mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-26 16:18:31 +00:00
723 lines
19 KiB
C
723 lines
19 KiB
C
/*
|
|
* SHA1 hash implementation and interface functions
|
|
* Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of BSD
|
|
* license.
|
|
*
|
|
* See README and COPYING for more details.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#include "common.h"
|
|
#include "sha1.h"
|
|
#include "md5.h"
|
|
#include "crypto.h"
|
|
|
|
|
|
/**
|
|
* hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
|
|
* @key: Key for HMAC operations
|
|
* @key_len: Length of the key in bytes
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash (20 bytes)
|
|
*/
|
|
void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
|
|
const u8 *addr[], const size_t *len, u8 *mac)
|
|
{
|
|
unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
|
|
unsigned char tk[20];
|
|
const u8 *_addr[6];
|
|
size_t _len[6], i;
|
|
|
|
if (num_elem > 5) {
|
|
/*
|
|
* Fixed limit on the number of fragments to avoid having to
|
|
* allocate memory (which could fail).
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* if key is longer than 64 bytes reset it to key = SHA1(key) */
|
|
if (key_len > 64) {
|
|
sha1_vector(1, &key, &key_len, tk);
|
|
key = tk;
|
|
key_len = 20;
|
|
}
|
|
|
|
/* the HMAC_SHA1 transform looks like:
|
|
*
|
|
* SHA1(K XOR opad, SHA1(K XOR ipad, text))
|
|
*
|
|
* where K is an n byte key
|
|
* ipad is the byte 0x36 repeated 64 times
|
|
* opad is the byte 0x5c repeated 64 times
|
|
* and text is the data being protected */
|
|
|
|
/* start out by storing key in ipad */
|
|
os_memset(k_pad, 0, sizeof(k_pad));
|
|
os_memcpy(k_pad, key, key_len);
|
|
/* XOR key with ipad values */
|
|
for (i = 0; i < 64; i++)
|
|
k_pad[i] ^= 0x36;
|
|
|
|
/* perform inner SHA1 */
|
|
_addr[0] = k_pad;
|
|
_len[0] = 64;
|
|
for (i = 0; i < num_elem; i++) {
|
|
_addr[i + 1] = addr[i];
|
|
_len[i + 1] = len[i];
|
|
}
|
|
sha1_vector(1 + num_elem, _addr, _len, mac);
|
|
|
|
os_memset(k_pad, 0, sizeof(k_pad));
|
|
os_memcpy(k_pad, key, key_len);
|
|
/* XOR key with opad values */
|
|
for (i = 0; i < 64; i++)
|
|
k_pad[i] ^= 0x5c;
|
|
|
|
/* perform outer SHA1 */
|
|
_addr[0] = k_pad;
|
|
_len[0] = 64;
|
|
_addr[1] = mac;
|
|
_len[1] = SHA1_MAC_LEN;
|
|
sha1_vector(2, _addr, _len, mac);
|
|
}
|
|
|
|
|
|
/**
|
|
* hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
|
|
* @key: Key for HMAC operations
|
|
* @key_len: Length of the key in bytes
|
|
* @data: Pointers to the data area
|
|
* @data_len: Length of the data area
|
|
* @mac: Buffer for the hash (20 bytes)
|
|
*/
|
|
void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
|
|
u8 *mac)
|
|
{
|
|
hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
|
|
}
|
|
|
|
|
|
/**
|
|
* sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
|
|
* @key: Key for PRF
|
|
* @key_len: Length of the key in bytes
|
|
* @label: A unique label for each purpose of the PRF
|
|
* @data: Extra data to bind into the key
|
|
* @data_len: Length of the data
|
|
* @buf: Buffer for the generated pseudo-random key
|
|
* @buf_len: Number of bytes of key to generate
|
|
*
|
|
* This function is used to derive new, cryptographically separate keys from a
|
|
* given key (e.g., PMK in IEEE 802.11i).
