mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-05 12:56:08 +00:00
ad45dd4174
Reviewed by: markm
478 lines
14 KiB
C
478 lines
14 KiB
C
/*
|
|
* Copyright (c) 2011 The FreeBSD Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Based on:
|
|
* SHA256-based Unix crypt implementation. Released into the Public Domain by
|
|
* Ulrich Drepper <drepper@redhat.com>. */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/endian.h>
|
|
#include <sys/param.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <sha256.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "crypt.h"
|
|
|
|
/* Define our magic string to mark salt for SHA256 "encryption" replacement. */
|
|
static const char sha256_salt_prefix[] = "$5$";
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
static const char sha256_rounds_prefix[] = "rounds=";
|
|
|
|
/* Maximum salt string length. */
|
|
#define SALT_LEN_MAX 16
|
|
/* Default number of rounds if not explicitly specified. */
|
|
#define ROUNDS_DEFAULT 5000
|
|
/* Minimum number of rounds. */
|
|
#define ROUNDS_MIN 1000
|
|
/* Maximum number of rounds. */
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
static char *
|
|
crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen)
|
|
{
|
|
u_long srounds;
|
|
int n;
|
|
uint8_t alt_result[32], temp_result[32];
|
|
SHA256_CTX ctx, alt_ctx;
|
|
size_t salt_len, key_len, cnt, rounds;
|
|
char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
|
|
const char *num;
|
|
bool rounds_custom;
|
|
|
|
copied_key = NULL;
|
|
copied_salt = NULL;
|
|
|
|
/* Default number of rounds. */
|
|
rounds = ROUNDS_DEFAULT;
|
|
rounds_custom = false;
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
* be present. Just in case it is not. */
|
|
if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
|
|
/* Skip salt prefix. */
|
|
salt += sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
|
|
== 0) {
|
|
num = salt + sizeof(sha256_rounds_prefix) - 1;
|
|
srounds = strtoul(num, &endp, 10);
|
|
|
|
if (*endp == '$') {
|
|
salt = endp + 1;
|
|
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
|
|
rounds_custom = true;
|
|
}
|
|
}
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
|
|
key_len = strlen(key);
|
|
|
|
/* Prepare for the real work. */
|
|
SHA256_Init(&ctx);
|
|
|
|
/* Add the key string. */
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
/* The last part is the salt string. This must be at most 8
|
|
* characters and it ends at the first `$' character (for
|
|
* compatibility with existing implementations). */
|
|
SHA256_Update(&ctx, salt, salt_len);
|
|
|
|
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
|
|
* final result will be added to the first context. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* Add key. */
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Add salt. */
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
/* Add key again. */
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Now get result of this (32 bytes) and add it to the other context. */
|
|
SHA256_Final(alt_result, &alt_ctx);
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
for (cnt = key_len; cnt > 32; cnt -= 32)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
SHA256_Update(&ctx, alt_result, cnt);
|
|
|
|
/* Take the binary representation of the length of the key and for
|
|
* every 1 add the alternate sum, for every 0 the key. */
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
else
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
/* Create intermediate result. */
|
|
SHA256_Final(alt_result, &ctx);
|
|
|
|
/* Start computation of P byte sequence. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Finish the digest. */
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
/* Create byte sequence P. */
|
|
cp = p_bytes = alloca(key_len);
|
|
for (cnt = key_len; cnt >= 32; cnt -= 32) {
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Start computation of S byte sequence. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
/* Finish the digest. */
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
/* Create byte sequence S. */
|
|
cp = s_bytes = alloca(salt_len);
|
|
for (cnt = salt_len; cnt >= 32; cnt -= 32) {
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Repeatedly run the collected hash value through SHA256 to burn CPU
|
|
* cycles. */
|
|
for (cnt = 0; cnt < rounds; ++cnt) {
|
|
/* New context. */
|
|
SHA256_Init(&ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
else
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
if (cnt % 3 != 0)
|
|
SHA256_Update(&ctx, s_bytes, salt_len);
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
if (cnt % 7 != 0)
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
else
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
/* Create intermediate result. */
|
|
SHA256_Final(alt_result, &ctx);
|
|
}
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
* parts. */
|
|
cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
|
|
buflen -= sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (rounds_custom) {
|
|
n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
sha256_rounds_prefix, rounds);
|
|
|
|
cp += n;
|
|
buflen -= n;
|
|
}
|
|
|
|
cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
|
|
buflen -= MIN((size_t)MAX(0, buflen), salt_len);
|
|
|
|
if (buflen > 0) {
|
|
*cp++ = '$';
|
|
--buflen;
|
|
}
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp);
|
|
b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp);
|
|
if (buflen <= 0) {
|
|
errno = ERANGE;
|
|
buffer = NULL;
|
|
}
|
|
else
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
* attaching to processes or reading core dumps cannot get any
|
|
* information. We do it in this way to clear correct_words[] inside
|
|
* the SHA256 implementation as well. */
|
|
SHA256_Init(&ctx);
|
|
SHA256_Final(alt_result, &ctx);
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
memset(p_bytes, '\0', key_len);
|
|
