,
|
||
- high_to_save)
|
||
#else
|
||
plus_constant (argblock,
|
||
low_to_save)
|
||
#endif
|
||
));
|
||
if (save_mode == BLKmode)
|
||
{
|
||
save_area = assign_stack_temp (BLKmode, num_to_save, 0);
|
||
MEM_IN_STRUCT_P (save_area) = 0;
|
||
emit_block_move (validize_mem (save_area), stack_area,
|
||
GEN_INT (num_to_save),
|
||
PARM_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
else
|
||
{
|
||
save_area = gen_reg_rtx (save_mode);
|
||
emit_move_insn (save_area, stack_area);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Now store (and compute if necessary) all non-register parms.
|
||
These come before register parms, since they can require block-moves,
|
||
which could clobber the registers used for register parms.
|
||
Parms which have partial registers are not stored here,
|
||
but we do preallocate space here if they want that. */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg == 0 || args[i].pass_on_stack)
|
||
store_one_arg (&args[i], argblock, may_be_alloca,
|
||
args_size.var != 0, fndecl, reg_parm_stack_space);
|
||
|
||
#ifdef STRICT_ALIGNMENT
|
||
/* If we have a parm that is passed in registers but not in memory
|
||
and whose alignment does not permit a direct copy into registers,
|
||
make a group of pseudos that correspond to each register that we
|
||
will later fill. */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg != 0 && ! args[i].pass_on_stack
|
||
&& args[i].mode == BLKmode
|
||
&& (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
|
||
< MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
|
||
{
|
||
int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
||
int big_endian_correction = 0;
|
||
|
||
args[i].n_aligned_regs
|
||
= args[i].partial ? args[i].partial
|
||
: (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
||
|
||
args[i].aligned_regs = (rtx *) alloca (sizeof (rtx)
|
||
* args[i].n_aligned_regs);
|
||
|
||
/* Structures smaller than a word are aligned to the least significant
|
||
byte (to the right). On a BYTES_BIG_ENDIAN machine, this means we
|
||
must skip the empty high order bytes when calculating the bit
|
||
offset. */
|
||
if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD)
|
||
big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT));
|
||
|
||
for (j = 0; j < args[i].n_aligned_regs; j++)
|
||
{
|
||
rtx reg = gen_reg_rtx (word_mode);
|
||
rtx word = operand_subword_force (args[i].value, j, BLKmode);
|
||
int bitsize = TYPE_ALIGN (TREE_TYPE (args[i].tree_value));
|
||
int bitpos;
|
||
|
||
args[i].aligned_regs[j] = reg;
|
||
|
||
/* Clobber REG and move each partword into it. Ensure we don't
|
||
go past the end of the structure. Note that the loop below
|
||
works because we've already verified that padding
|
||
and endianness are compatible. */
|
||
|
||
emit_insn (gen_rtx (CLOBBER, VOIDmode, reg));
|
||
|
||
for (bitpos = 0;
|
||
bitpos < BITS_PER_WORD && bytes > 0;
|
||
bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT)
|
||
{
|
||
int xbitpos = bitpos + big_endian_correction;
|
||
|
||
store_bit_field (reg, bitsize, xbitpos, word_mode,
|
||
extract_bit_field (word, bitsize, bitpos, 1,
|
||
NULL_RTX, word_mode,
|
||
word_mode,
|
||
bitsize / BITS_PER_UNIT,
|
||
BITS_PER_WORD),
|
||
bitsize / BITS_PER_UNIT, BITS_PER_WORD);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Now store any partially-in-registers parm.
|
||
This is the last place a block-move can happen. */
|
||
if (reg_parm_seen)
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].partial != 0 && ! args[i].pass_on_stack)
|
||
store_one_arg (&args[i], argblock, may_be_alloca,
|
||
args_size.var != 0, fndecl, reg_parm_stack_space);
|
||
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we pushed args in forward order, perform stack alignment
|
||
after pushing the last arg. */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
/* If register arguments require space on the stack and stack space
|
||
was not preallocated, allocate stack space here for arguments
|
||
passed in registers. */
|
||
#if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE)
|
||
if (must_preallocate == 0 && reg_parm_stack_space > 0)
|
||
anti_adjust_stack (GEN_INT (reg_parm_stack_space));
|
||
#endif
|
||
|
||
/* Pass the function the address in which to return a structure value. */
|
||
if (structure_value_addr && ! structure_value_addr_parm)
|
||
{
|
||
emit_move_insn (struct_value_rtx,
|
||
force_reg (Pmode,
|
||
force_operand (structure_value_addr,
|
||
NULL_RTX)));
|
||
if (GET_CODE (struct_value_rtx) == REG)
|
||
use_reg (&call_fusage, struct_value_rtx);
|
||
}
|
||
|
||
funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen);
|
||
|
||
/* Now do the register loads required for any wholly-register parms or any
|
||
parms which are passed both on the stack and in a register. Their
|
||
expressions were already evaluated.