|
|
*/
|
|
void sha1_prf(const u8 *key, size_t key_len, const char *label,
|
|
const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
|
|
{
|
|
u8 zero = 0, counter = 0;
|
|
size_t pos, plen;
|
|
u8 hash[SHA1_MAC_LEN];
|
|
size_t label_len = os_strlen(label);
|
|
const unsigned char *addr[4];
|
|
size_t len[4];
|
|
|
|
addr[0] = (u8 *) label;
|
|
len[0] = label_len;
|
|
addr[1] = &zero;
|
|
len[1] = 1;
|
|
addr[2] = data;
|
|
len[2] = data_len;
|
|
addr[3] = &counter;
|
|
len[3] = 1;
|
|
|
|
pos = 0;
|
|
while (pos < buf_len) {
|
|
plen = buf_len - pos;
|
|
if (plen >= SHA1_MAC_LEN) {
|
|
hmac_sha1_vector(key, key_len, 4, addr, len,
|
|
&buf[pos]);
|
|
pos += SHA1_MAC_LEN;
|
|
} else {
|
|
hmac_sha1_vector(key, key_len, 4, addr, len,
|
|
hash);
|
|
os_memcpy(&buf[pos], hash, plen);
|
|
break;
|
|
}
|
|
counter++;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF)
|
|
* @key: Key for PRF
|
|
* @key_len: Length of the key in bytes
|
|
* @label: A unique label for each purpose of the PRF
|
|
* @seed: Seed value to bind into the key
|
|
* @seed_len: Length of the seed
|
|
* @buf: Buffer for the generated pseudo-random key
|
|
* @buf_len: Number of bytes of key to generate
|
|
*
|
|
* This function is used to derive new, cryptographically separate keys from a
|
|
* given key for EAP-FAST. T-PRF is defined in
|
|
* draft-cam-winget-eap-fast-02.txt, Appendix B.
|
|
*/
|
|
void sha1_t_prf(const u8 *key, size_t key_len, const char *label,
|
|
const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len)
|
|
{
|
|
unsigned char counter = 0;
|
|
size_t pos, plen;
|
|
u8 hash[SHA1_MAC_LEN];
|
|
size_t label_len = os_strlen(label);
|
|
u8 output_len[2];
|
|
const unsigned char *addr[5];
|
|
size_t len[5];
|
|
|
|
addr[0] = hash;
|
|
len[0] = 0;
|
|
addr[1] = (unsigned char *) label;
|
|
len[1] = label_len + 1;
|
|
addr[2] = seed;
|
|
len[2] = seed_len;
|
|
addr[3] = output_len;
|
|
len[3] = 2;
|
|
addr[4] = &counter;
|
|
len[4] = 1;
|
|
|
|
output_len[0] = (buf_len >> 8) & 0xff;
|
|
output_len[1] = buf_len & 0xff;
|
|
pos = 0;
|
|
while (pos < buf_len) {
|
|
counter++;
|
|
plen = buf_len - pos;
|
|
hmac_sha1_vector(key, key_len, 5, addr, len, hash);
|
|
if (plen >= SHA1_MAC_LEN) {
|
|
os_memcpy(&buf[pos], hash, SHA1_MAC_LEN);
|
|
pos += SHA1_MAC_LEN;
|
|
} else {
|
|
os_memcpy(&buf[pos], hash, plen);
|
|
break;
|
|
}
|
|
len[0] = SHA1_MAC_LEN;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
|
|
* @secret: Key for PRF
|
|
* @secret_len: Length of the key in bytes
|
|
* @label: A unique label for each purpose of the PRF
|
|
* @seed: Seed value to bind into the key
|
|
* @seed_len: Length of the seed
|
|
* @out: Buffer for the generated pseudo-random key
|
|
* @outlen: Number of bytes of key to generate
|
|
* Returns: 0 on success, -1 on failure.