memset(s_bytes, '\0', salt_len);
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
if (copied_key != NULL)
|
|
memset(copied_key, '\0', key_len);
|
|
if (copied_salt != NULL)
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/* This entry point is equivalent to crypt(3). */
|
|
char *
|
|
crypt_sha256(const char *key, const char *salt)
|
|
{
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
* password. We can compute an upper bound for the size of the
|
|
* result in advance and so we can prepare the buffer we pass to
|
|
* `crypt_sha256_r'. */
|
|
static char *buffer;
|
|
static int buflen;
|
|
int needed;
|
|
char *new_buffer;
|
|
|
|
needed = (sizeof(sha256_salt_prefix) - 1
|
|
+ sizeof(sha256_rounds_prefix) + 9 + 1
|
|
+ strlen(salt) + 1 + 43 + 1);
|
|
|
|
if (buflen < needed) {
|
|
new_buffer = (char *)realloc(buffer, needed);
|
|
|
|
if (new_buffer == NULL)
|
|
return NULL;
|
|
|
|
buffer = new_buffer;
|
|
buflen = needed;
|
|
}
|
|
|
|
return crypt_sha256_r(key, salt, buffer, buflen);
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
static const struct {
|
|
const char *input;
|
|
const char result[32];
|
|
} tests[] =
|
|
{
|
|
/* Test vectors from FIPS 180-2: appendix B.1. */
|
|
{
|
|
"abc",
|
|
"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
|
|
"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
|
|
},
|
|
/* Test vectors from FIPS 180-2: appendix B.2. */
|
|
{
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
|
|
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
|
|
},
|
|
/* Test vectors from the NESSIE project. */
|
|
{
|
|
"",
|
|
"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
|
|
"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
|
|
},
|
|
{
|
|
"a",
|
|
"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
|
|
"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
|
|
},
|
|
{
|
|
"message digest",
|
|
"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
|
|
"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
|
|
},
|
|
{
|
|
"abcdefghijklmnopqrstuvwxyz",
|
|
"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
|
|
"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
|
|
},
|
|
{
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
|
|
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
|
|
},
|
|
{
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
|
|
"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
|
|
"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
|
|
},
|
|
{
|
|
"123456789012345678901234567890123456789012345678901234567890"
|
|
"12345678901234567890",
|
|
"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
|
|
"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
|
|
}
|
|
};
|
|
|
|
#define ntests (sizeof (tests) / sizeof (tests[0]))
|
|
|
|
static const struct {
|
|
const char *salt;
|
|
const char *input;
|
|
const char *expected;
|
|
} tests2[] =
|
|
{
|
|
{
|
|
"$5$saltstring", "Hello world!",
|
|
"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
|
|
},
|
|
{
|
|
"$5$rounds=10000$saltstringsaltstring", "Hello world!",
|
|
"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
|
|
"opqey6IcA"
|
|
},
|
|
{
|
|
"$5$rounds=5000$toolongsaltstring", "This is just a test",
|
|
"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
|
|
"mGRcvxa5"
|
|
},
|
|
{
|
|
"$5$rounds=1400$anotherlongsaltstring",
|
|
"a very much longer text to encrypt. This one even stretches over more"
|
|
"than one line.",
|
|
"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
|
|
"oP84Bnq1"
|
|
},
|
|
{
|
|
"$5$rounds=77777$short",
|
|
"we have a short salt string but not a short password",
|
|
"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
|
|
},
|
|
{
|
|
"$5$rounds=123456$asaltof16chars..", "a short string",
|
|
"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
|
|
"cZKmF/wJvD"
|
|
},
|
|
{
|
|
"$5$rounds=10$roundstoolow", "the minimum number is still observed",
|
|
"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
|
|
"2bIC"
|
|
},
|
|
};
|
|
|
|
#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
|
|
|
|
int
|
|
main(void)
|
|
{
|
|
SHA256_CTX ctx;
|
|
uint8_t sum[32];
|
|
int result = 0;
|
|
int i, cnt;
|
|
|
|
for (cnt = 0; cnt < (int)ntests; ++cnt) {
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
|
|
SHA256_Final(sum, &ctx);
|
|
if (memcmp(tests[cnt].result, sum, 32) != 0) {
|
|
for (i = 0; i < 32; i++)
|
|
printf("%02X", tests[cnt].result[i]);
|
|
printf("\n");
|
|
for (i = 0; i < 32; i++)
|
|
printf("%02X", sum[i]);
|
|
printf("\n");
|
|
printf("test %d run %d failed\n", cnt, 1);
|
|
result = 1;
|
|
}
|
|
|
|
SHA256_Init(&ctx);
|
|
for (i = 0; tests[cnt].input[i] != '\0'; ++i)
|
|
SHA256_Update(&ctx, &tests[cnt].input[i], 1);
|
|
SHA256_Final(sum, &ctx);
|
|
if (memcmp(tests[cnt].result, sum, 32) != 0) {
|
|
for (i = 0; i < 32; i++)
|
|
printf("%02X", tests[cnt].result[i]);
|
|
printf("\n");
|
|
for (i = 0; i < 32; i++)
|
|
printf("%02X", sum[i]);
|
|
printf("\n");
|
|
printf("test %d run %d failed\n", cnt, 2);
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
/* Test vector from FIPS 180-2: appendix B.3. */
|
|
char buf[1000];
|
|
|
|
memset(buf, 'a', sizeof(buf));
|
|
SHA256_Init(&ctx);
|
|
for (i = 0; i < 1000; ++i)
|
|
SHA256_Update(&ctx, buf, sizeof(buf));
|
|
SHA256_Final(sum, &ctx);
|
|
static const char expected[32] =
|
|
"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
|
|
"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
|
|
|
|
if (memcmp(expected, sum, 32) != 0) {
|
|
printf("test %d failed\n", cnt);
|
|
result = 1;
|
|
}
|
|
|
|
for (cnt = 0; cnt < ntests2; ++cnt) {
|
|
char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
|
|
|
|
if (strcmp(cp, tests2[cnt].expected) != 0) {
|
|
printf("test %d: expected \"%s\", got \"%s\"\n",
|
|
cnt, tests2[cnt].expected, cp);
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
if (result == 0)
|
|
puts("all tests OK");
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* TEST */
|