|
||
|
||
Mark all register-parms as living through the call, putting these USE
|
||
insns in the CALL_INSN_FUNCTION_USAGE field. */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
{
|
||
rtx list = args[i].reg;
|
||
int partial = args[i].partial;
|
||
|
||
while (list)
|
||
{
|
||
rtx reg;
|
||
int nregs;
|
||
|
||
/* Process each register that needs to get this arg. */
|
||
if (GET_CODE (list) == EXPR_LIST)
|
||
reg = XEXP (list, 0), list = XEXP (list, 1);
|
||
else
|
||
reg = list, list = 0;
|
||
|
||
/* Set to non-negative if must move a word at a time, even if just
|
||
one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
|
||
we just use a normal move insn. This value can be zero if the
|
||
argument is a zero size structure with no fields. */
|
||
nregs = (partial ? partial
|
||
: (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
|
||
? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
: -1));
|
||
|
||
/* If simple case, just do move. If normal partial, store_one_arg
|
||
has already loaded the register for us. In all other cases,
|
||
load the register(s) from memory. */
|
||
|
||
if (nregs == -1)
|
||
emit_move_insn (reg, args[i].value);
|
||
|
||
#ifdef STRICT_ALIGNMENT
|
||
/* If we have pre-computed the values to put in the registers in
|
||
the case of non-aligned structures, copy them in now. */
|
||
|
||
else if (args[i].n_aligned_regs != 0)
|
||
for (j = 0; j < args[i].n_aligned_regs; j++)
|
||
emit_move_insn (gen_rtx (REG, word_mode, REGNO (reg) + j),
|
||
args[i].aligned_regs[j]);
|
||
#endif
|
||
|
||
else if (args[i].partial == 0 || args[i].pass_on_stack)
|
||
move_block_to_reg (REGNO (reg),
|
||
validize_mem (args[i].value), nregs,
|
||
args[i].mode);
|
||
|
||
if (nregs == -1)
|
||
use_reg (&call_fusage, reg);
|
||
else
|
||
use_regs (&call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
|
||
|
||
/* PARTIAL referred only to the first register, so clear it for the
|
||
next time. */
|
||
partial = 0;
|
||
}
|
||
}
|
||
|
||
/* Perform postincrements before actually calling the function. */
|
||
emit_queue ();
|
||
|
||
/* All arguments and registers used for the call must be set up by now! */
|
||
|
||
/* Generate the actual call instruction. */
|
||
emit_call_1 (funexp, fndecl, funtype, args_size.constant, struct_value_size,
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
|
||
valreg, old_inhibit_defer_pop, call_fusage, is_const);
|
||
|
||
/* If call is cse'able, make appropriate pair of reg-notes around it.
|
||
Test valreg so we don't crash; may safely ignore `const'
|
||
if return type is void. */
|
||
if (is_const && valreg != 0)
|
||
{
|
||
rtx note = 0;
|
||
rtx temp = gen_reg_rtx (GET_MODE (valreg));
|
||
rtx insns;
|
||
|
||
/* Construct an "equal form" for the value which mentions all the
|
||
arguments in order as well as the function name. */
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
for (i = 0; i < num_actuals; i++)
|
||
note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note);
|
||
#else
|
||
for (i = num_actuals - 1; i >= 0; i--)
|
||
note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note);
|
||
#endif
|
||
note = gen_rtx (EXPR_LIST, VOIDmode, funexp, note);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, temp, valreg, note);
|
||
|
||
valreg = temp;
|
||
}
|
||
else if (is_const)
|
||
{
|
||
/* Otherwise, just write out the sequence without a note. */
|
||
rtx insns = get_insns ();
|
||
|
||
end_sequence ();
|
||
emit_insns (insns);
|
||
}
|
||
|
||
/* For calls to `setjmp', etc., inform flow.c it should complain
|
||
if nonvolatile values are live. */
|
||
|
||
if (returns_twice)
|
||
{
|
||
emit_note (name, NOTE_INSN_SETJMP);
|
||
current_function_calls_setjmp = 1;
|
||
}
|
||
|
||
if (is_longjmp)
|
||
current_function_calls_longjmp = 1;
|
||
|
||
/* Notice functions that cannot return.
|
||
If optimizing, insns emitted below will be dead.
|
||
If not optimizing, they will exist, which is useful
|
||
if the user uses the `return' command in the debugger. */
|
||
|
||
if (is_volatile || is_longjmp)
|
||
emit_barrier ();
|
||
|
||
/* If value type not void, return an rtx for the value. */
|
||
|
||
/* If there are cleanups to be called, don't use a hard reg as target. */
|
||
if (cleanups_this_call != old_cleanups
|
||
&& target && REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
|
||
target = 0;
|
||
|
||
if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
|
||
|| ignore)
|
||
{
|
||
target = const0_rtx;
|
||
}
|
||
else if (structure_value_addr)
|
||
{
|
||
if (target == 0 || GET_CODE (target) != MEM)
|
||
{
|
||
target = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)),
|
||
memory_address (TYPE_MODE (TREE_TYPE (exp)),
|
||
structure_value_addr));
|
||
MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
|
||
}
|
||
}
|
||
else if (pcc_struct_value)
|
||
{
|
||
if (target == 0)
|
||
{
|
||
/* We used leave the value in the location that it is
|
||
returned in, but that causes problems if it is used more
|
||
than once in one expression. Rather than trying to track
|
||
when a copy is required, we always copy when TARGET is
|
||
not specified. This calling sequence is only used on
|
||
a few machines and TARGET is usually nonzero. */
|
||
if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
|
||
{
|
||
target = assign_stack_temp (BLKmode,
|
||
int_size_in_bytes (TREE_TYPE (exp)),
|
||
0);
|
||
|
||
MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
|
||
|
||
/* Save this temp slot around the pop below. */
|
||
preserve_temp_slots (target);
|
||
}
|
||
else
|
||
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
||
}
|
||
|
||
if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
|
||
emit_move_insn (target, gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)),
|
||
copy_to_reg (valreg)));
|
||
else
|
||
emit_block_move (target, gen_rtx (MEM, BLKmode, copy_to_reg (valreg)),
|
||
expr_size (exp),
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
|
||
}
|
||
else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
|
||
&& GET_MODE (target) == GET_MODE (valreg))
|
||
/* TARGET and VALREG cannot be equal at this point because the latter
|
||
would not have REG_FUNCTION_VALUE_P true, while the former would if
|
||
it were referring to the same register.
|
||
|
||
If they refer to the same register, this move will be a no-op, except
|
||
when function inlining is being done. */
|
||
emit_move_insn (target, valreg);
|
||
else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
|
||
{
|
||
/* Some machines (the PA for example) want to return all small
|
||
structures in registers regardless of the structure's alignment.