|
|
*
|
|
* This function is used to derive new, cryptographically separate keys from a
|
|
* given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
|
|
*/
|
|
int tls_prf(const u8 *secret, size_t secret_len, const char *label,
|
|
const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
|
|
{
|
|
size_t L_S1, L_S2, i;
|
|
const u8 *S1, *S2;
|
|
u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
|
|
u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
|
|
int MD5_pos, SHA1_pos;
|
|
const u8 *MD5_addr[3];
|
|
size_t MD5_len[3];
|
|
const unsigned char *SHA1_addr[3];
|
|
size_t SHA1_len[3];
|
|
|
|
if (secret_len & 1)
|
|
return -1;
|
|
|
|
MD5_addr[0] = A_MD5;
|
|
MD5_len[0] = MD5_MAC_LEN;
|
|
MD5_addr[1] = (unsigned char *) label;
|
|
MD5_len[1] = os_strlen(label);
|
|
MD5_addr[2] = seed;
|
|
MD5_len[2] = seed_len;
|
|
|
|
SHA1_addr[0] = A_SHA1;
|
|
SHA1_len[0] = SHA1_MAC_LEN;
|
|
SHA1_addr[1] = (unsigned char *) label;
|
|
SHA1_len[1] = os_strlen(label);
|
|
SHA1_addr[2] = seed;
|
|
SHA1_len[2] = seed_len;
|
|
|
|
/* RFC 2246, Chapter 5
|
|
* A(0) = seed, A(i) = HMAC(secret, A(i-1))
|
|
* P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
|
|
* PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
|
|
*/
|
|
|
|
L_S1 = L_S2 = (secret_len + 1) / 2;
|
|
S1 = secret;
|
|
S2 = secret + L_S1;
|
|
|
|
hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
|
|
hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
|
|
|
|
MD5_pos = MD5_MAC_LEN;
|
|
SHA1_pos = SHA1_MAC_LEN;
|
|
for (i = 0; i < outlen; i++) {
|
|
if (MD5_pos == MD5_MAC_LEN) {
|
|
hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
|
|
MD5_pos = 0;
|
|
hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
|
|
}
|
|
if (SHA1_pos == SHA1_MAC_LEN) {
|
|
hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
|
|
P_SHA1);
|
|
SHA1_pos = 0;
|
|
hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
|
|
}
|
|
|
|
out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
|
|
|
|
MD5_pos++;
|
|
SHA1_pos++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void pbkdf2_sha1_f(const char *passphrase, const char *ssid,
|
|
size_t ssid_len, int iterations, unsigned int count,
|
|
u8 *digest)
|
|
{
|
|
unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN];
|
|
int i, j;
|
|
unsigned char count_buf[4];
|
|
const u8 *addr[2];
|
|
size_t len[2];
|
|
size_t passphrase_len = os_strlen(passphrase);
|
|
|
|
addr[0] = (u8 *) ssid;
|
|
len[0] = ssid_len;
|
|
addr[1] = count_buf;
|
|
len[1] = 4;
|
|
|
|
/* F(P, S, c, i) = U1 xor U2 xor ... Uc
|
|
* U1 = PRF(P, S || i)
|
|
* U2 = PRF(P, U1)
|
|
* Uc = PRF(P, Uc-1)
|
|
*/
|
|
|
|
count_buf[0] = (count >> 24) & 0xff;
|
|
count_buf[1] = (count >> 16) & 0xff;
|
|
count_buf[2] = (count >> 8) & 0xff;
|
|
count_buf[3] = count & 0xff;
|
|
hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp);
|
|
os_memcpy(digest, tmp, SHA1_MAC_LEN);
|
|
|
|
for (i = 1; i < iterations; i++) {
|
|
hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN,
|
|
tmp2);
|
|
os_memcpy(tmp, tmp2, SHA1_MAC_LEN);
|
|
for (j = 0; j < SHA1_MAC_LEN; j++)
|
|
digest[j] ^= tmp2[j];
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i
|
|
* @passphrase: ASCII passphrase
|
|
* @ssid: SSID
|
|
* @ssid_len: SSID length in bytes
|
|
* @interations: Number of iterations to run
|
|
* @buf: Buffer for the generated key
|
|
* @buflen: Length of the buffer in bytes
|
|
*
|
|
* This function is used to derive PSK for WPA-PSK. For this protocol,
|
|
* iterations is set to 4096 and buflen to 32. This function is described in
|
|
* IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0.
|
|
*/
|
|
void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len,
|
|
int iterations, u8 *buf, size_t buflen)
|
|
{
|
|
unsigned int count = 0;
|
|
unsigned char *pos = buf;
|
|
size_t left = buflen, plen;
|
|
unsigned char digest[SHA1_MAC_LEN];
|
|
|
|
while (left > 0) {
|
|
count++;
|
|
pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count,
|
|
digest);
|
|
plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left;
|
|
os_memcpy(pos, digest, plen);
|
|
pos += plen;
|
|
left -= plen;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef INTERNAL_SHA1
|
|
|
|
struct SHA1Context {
|
|
u32 state[5];
|
|
u32 count[2];
|
|
unsigned char buffer[64];
|
|
};
|
|
|
|
typedef struct SHA1Context SHA1_CTX;
|
|
|
|
#ifndef CONFIG_CRYPTO_INTERNAL
|
|
static void SHA1Init(struct SHA1Context *context);
|
|
static void SHA1Update(struct SHA1Context *context, const void *data, u32 len);
|
|
static void SHA1Final(unsigned char digest[20], struct SHA1Context *context);
|
|
#endif /* CONFIG_CRYPTO_INTERNAL */
|
|
static void SHA1Transform(u32 state[5], const unsigned char buffer[64]);
|
|
|
|
|
|
/**
|
|
* sha1_vector - SHA-1 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
*/
|
|
void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
|
|
u8 *mac)
|
|
{
|
|
SHA1_CTX ctx;
|
|
size_t i;
|
|
|
|
SHA1Init(&ctx);
|
|
for (i = 0; i < num_elem; i++)
|
|
SHA1Update(&ctx, addr[i], len[i]);
|
|
SHA1Final(mac, &ctx);
|
|
}
|
|
|
|
|
|
int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
|
|
{
|
|
u8 xkey[64];
|
|
u32 t[5], _t[5];
|
|
int i, j, m, k;
|
|
u8 *xpos = x;
|
|
u32 carry;
|
|
|
|
if (seed_len > sizeof(xkey))
|
|
seed_len = sizeof(xkey);
|
|
|
|
/* FIPS 186-2 + change notice 1 */
|
|
|
|
os_memcpy(xkey, seed, seed_len);
|
|
os_memset(xkey + seed_len, 0, 64 - seed_len);
|
|
t[0] = 0x67452301;
|
|
t[1] = 0xEFCDAB89;
|
|
t[2] = 0x98BADCFE;
|
|
t[3] = 0x10325476;
|
|
t[4] = 0xC3D2E1F0;
|
|
|
|
m = xlen / 40;
|
|
for (j = 0; j < m; j++) {
|
|
/* XSEED_j = 0 */
|
|
for (i = 0; i < 2; i++) {
|
|
/* XVAL = (XKEY + XSEED_j) mod 2^b */
|
|
|
|
/* w_i = G(t, XVAL) */
|
|
os_memcpy(_t, t, 20);
|
|
SHA1Transform(_t, xkey);
|
|
_t[0] = host_to_be32(_t[0]);
|
|
_t[1] = host_to_be32(_t[1]);
|
|
_t[2] = host_to_be32(_t[2]);
|
|
_t[3] = host_to_be32(_t[3]);
|
|
_t[4] = host_to_be32(_t[4]);
|
|
os_memcpy(xpos, _t, 20);
|
|
|
|
/* XKEY = (1 + XKEY + w_i) mod 2^b */
|
|
carry = 1;
|
|
for (k = 19; k >= 0; k--) {
|
|
carry += xkey[k] + xpos[k];
|
|
xkey[k] = carry & 0xff;
|
|
carry >>= 8;
|
|
}
|
|
|
|
xpos += SHA1_MAC_LEN;
|
|
}
|
|
/* x_j = w_0|w_1 */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* ===== start - public domain SHA1 implementation ===== */
|
|
|
|
/*
|
|
SHA-1 in C
|
|
By Steve Reid <sreid@sea-to-sky.net>
|
|
100% Public Domain
|
|
|
|
-----------------
|
|
Modified 7/98
|
|
By James H. Brown <jbrown@burgoyne.com>
|
|
Still 100% Public Domain
|
|
|
|
Corrected a problem which generated improper hash values on 16 bit machines
|
|
Routine SHA1Update changed from
|
|
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
|
|
len)
|
|
to
|
|
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
|
|
long len)
|
|
|
|
The 'len' parameter was declared an int which works fine on 32 bit machines.