|
||
|
||
Deal with them explicitly by copying from the return registers
|
||
into the target MEM locations. */
|
||
int bytes = int_size_in_bytes (TREE_TYPE (exp));
|
||
int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
int i;
|
||
enum machine_mode tmpmode;
|
||
rtx src, dst;
|
||
int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (exp)), BITS_PER_WORD);
|
||
int bitpos, xbitpos, big_endian_correction = 0;
|
||
|
||
if (target == 0)
|
||
{
|
||
target = assign_stack_temp (BLKmode, bytes, 0);
|
||
MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
|
||
preserve_temp_slots (target);
|
||
}
|
||
|
||
/* This code assumes valreg is at least a full word. If it isn't,
|
||
copy it into a new pseudo which is a full word. */
|
||
if (GET_MODE (valreg) != BLKmode
|
||
&& GET_MODE_SIZE (GET_MODE (valreg)) < UNITS_PER_WORD)
|
||
valreg = convert_to_mode (SImode, valreg,
|
||
TREE_UNSIGNED (TREE_TYPE (exp)));
|
||
|
||
/* Structures whose size is not a multiple of a word are aligned
|
||
to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
|
||
machine, this means we must skip the empty high order bytes when
|
||
calculating the bit offset. */
|
||
if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
|
||
big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
|
||
* BITS_PER_UNIT));
|
||
|
||
/* Copy the structure BITSIZE bites at a time.
|
||
|
||
We could probably emit more efficient code for machines
|
||
which do not use strict alignment, but it doesn't seem
|
||
worth the effort at the current time. */
|
||
for (bitpos = 0, xbitpos = big_endian_correction;
|
||
bitpos < bytes * BITS_PER_UNIT;
|
||
bitpos += bitsize, xbitpos += bitsize)
|
||
{
|
||
|
||
/* We need a new source operand each time xbitpos is on a
|
||
word boundary and when xbitpos == big_endian_correction
|
||
(the first time through). */
|
||
if (xbitpos % BITS_PER_WORD == 0
|
||
|| xbitpos == big_endian_correction)
|
||
src = operand_subword_force (valreg,
|
||
xbitpos / BITS_PER_WORD,
|
||
BLKmode);
|
||
|
||
/* We need a new destination operand each time bitpos is on
|
||
a word boundary. */
|
||
if (bitpos % BITS_PER_WORD == 0)
|
||
dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, BLKmode);
|
||
|
||
/* Use xbitpos for the source extraction (right justified) and
|
||
xbitpos for the destination store (left justified). */
|
||
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
|
||
extract_bit_field (src, bitsize,
|
||
xbitpos % BITS_PER_WORD, 1,
|
||
NULL_RTX, word_mode,
|
||
word_mode,
|
||
bitsize / BITS_PER_UNIT,
|
||
BITS_PER_WORD),
|
||
bitsize / BITS_PER_UNIT, BITS_PER_WORD);
|
||
}
|
||
}
|
||
else
|
||
target = copy_to_reg (valreg);
|
||
|
||
#ifdef PROMOTE_FUNCTION_RETURN
|
||
/* If we promoted this return value, make the proper SUBREG. TARGET
|
||
might be const0_rtx here, so be careful. */
|
||
if (GET_CODE (target) == REG
|
||
&& TYPE_MODE (TREE_TYPE (exp)) != BLKmode
|
||
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
int unsignedp = TREE_UNSIGNED (type);
|
||
|
||
/* If we don't promote as expected, something is wrong. */
|
||
if (GET_MODE (target)
|
||
!= promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
|
||
abort ();
|
||
|
||
target = gen_rtx (SUBREG, TYPE_MODE (type), target, 0);
|
||
SUBREG_PROMOTED_VAR_P (target) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp;
|
||
}
|
||
#endif
|
||
|
||
if (flag_short_temps)
|
||
{
|
||
/* Perform all cleanups needed for the arguments of this call
|
||
(i.e. destructors in C++). */
|
||
expand_cleanups_to (old_cleanups);
|
||
}
|
||
|
||
/* If size of args is variable or this was a constructor call for a stack
|
||
argument, restore saved stack-pointer value. */
|
||
|
||
if (old_stack_level)
|
||
{
|
||
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
|
||
pending_stack_adjust = old_pending_adj;
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
stack_arg_under_construction = old_stack_arg_under_construction;
|
||
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
||
stack_usage_map = initial_stack_usage_map;
|
||
#endif
|
||
}
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
else
|
||
{
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
if (save_area)
|
||
{
|
||
enum machine_mode save_mode = GET_MODE (save_area);
|
||
rtx stack_area
|
||
= gen_rtx (MEM, save_mode,
|
||
memory_address (save_mode,
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
plus_constant (argblock, - high_to_save)
|
||
#else
|
||
plus_constant (argblock, low_to_save)
|
||
#endif
|
||
));
|
||
|
||
if (save_mode != BLKmode)
|
||
emit_move_insn (stack_area, save_area);
|
||
else
|
||
emit_block_move (stack_area, validize_mem (save_area),
|
||
GEN_INT (high_to_save - low_to_save + 1),
|
||
PARM_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
#endif
|
||
|
||
/* If we saved any argument areas, restore them. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].save_area)
|
||
{
|
||
enum machine_mode save_mode = GET_MODE (args[i].save_area);
|
||
rtx stack_area
|
||
= gen_rtx (MEM, save_mode,
|
||
memory_address (save_mode,
|
||
XEXP (args[i].stack_slot, 0)));
|
||
|
||
if (save_mode != BLKmode)
|
||
emit_move_insn (stack_area, args[i].save_area);
|
||
else
|
||
emit_block_move (stack_area, validize_mem (args[i].save_area),
|
||
GEN_INT (args[i].size.constant),
|
||
PARM_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
|
||
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
||
stack_usage_map = initial_stack_usage_map;
|
||
}
|
||
#endif
|
||
|
||
/* If this was alloca, record the new stack level for nonlocal gotos.
|
||
Check for the handler slots since we might not have a save area
|
||
for non-local gotos. */
|
||
|
||
if (may_be_alloca && nonlocal_goto_handler_slot != 0)
|
||
emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
|
||
|
||
pop_temp_slots ();
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Output a library call to function FUN (a SYMBOL_REF rtx)
|
||
(emitting the queue unless NO_QUEUE is nonzero),
|
||
for a value of mode OUTMODE,
|
||
with NARGS different arguments, passed as alternating rtx values
|
||
and machine_modes to convert them to.
|
||
The rtx values should have been passed through protect_from_queue already.
|
||
|
||
NO_QUEUE will be true if and only if the library call is a `const' call
|
||
which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent
|
||
to the variable is_const in expand_call.
|
||
|
||
NO_QUEUE must be true for const calls, because if it isn't, then
|
||
any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes,
|
||
and will be lost if the libcall sequence is optimized away.
|
||
|
||
NO_QUEUE must be false for non-const calls, because if it isn't, the
|
||
call insn will have its CONST_CALL_P bit set, and it will be incorrectly
|
||
optimized. For instance, the instruction scheduler may incorrectly
|
||
move memory references across the non-const call. */
|
||
|
||
void
|
||
emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
|
||
int nargs, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
rtx orgfun;
|
||
int no_queue;
|
||
enum machine_mode outmode;
|
||
int nargs;
|
||
#endif
|
||
va_list p;
|
||
/* Total size in bytes of all the stack-parms scanned so far. */
|
||
struct args_size args_size;
|
||
/* Size of arguments before any adjustments (such as rounding). */
|
||
struct args_size original_args_size;
|
||
register int argnum;
|
||
rtx fun;
|
||
int inc;
|
||
int count;
|
||
rtx argblock = 0;
|
||
CUMULATIVE_ARGS args_so_far;
|
||
struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
|
||
struct args_size offset; struct args_size size; };
|
||
struct arg *argvec;
|
||
int old_inhibit_defer_pop = inhibit_defer_pop;
|
||
rtx call_fusage = 0;
|
||
/* library calls are never indirect calls. */
|
||
int current_call_is_indirect = 0;
|
||
|
||
VA_START (p, nargs);
|
||
|
||
#ifndef __STDC__
|
||
orgfun = va_arg (p, rtx);
|
||
no_queue = va_arg (p, int);
|
||
outmode = va_arg (p, enum machine_mode);
|
||
nargs = va_arg (p, int);
|
||
#endif
|
||
|
||
fun = orgfun;
|
||
|
||
/* Copy all the libcall-arguments out of the varargs data
|
||
and into a vector ARGVEC.
|
||
|
||
Compute how to pass each argument. We only support a very small subset
|
||
of the full argument passing conventions to limit complexity here since
|
||
library functions shouldn't have many args. */
|
||
|
||
argvec = (struct arg *) alloca (nargs * sizeof (struct arg));
|
||
|
||
INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun);
|
||
|
||
args_size.constant = 0;
|
||
args_size.var = 0;
|
||
|
||
push_temp_slots ();
|
||
|
||
for (count = 0; count < nargs; count++)
|
||
{
|
||
rtx val = va_arg (p, rtx);
|
||
enum machine_mode mode = va_arg (p, enum machine_mode);
|
||
|
||
/* We cannot convert the arg value to the mode the library wants here;
|
||
must do it earlier where we know the signedness of the arg. */
|
||
if (mode == BLKmode
|
||
|| (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
|
||
abort ();
|
||
|
||
/* On some machines, there's no way to pass a float to a library fcn.
|
||
Pass it as a double instead. */
|
||
#ifdef LIBGCC_NEEDS_DOUBLE
|
||
if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
|
||
val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
|
||
#endif
|
||
|
||
/* There's no need to call protect_from_queue, because
|
||
either emit_move_insn or emit_push_insn will do that. */
|
||
|
||
/* Make sure it is a reasonable operand for a move or push insn. */
|
||
if (GET_CODE (val) != REG && GET_CODE (val) != MEM
|
||
&& ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
|
||
val = force_operand (val, NULL_RTX);
|
||
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
|
||
{
|
||
/* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
|
||
be viewed as just an efficiency improvement. */
|
||
rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
|
||
emit_move_insn (slot, val);
|
||
val = force_operand (XEXP (slot, 0), NULL_RTX);
|
||
mode = Pmode;
|
||
}
|
||
#endif
|
||
|
||
argvec[count].value = val;
|
||
argvec[count].mode = mode;
|
||
|
||
argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
|
||
if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST)
|
||
abort ();
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
argvec[count].partial
|
||
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
|
||
#else
|
||
argvec[count].partial = 0;
|
||
#endif
|
||
|
||
locate_and_pad_parm (mode, NULL_TREE,
|
||
argvec[count].reg && argvec[count].partial == 0,
|
||
NULL_TREE, &args_size, &argvec[count].offset,
|
||
&argvec[count].size);
|
||
|
||
if (argvec[count].size.var)
|
||
abort ();
|
||
|
||
#ifndef REG_PARM_STACK_SPACE
|
||
if (argvec[count].partial)
|
||
argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
|
||
#endif
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| 1
|
||
#endif
|
||
)
|
||
args_size.constant += argvec[count].size.constant;
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* If this arg is actually passed on the stack, it might be
|
||
clobbering something we already put there (this library call might
|
||
be inside the evaluation of an argument to a function whose call
|
||
requires the stack). This will only occur when the library call
|
||
has sufficient args to run out of argument registers. Abort in
|
||
this case; if this ever occurs, code must be added to save and
|
||
restore the arg slot. */
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0)
|
||
abort ();
|
||
#endif
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1);
|
||
}
|
||
va_end (p);
|
||
|
||
/* If this machine requires an external definition for library
|
||
functions, write one out. */
|
||
assemble_external_libcall (fun);
|
||
|
||
original_args_size = args_size;
|
||
#ifdef STACK_BOUNDARY
|
||
args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
|
||
/ STACK_BYTES) * STACK_BYTES);
|
||
#endif
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
args_size.constant = MAX (args_size.constant,
|
||
REG_PARM_STACK_SPACE (NULL_TREE));
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE);
|
||
#endif
|
||
#endif
|
||
|
||
if (args_size.constant > current_function_outgoing_args_size)
|
||
current_function_outgoing_args_size = args_size.constant;
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
args_size.constant = 0;
|
||
#endif
|
||
|
||
#ifndef PUSH_ROUNDING
|
||
argblock = push_block (GEN_INT (args_size.constant), 0, 0);
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we push args individually in reverse order, perform stack alignment
|
||
before the first push (the last arg). */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
inc = -1;
|
||
argnum = nargs - 1;
|
||
#else
|
||
inc = 1;
|
||
argnum = 0;
|
||
#endif
|
||
|
||
/* Push the args that need to be pushed. */
|
||
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
register enum machine_mode mode = argvec[argnum].mode;
|
||
register rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