|
|
However, on 16 bit machines an int is too small for the shifts being done
|
|
against
|
|
it. This caused the hash function to generate incorrect values if len was
|
|
greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
|
|
|
|
Since the file IO in main() reads 16K at a time, any file 8K or larger would
|
|
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
|
|
"a"s).
|
|
|
|
I also changed the declaration of variables i & j in SHA1Update to
|
|
unsigned long from unsigned int for the same reason.
|
|
|
|
These changes should make no difference to any 32 bit implementations since
|
|
an
|
|
int and a long are the same size in those environments.
|
|
|
|
--
|
|
I also corrected a few compiler warnings generated by Borland C.
|
|
1. Added #include <process.h> for exit() prototype
|
|
2. Removed unused variable 'j' in SHA1Final
|
|
3. Changed exit(0) to return(0) at end of main.
|
|
|
|
ALL changes I made can be located by searching for comments containing 'JHB'
|
|
-----------------
|
|
Modified 8/98
|
|
By Steve Reid <sreid@sea-to-sky.net>
|
|
Still 100% public domain
|
|
|
|
1- Removed #include <process.h> and used return() instead of exit()
|
|
2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
|
|
3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
|
|
|
|
-----------------
|
|
Modified 4/01
|
|
By Saul Kravitz <Saul.Kravitz@celera.com>
|
|
Still 100% PD
|
|
Modified to run on Compaq Alpha hardware.
|
|
|
|
-----------------
|
|
Modified 4/01
|
|
By Jouni Malinen <j@w1.fi>
|
|
Minor changes to match the coding style used in Dynamics.
|
|
|
|
Modified September 24, 2004
|
|
By Jouni Malinen <j@w1.fi>
|
|
Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.
|
|
|
|
*/
|
|
|
|
/*
|
|
Test Vectors (from FIPS PUB 180-1)
|
|
"abc"
|
|
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
|
|
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
|
|
A million repetitions of "a"
|
|
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
|
|
*/
|
|
|
|
#define SHA1HANDSOFF
|
|
|
|
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
|
|
|
/* blk0() and blk() perform the initial expand. */
|
|
/* I got the idea of expanding during the round function from SSLeay */
|
|
#ifndef WORDS_BIGENDIAN
|
|
#define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
|
|
(rol(block->l[i], 8) & 0x00FF00FF))
|
|
#else
|
|
#define blk0(i) block->l[i]
|
|
#endif
|
|
#define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
|
|
block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
|
|
|
|
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
|
#define R0(v,w,x,y,z,i) \
|
|
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R1(v,w,x,y,z,i) \
|
|
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R2(v,w,x,y,z,i) \
|
|
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
|
|
#define R3(v,w,x,y,z,i) \
|
|
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R4(v,w,x,y,z,i) \
|
|
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
|
|
w=rol(w, 30);
|
|
|
|
|
|
#ifdef VERBOSE /* SAK */
|
|
void SHAPrintContext(SHA1_CTX *context, char *msg)
|
|
{
|
|
printf("%s (%d,%d) %x %x %x %x %x\n",
|
|
msg,
|
|
context->count[0], context->count[1],
|
|
context->state[0],
|
|
context->state[1],
|
|
context->state[2],
|
|
context->state[3],
|
|