|
||
if (! (reg != 0 && partial == 0))
|
||
emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
|
||
argblock, GEN_INT (argvec[count].offset.constant));
|
||
NO_DEFER_POP;
|
||
}
|
||
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we pushed args in forward order, perform stack alignment
|
||
after pushing the last arg. */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
argnum = nargs - 1;
|
||
#else
|
||
argnum = 0;
|
||
#endif
|
||
|
||
fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
|
||
|
||
/* Now load any reg parms into their regs. */
|
||
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
register enum machine_mode mode = argvec[argnum].mode;
|
||
register rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
|
||
if (reg != 0 && partial == 0)
|
||
emit_move_insn (reg, val);
|
||
NO_DEFER_POP;
|
||
}
|
||
|
||
/* For version 1.37, try deleting this entirely. */
|
||
if (! no_queue)
|
||
emit_queue ();
|
||
|
||
/* Any regs containing parms remain in use through the call. */
|
||
for (count = 0; count < nargs; count++)
|
||
if (argvec[count].reg != 0)
|
||
use_reg (&call_fusage, argvec[count].reg);
|
||
|
||
/* Don't allow popping to be deferred, since then
|
||
cse'ing of library calls could delete a call and leave the pop. */
|
||
NO_DEFER_POP;
|
||
|
||
/* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
|
||
will set inhibit_defer_pop to that value. */
|
||
|
||
emit_call_1 (fun,
|
||
get_identifier (XSTR (orgfun, 0)),
|
||
get_identifier (XSTR (orgfun, 0)), args_size.constant, 0,
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
|
||
outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX,
|
||
old_inhibit_defer_pop + 1, call_fusage, no_queue);
|
||
|
||
pop_temp_slots ();
|
||
|
||
/* Now restore inhibit_defer_pop to its actual original value. */
|
||
OK_DEFER_POP;
|
||
}
|
||
|
||
/* Like emit_library_call except that an extra argument, VALUE,
|
||
comes second and says where to store the result.
|
||
(If VALUE is zero, this function chooses a convenient way
|
||
to return the value.
|
||
|
||
This function returns an rtx for where the value is to be found.
|
||
If VALUE is nonzero, VALUE is returned. */
|
||
|
||
rtx
|
||
emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue,
|
||
enum machine_mode outmode, int nargs, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
rtx orgfun;
|
||
rtx value;
|
||
int no_queue;
|
||
enum machine_mode outmode;
|
||
int nargs;
|
||
#endif
|
||
va_list p;
|
||
/* Total size in bytes of all the stack-parms scanned so far. */
|
||
struct args_size args_size;
|
||
/* Size of arguments before any adjustments (such as rounding). */
|
||
struct args_size original_args_size;
|
||
register int argnum;
|
||
rtx fun;
|
||
int inc;
|
||
int count;
|
||
rtx argblock = 0;
|
||
CUMULATIVE_ARGS args_so_far;
|
||
struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
|
||
struct args_size offset; struct args_size size; };
|
||
struct arg *argvec;
|
||
int old_inhibit_defer_pop = inhibit_defer_pop;
|
||
rtx call_fusage = 0;
|
||
rtx mem_value = 0;
|
||
int pcc_struct_value = 0;
|
||
int struct_value_size = 0;
|
||
/* library calls are never indirect calls. */
|
||
int current_call_is_indirect = 0;
|
||
int is_const;
|
||
|
||
VA_START (p, nargs);
|
||
|
||
#ifndef __STDC__
|
||
orgfun = va_arg (p, rtx);
|
||
value = va_arg (p, rtx);
|
||
no_queue = va_arg (p, int);
|
||
outmode = va_arg (p, enum machine_mode);
|
||
nargs = va_arg (p, int);
|
||
#endif
|
||
|
||
is_const = no_queue;
|
||
fun = orgfun;
|
||
|
||
/* If this kind of value comes back in memory,
|
||
decide where in memory it should come back. */
|
||
if (aggregate_value_p (type_for_mode (outmode, 0)))
|
||
{
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
rtx pointer_reg
|
||
= hard_function_value (build_pointer_type (type_for_mode (outmode, 0)),
|
||
0);
|
||
mem_value = gen_rtx (MEM, outmode, pointer_reg);
|
||
pcc_struct_value = 1;
|
||
if (value == 0)
|
||
value = gen_reg_rtx (outmode);
|
||
#else /* not PCC_STATIC_STRUCT_RETURN */
|
||
struct_value_size = GET_MODE_SIZE (outmode);
|
||
if (value != 0 && GET_CODE (value) == MEM)
|
||
mem_value = value;
|
||
else
|
||
mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0);
|
||
#endif
|
||
|
||
/* This call returns a big structure. */
|
||
is_const = 0;
|
||
}
|
||
|
||
/* ??? Unfinished: must pass the memory address as an argument. */
|
||
|
||
/* Copy all the libcall-arguments out of the varargs data
|
||
and into a vector ARGVEC.
|
||
|
||
Compute how to pass each argument. We only support a very small subset
|
||
of the full argument passing conventions to limit complexity here since
|
||
library functions shouldn't have many args. */
|
||
|
||
argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
|
||
|
||
INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun);
|
||
|
||
args_size.constant = 0;
|
||
args_size.var = 0;
|
||
|
||
count = 0;
|
||
|
||
push_temp_slots ();
|
||
|
||
/* If there's a structure value address to be passed,
|
||
either pass it in the special place, or pass it as an extra argument. */
|
||
if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
|
||
{
|
||
rtx addr = XEXP (mem_value, 0);
|
||
nargs++;
|
||
|
||
/* Make sure it is a reasonable operand for a move or push insn. */
|
||
if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
|
||
&& ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
|
||
addr = force_operand (addr, NULL_RTX);
|
||
|
||
argvec[count].value = addr;
|
||
argvec[count].mode = Pmode;
|
||
argvec[count].partial = 0;
|
||
|
||
argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
|
||
abort ();
|
||
#endif
|
||
|
||
locate_and_pad_parm (Pmode, NULL_TREE,
|
||
argvec[count].reg && argvec[count].partial == 0,
|
||
NULL_TREE, &args_size, &argvec[count].offset,
|
||
&argvec[count].size);
|
||
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| 1
|
||
#endif
|
||
)
|
||
args_size.constant += argvec[count].size.constant;
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree)0, 1);
|
||
|
||
count++;
|
||
}
|
||
|
||
for (; count < nargs; count++)
|
||
{
|
||
rtx val = va_arg (p, rtx);
|
||
enum machine_mode mode = va_arg (p, enum machine_mode);
|
||
|
||
/* We cannot convert the arg value to the mode the library wants here;
|
||
must do it earlier where we know the signedness of the arg. */
|
||
if (mode == BLKmode
|
||
|| (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
|
||
abort ();
|
||
|
||
/* On some machines, there's no way to pass a float to a library fcn.
|
||
Pass it as a double instead. */
|
||
#ifdef LIBGCC_NEEDS_DOUBLE
|
||
if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
|
||
val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
|
||
#endif
|
||
|
||
/* There's no need to call protect_from_queue, because
|
||
either emit_move_insn or emit_push_insn will do that. */
|
||
|
||
/* Make sure it is a reasonable operand for a move or push insn. */
|
||
if (GET_CODE (val) != REG && GET_CODE (val) != MEM
|
||
&& ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
|
||
val = force_operand (val, NULL_RTX);
|
||
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
|
||
{
|
||
/* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
|
||
be viewed as just an efficiency improvement. */
|
||
rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
|
||
emit_move_insn (slot, val);
|
||
val = XEXP (slot, 0);
|
||
mode = Pmode;
|
||
}
|
||
#endif
|
||
|
||
argvec[count].value = val;
|
||
argvec[count].mode = mode;
|
||
|
||
argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
|
||
if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST)
|
||
abort ();
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
argvec[count].partial
|
||
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
|
||
#else
|
||
argvec[count].partial = 0;
|
||
#endif
|
||
|
||
locate_and_pad_parm (mode, NULL_TREE,
|
||
argvec[count].reg && argvec[count].partial == 0,
|
||
NULL_TREE, &args_size, &argvec[count].offset,
|
||
&argvec[count].size);
|
||
|
||
if (argvec[count].size.var)
|
||
abort ();
|
||
|
||
#ifndef REG_PARM_STACK_SPACE
|
||
if (argvec[count].partial)
|
||
argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
|
||
#endif
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| 1
|
||
#endif
|
||
)
|
||
args_size.constant += argvec[count].size.constant;
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* If this arg is actually passed on the stack, it might be
|
||
clobbering something we already put there (this library call might
|
||
be inside the evaluation of an argument to a function whose call
|
||
requires the stack). This will only occur when the library call
|
||
has sufficient args to run out of argument registers. Abort in
|
||
this case; if this ever occurs, code must be added to save and
|
||
restore the arg slot. */
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0)
|
||
abort ();
|
||
#endif
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1);
|
||
}
|
||
va_end (p);
|
||
|
||
/* If this machine requires an external definition for library
|
||
functions, write one out. */
|
||
assemble_external_libcall (fun);
|
||
|
||
original_args_size = args_size;
|
||
#ifdef STACK_BOUNDARY
|
||
args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
|
||
/ STACK_BYTES) * STACK_BYTES);
|
||
#endif
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
args_size.constant = MAX (args_size.constant,
|
||
REG_PARM_STACK_SPACE (NULL_TREE));
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE);
|
||
#endif
|
||
#endif
|
||
|
||
if (args_size.constant > current_function_outgoing_args_size)
|
||
current_function_outgoing_args_size = args_size.constant;
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
args_size.constant = 0;
|
||
#endif
|
||
|
||
#ifndef PUSH_ROUNDING
|
||
argblock = push_block (GEN_INT (args_size.constant), 0, 0);
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we push args individually in reverse order, perform stack alignment
|
||
before the first push (the last arg). */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
inc = -1;
|
||
argnum = nargs - 1;
|
||
#else
|
||
inc = 1;
|
||
argnum = 0;
|
||
#endif
|
||
|
||
/* Push the args that need to be pushed. */
|
||
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
register enum machine_mode mode = argvec[argnum].mode;
|
||
register rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
|
||
if (! (reg != 0 && partial == 0))
|
||
emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
|
||
argblock, GEN_INT (argvec[count].offset.constant));
|
||
NO_DEFER_POP;
|
||
}
|
||
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
#ifdef STACK_BOUNDARY
|
||
/* If we pushed args in forward order, perform stack alignment
|
||
after pushing the last arg. */
|
||
if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef PUSH_ARGS_REVERSED
|
||
argnum = nargs - 1;
|
||
#else
|
||
argnum = 0;
|
||
#endif
|
||
|
||
fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
|
||
|
||
/* Now load any reg parms into their regs. */
|
||
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
register enum machine_mode mode = argvec[argnum].mode;
|
||
register rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
|
||
if (reg != 0 && partial == 0)
|
||
emit_move_insn (reg, val);
|
||
NO_DEFER_POP;
|
||
}
|
||
|
||
#if 0
|
||
/* For version 1.37, try deleting this entirely. */
|
||
if (! no_queue)
|
||
emit_queue ();
|
||
#endif
|
||
|
||
/* Any regs containing parms remain in use through the call. */
|
||
for (count = 0; count < nargs; count++)
|
||
if (argvec[count].reg != 0)
|
||
use_reg (&call_fusage, argvec[count].reg);
|
||
|
||
/* Pass the function the address in which to return a structure value. */
|
||
if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
|
||
{
|
||
emit_move_insn (struct_value_rtx,
|
||
force_reg (Pmode,
|
||
force_operand (XEXP (mem_value, 0),
|
||
NULL_RTX)));
|
||
if (GET_CODE (struct_value_rtx) == REG)
|
||
use_reg (&call_fusage, struct_value_rtx);
|
||
}
|
||
|
||
/* Don't allow popping to be deferred, since then
|
||
cse'ing of library calls could delete a call and leave the pop. */
|
||
NO_DEFER_POP;
|
||
|
||
/* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
|
||
will set inhibit_defer_pop to that value. */
|
||
|
||
emit_call_1 (fun,
|
||
get_identifier (XSTR (orgfun, 0)),
|
||
get_identifier (XSTR (orgfun, 0)), args_size.constant,
|
||
struct_value_size,
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
|
||
(outmode != VOIDmode && mem_value == 0
|
||
? hard_libcall_value (outmode) : NULL_RTX),
|
||
old_inhibit_defer_pop + 1, call_fusage, is_const);
|
||
|
||
/* Now restore inhibit_defer_pop to its actual original value. */
|
||
OK_DEFER_POP;
|
||
|
||
pop_temp_slots ();
|
||
|
||
/* Copy the value to the right place. */
|
||
if (outmode != VOIDmode)
|
||
{
|
||
if (mem_value)
|
||
{
|
||
if (value == 0)
|
||
value = mem_value;
|
||
if (value != mem_value)
|
||
emit_move_insn (value, mem_value);
|
||
}
|
||
else if (value != 0)
|
||
emit_move_insn (value, hard_libcall_value (outmode));
|
||
else
|
||
value = hard_libcall_value (outmode);
|
||
}
|
||
|
||
return value;
|
||
}
|
||
|
||
#if 0
|
||
/* Return an rtx which represents a suitable home on the stack
|
||
given TYPE, the type of the argument looking for a home.