context->state[4]);
|
|
}
|
|
#endif
|
|
|
|
/* Hash a single 512-bit block. This is the core of the algorithm. */
|
|
|
|
static void SHA1Transform(u32 state[5], const unsigned char buffer[64])
|
|
{
|
|
u32 a, b, c, d, e;
|
|
typedef union {
|
|
unsigned char c[64];
|
|
u32 l[16];
|
|
} CHAR64LONG16;
|
|
CHAR64LONG16* block;
|
|
#ifdef SHA1HANDSOFF
|
|
u32 workspace[16];
|
|
block = (CHAR64LONG16 *) workspace;
|
|
os_memcpy(block, buffer, 64);
|
|
#else
|
|
block = (CHAR64LONG16 *) buffer;
|
|
#endif
|
|
/* Copy context->state[] to working vars */
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
e = state[4];
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
|
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
|
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
|
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
/* Add the working vars back into context.state[] */
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
/* Wipe variables */
|
|
a = b = c = d = e = 0;
|
|
#ifdef SHA1HANDSOFF
|
|
os_memset(block, 0, 64);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* SHA1Init - Initialize new context */
|
|
|
|
void SHA1Init(SHA1_CTX* context)
|
|
{
|
|
/* SHA1 initialization constants */
|
|
context->state[0] = 0x67452301;
|
|
context->state[1] = 0xEFCDAB89;
|
|
context->state[2] = 0x98BADCFE;
|
|
context->state[3] = 0x10325476;
|
|
context->state[4] = 0xC3D2E1F0;
|
|
context->count[0] = context->count[1] = 0;
|
|
}
|
|
|
|
|
|
/* Run your data through this. */
|
|
|
|
void SHA1Update(SHA1_CTX* context, const void *_data, u32 len)
|
|
{
|
|
u32 i, j;
|
|
const unsigned char *data = _data;
|
|
|
|
#ifdef VERBOSE
|
|
SHAPrintContext(context, "before");
|
|
#endif
|
|
j = (context->count[0] >> 3) & 63;
|
|
if ((context->count[0] += len << 3) < (len << 3))
|
|
context->count[1]++;
|
|
context->count[1] += (len >> 29);
|
|
if ((j + len) > 63) {
|
|
os_memcpy(&context->buffer[j], data, (i = 64-j));
|
|
SHA1Transform(context->state, context->buffer);
|
|
for ( ; i + 63 < len; i += 64) {
|
|
SHA1Transform(context->state, &data[i]);
|
|
}
|
|
j = 0;
|
|
}
|
|
else i = 0;
|
|
os_memcpy(&context->buffer[j], &data[i], len - i);
|
|
#ifdef VERBOSE
|
|
SHAPrintContext(context, "after ");
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Add padding and return the message digest. */
|
|
|
|
void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
|
|
{
|
|
u32 i;
|
|
unsigned char finalcount[8];
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
finalcount[i] = (unsigned char)
|
|
((context->count[(i >= 4 ? 0 : 1)] >>
|
|
((3-(i & 3)) * 8) ) & 255); /* Endian independent */
|
|
}
|
|
SHA1Update(context, (unsigned char *) "\200", 1);
|
|
while ((context->count[0] & 504) != 448) {
|
|
SHA1Update(context, (unsigned char *) "\0", 1);
|
|
}
|
|
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform()
|
|
*/
|
|
for (i = 0; i < 20; i++) {
|
|
digest[i] = (unsigned char)
|
|
((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
|
|
255);
|
|
}
|
|
/* Wipe variables */
|
|
i = 0;
|
|
os_memset(context->buffer, 0, 64);
|
|
os_memset(context->state, 0, 20);
|
|
os_memset(context->count, 0, 8);
|
|
os_memset(finalcount, 0, 8);
|
|
}
|
|
|
|
/* ===== end - public domain SHA1 implementation ===== */
|
|
|
|
#endif /* INTERNAL_SHA1 */
|