|
||
This is called only for BLKmode arguments.
|
||
|
||
SIZE is the size needed for this target.
|
||
ARGS_ADDR is the address of the bottom of the argument block for this call.
|
||
OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless
|
||
if this machine uses push insns. */
|
||
|
||
static rtx
|
||
target_for_arg (type, size, args_addr, offset)
|
||
tree type;
|
||
rtx size;
|
||
rtx args_addr;
|
||
struct args_size offset;
|
||
{
|
||
rtx target;
|
||
rtx offset_rtx = ARGS_SIZE_RTX (offset);
|
||
|
||
/* We do not call memory_address if possible,
|
||
because we want to address as close to the stack
|
||
as possible. For non-variable sized arguments,
|
||
this will be stack-pointer relative addressing. */
|
||
if (GET_CODE (offset_rtx) == CONST_INT)
|
||
target = plus_constant (args_addr, INTVAL (offset_rtx));
|
||
else
|
||
{
|
||
/* I have no idea how to guarantee that this
|
||
will work in the presence of register parameters. */
|
||
target = gen_rtx (PLUS, Pmode, args_addr, offset_rtx);
|
||
target = memory_address (QImode, target);
|
||
}
|
||
|
||
return gen_rtx (MEM, BLKmode, target);
|
||
}
|
||
#endif
|
||
|
||
/* Store a single argument for a function call
|
||
into the register or memory area where it must be passed.
|
||
*ARG describes the argument value and where to pass it.
|
||
|
||
ARGBLOCK is the address of the stack-block for all the arguments,
|
||
or 0 on a machine where arguments are pushed individually.
|
||
|
||
MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
|
||
so must be careful about how the stack is used.
|
||
|
||
VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
|
||
argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
|
||
that we need not worry about saving and restoring the stack.
|
||
|
||
FNDECL is the declaration of the function we are calling. */
|
||
|
||
static void
|
||
store_one_arg (arg, argblock, may_be_alloca, variable_size, fndecl,
|
||
reg_parm_stack_space)
|
||
struct arg_data *arg;
|
||
rtx argblock;
|
||
int may_be_alloca;
|
||
int variable_size;
|
||
tree fndecl;
|
||
int reg_parm_stack_space;
|
||
{
|
||
register tree pval = arg->tree_value;
|
||
rtx reg = 0;
|
||
int partial = 0;
|
||
int used = 0;
|
||
int i, lower_bound, upper_bound;
|
||
|
||
if (TREE_CODE (pval) == ERROR_MARK)
|
||
return;
|
||
|
||
/* Push a new temporary level for any temporaries we make for
|
||
this argument. */
|
||
push_temp_slots ();
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* If this is being stored into a pre-allocated, fixed-size, stack area,
|
||
save any previous data at that location. */
|
||
if (argblock && ! variable_size && arg->stack)
|
||
{
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
/* stack_slot is negative, but we want to index stack_usage_map */
|
||
/* with positive values. */
|
||
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
||
upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
|
||
else
|
||
abort ();
|
||
|
||
lower_bound = upper_bound - arg->size.constant;
|
||
#else
|
||
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
||
lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
|
||
else
|
||
lower_bound = 0;
|
||
|
||
upper_bound = lower_bound + arg->size.constant;
|
||
#endif
|
||
|
||
for (i = lower_bound; i < upper_bound; i++)
|
||
if (stack_usage_map[i]
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
/* Don't store things in the fixed argument area at this point;
|
||
it has already been saved. */
|
||
&& i > reg_parm_stack_space
|
||
#endif
|
||
)
|
||
break;
|
||
|
||
if (i != upper_bound)
|
||
{
|
||
/* We need to make a save area. See what mode we can make it. */
|
||
enum machine_mode save_mode
|
||
= mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
|
||
rtx stack_area
|
||
= gen_rtx (MEM, save_mode,
|
||
memory_address (save_mode, XEXP (arg->stack_slot, 0)));
|
||
|
||
if (save_mode == BLKmode)
|
||
{
|
||
arg->save_area = assign_stack_temp (BLKmode,
|
||
arg->size.constant, 0);
|
||
MEM_IN_STRUCT_P (arg->save_area)
|
||
= AGGREGATE_TYPE_P (TREE_TYPE (arg->tree_value));
|
||
preserve_temp_slots (arg->save_area);
|
||
emit_block_move (validize_mem (arg->save_area), stack_area,
|
||
GEN_INT (arg->size.constant),
|
||
PARM_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
else
|
||
{
|
||
arg->save_area = gen_reg_rtx (save_mode);
|
||
emit_move_insn (arg->save_area, stack_area);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If this isn't going to be placed on both the stack and in registers,
|
||
set up the register and number of words. */
|
||
if (! arg->pass_on_stack)
|
||
reg = arg->reg, partial = arg->partial;
|
||
|
||
if (reg != 0 && partial == 0)
|
||
/* Being passed entirely in a register. We shouldn't be called in
|
||
this case. */
|
||
abort ();
|
||
|
||
#ifdef STRICT_ALIGNMENT
|
||
/* If this arg needs special alignment, don't load the registers
|
||
here. */
|
||
if (arg->n_aligned_regs != 0)
|
||
reg = 0;
|
||
#endif
|
||
|
||
/* If this is being partially passed in a register, but multiple locations
|
||
are specified, we assume that the one partially used is the one that is
|
||
listed first. */
|
||
if (reg && GET_CODE (reg) == EXPR_LIST)
|
||
reg = XEXP (reg, 0);
|
||
|
||
/* If this is being passed partially in a register, we can't evaluate
|
||
it directly into its stack slot. Otherwise, we can. */
|
||
if (arg->value == 0)
|
||
{
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* stack_arg_under_construction is nonzero if a function argument is
|
||
being evaluated directly into the outgoing argument list and
|
||
expand_call must take special action to preserve the argument list
|
||
if it is called recursively.
|
||
|
||
For scalar function arguments stack_usage_map is sufficient to
|
||
determine which stack slots must be saved and restored. Scalar
|
||
arguments in general have pass_on_stack == 0.
|
||
|
||
If this argument is initialized by a function which takes the
|
||
address of the argument (a C++ constructor or a C function
|
||
returning a BLKmode structure), then stack_usage_map is
|
||
insufficient and expand_call must push the stack around the
|
||
function call. Such arguments have pass_on_stack == 1.
|
||
|
||
Note that it is always safe to set stack_arg_under_construction,
|
||
but this generates suboptimal code if set when not needed. */
|
||
|
||
if (arg->pass_on_stack)
|
||
stack_arg_under_construction++;
|
||
#endif
|
||
arg->value = expand_expr (pval,
|
||
(partial
|
||
|| TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
|
||
? NULL_RTX : arg->stack,
|
||
VOIDmode, 0);
|
||
|
||
/* If we are promoting object (or for any other reason) the mode
|
||
doesn't agree, convert the mode. */
|
||
|
||
if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
|
||
arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
|
||
arg->value, arg->unsignedp);
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
if (arg->pass_on_stack)
|
||
stack_arg_under_construction--;
|
||
#endif
|
||
}
|
||
|
||
/* Don't allow anything left on stack from computation
|
||
of argument to alloca. */
|
||
if (may_be_alloca)
|
||
do_pending_stack_adjust ();
|
||
|
||
if (arg->value == arg->stack)
|
||
/* If the value is already in the stack slot, we are done. */
|
||
;
|
||
else if (arg->mode != BLKmode)
|
||
{
|
||
register int size;
|
||
|
||
/* Argument is a scalar, not entirely passed in registers.
|
||
(If part is passed in registers, arg->partial says how much
|
||
and emit_push_insn will take care of putting it there.)
|
||
|
||
Push it, and if its size is less than the
|
||
amount of space allocated to it,
|
||
also bump stack pointer by the additional space.
|
||
Note that in C the default argument promotions
|
||
will prevent such mismatches. */
|
||
|
||
size = GET_MODE_SIZE (arg->mode);
|
||
/* Compute how much space the push instruction will push.
|
||
On many machines, pushing a byte will advance the stack
|
||
pointer by a halfword. */
|
||
#ifdef PUSH_ROUNDING
|
||
size = PUSH_ROUNDING (size);
|
||
#endif
|
||
used = size;
|
||
|
||
/* Compute how much space the argument should get:
|
||
round up to a multiple of the alignment for arguments. */
|
||
if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
|
||
used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
|
||
/ (PARM_BOUNDARY / BITS_PER_UNIT))
|
||
* (PARM_BOUNDARY / BITS_PER_UNIT));
|
||
|
||
/* This isn't already where we want it on the stack, so put it there.
|
||
This can either be done with push or copy insns. */
|
||
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
|
||
0, partial, reg, used - size,
|
||
argblock, ARGS_SIZE_RTX (arg->offset));
|
||
}
|
||
else
|
||
{
|
||
/* BLKmode, at least partly to be pushed. */
|
||
|
||
register int excess;
|
||
rtx size_rtx;
|
||
|
||
/* Pushing a nonscalar.
|
||
If part is passed in registers, PARTIAL says how much
|
||
and emit_push_insn will take care of putting it there. */
|
||
|
||
/* Round its size up to a multiple
|
||
of the allocation unit for arguments. */
|
||
|
||
if (arg->size.var != 0)
|
||
{
|
||
excess = 0;
|
||
size_rtx = ARGS_SIZE_RTX (arg->size);
|
||
}
|
||
else
|
||
{
|
||
/* PUSH_ROUNDING has no effect on us, because
|
||
emit_push_insn for BLKmode is careful to avoid it. */
|
||
excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
|
||
+ partial * UNITS_PER_WORD);
|
||
size_rtx = expr_size (pval);
|
||
}
|
||
|
||
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
|
||
TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial,
|
||
reg, excess, argblock, ARGS_SIZE_RTX (arg->offset));
|
||
}
|
||
|
||
|
||
/* Unless this is a partially-in-register argument, the argument is now
|
||
in the stack.
|
||
|
||
??? Note that this can change arg->value from arg->stack to
|
||
arg->stack_slot and it matters when they are not the same.
|
||
It isn't totally clear that this is correct in all cases. */
|
||
if (partial == 0)
|
||
arg->value = arg->stack_slot;
|
||
|
||
/* Once we have pushed something, pops can't safely
|
||
be deferred during the rest of the arguments. */
|
||
NO_DEFER_POP;
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
|
||
/* Free any temporary slots made in processing this argument. Show
|
||
that we might have taken the address of something and pushed that
|
||
as an operand. */
|
||
preserve_temp_slots (NULL_RTX);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
|
||
#ifdef ACCUMULATE_OUTGOING_ARGS
|
||
/* Now mark the segment we just used. */
|
||
if (argblock && ! variable_size && arg->stack)
|
||
for (i = lower_bound; i < upper_bound; i++)
|
||
stack_usage_map[i] = 1;
|
||
#endif
|
||
}
|