1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-06 13:09:50 +00:00
freebsd/sys/dev/ata/ata-all.c
Alexander Motin 8edcf69406 Export PCI IDs of ATA/SATA controllers through CAM and ata(4) layers to
GEOM. This information needed for proper soft-RAID's on-disk metadata
reading and writing.
2010-07-25 15:43:52 +00:00

1803 lines
50 KiB
C

/*-
* Copyright (c) 1998 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/ctype.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/ata/ata-all.h>
#include <dev/pci/pcivar.h>
#include <ata_if.h>
#ifdef ATA_CAM
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#endif
#ifndef ATA_CAM
/* device structure */
static d_ioctl_t ata_ioctl;
static struct cdevsw ata_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT, /* we need this as newbus isn't mpsafe */
.d_ioctl = ata_ioctl,
.d_name = "ata",
};
#endif
/* prototypes */
#ifndef ATA_CAM
static void ata_boot_attach(void);
static device_t ata_add_child(device_t, struct ata_device *, int);
#else
static void ataaction(struct cam_sim *sim, union ccb *ccb);
static void atapoll(struct cam_sim *sim);
#endif
static void ata_conn_event(void *, int);
static void bswap(int8_t *, int);
static void btrim(int8_t *, int);
static void bpack(int8_t *, int8_t *, int);
static void ata_interrupt_locked(void *data);
/* global vars */
MALLOC_DEFINE(M_ATA, "ata_generic", "ATA driver generic layer");
int (*ata_raid_ioctl_func)(u_long cmd, caddr_t data) = NULL;
struct intr_config_hook *ata_delayed_attach = NULL;
devclass_t ata_devclass;
uma_zone_t ata_request_zone;
uma_zone_t ata_composite_zone;
int ata_wc = 1;
int ata_setmax = 0;
int ata_dma_check_80pin = 1;
/* local vars */
static int ata_dma = 1;
static int atapi_dma = 1;
/* sysctl vars */
SYSCTL_NODE(_hw, OID_AUTO, ata, CTLFLAG_RD, 0, "ATA driver parameters");
TUNABLE_INT("hw.ata.ata_dma", &ata_dma);
SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma, CTLFLAG_RDTUN, &ata_dma, 0,
"ATA disk DMA mode control");
TUNABLE_INT("hw.ata.ata_dma_check_80pin", &ata_dma_check_80pin);
SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma_check_80pin,
CTLFLAG_RW, &ata_dma_check_80pin, 1,
"Check for 80pin cable before setting ATA DMA mode");
TUNABLE_INT("hw.ata.atapi_dma", &atapi_dma);
SYSCTL_INT(_hw_ata, OID_AUTO, atapi_dma, CTLFLAG_RDTUN, &atapi_dma, 0,
"ATAPI device DMA mode control");
TUNABLE_INT("hw.ata.wc", &ata_wc);
SYSCTL_INT(_hw_ata, OID_AUTO, wc, CTLFLAG_RDTUN, &ata_wc, 0,
"ATA disk write caching");
TUNABLE_INT("hw.ata.setmax", &ata_setmax);
SYSCTL_INT(_hw_ata, OID_AUTO, setmax, CTLFLAG_RDTUN, &ata_setmax, 0,
"ATA disk set max native address");
/*
* newbus device interface related functions
*/
int
ata_probe(device_t dev)
{
return 0;
}
int
ata_attach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
int error, rid;
#ifdef ATA_CAM
struct cam_devq *devq;
const char *res;
char buf[64];
int i, mode;
#endif
/* check that we have a virgin channel to attach */
if (ch->r_irq)
return EEXIST;
/* initialize the softc basics */
ch->dev = dev;
ch->state = ATA_IDLE;
bzero(&ch->state_mtx, sizeof(struct mtx));
mtx_init(&ch->state_mtx, "ATA state lock", NULL, MTX_DEF);
bzero(&ch->queue_mtx, sizeof(struct mtx));
mtx_init(&ch->queue_mtx, "ATA queue lock", NULL, MTX_DEF);
TAILQ_INIT(&ch->ata_queue);
TASK_INIT(&ch->conntask, 0, ata_conn_event, dev);
#ifdef ATA_CAM
for (i = 0; i < 16; i++) {
ch->user[i].mode = 0;
snprintf(buf, sizeof(buf), "dev%d.mode", i);
if (resource_string_value(device_get_name(dev),
device_get_unit(dev), buf, &res) == 0)
mode = ata_str2mode(res);
else if (resource_string_value(device_get_name(dev),
device_get_unit(dev), "mode", &res) == 0)
mode = ata_str2mode(res);
else
mode = -1;
if (mode >= 0)
ch->user[i].mode = mode;
if (ch->flags & ATA_SATA)
ch->user[i].bytecount = 8192;
else
ch->user[i].bytecount = MAXPHYS;
ch->curr[i] = ch->user[i];
}
#endif
/* reset the controller HW, the channel and device(s) */
while (ATA_LOCKING(dev, ATA_LF_LOCK) != ch->unit)
pause("ataatch", 1);
#ifndef ATA_CAM
ATA_RESET(dev);
#endif
ATA_LOCKING(dev, ATA_LF_UNLOCK);
/* allocate DMA resources if DMA HW present*/
if (ch->dma.alloc)
ch->dma.alloc(dev);
/* setup interrupt delivery */
rid = ATA_IRQ_RID;
ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (!ch->r_irq) {
device_printf(dev, "unable to allocate interrupt\n");
return ENXIO;
}
if ((error = bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL,
ata_interrupt, ch, &ch->ih))) {
bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq);
device_printf(dev, "unable to setup interrupt\n");
return error;
}
#ifndef ATA_CAM
/* probe and attach devices on this channel unless we are in early boot */
if (!ata_delayed_attach)
ata_identify(dev);
return (0);
#else
mtx_lock(&ch->state_mtx);
/* Create the device queue for our SIM. */
devq = cam_simq_alloc(1);
if (devq == NULL) {
device_printf(dev, "Unable to allocate simq\n");
error = ENOMEM;
goto err1;
}
/* Construct SIM entry */
ch->sim = cam_sim_alloc(ataaction, atapoll, "ata", ch,
device_get_unit(dev), &ch->state_mtx, 1, 0, devq);
if (ch->sim == NULL) {
device_printf(dev, "unable to allocate sim\n");
cam_simq_free(devq);
error = ENOMEM;
goto err1;
}
if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) {
device_printf(dev, "unable to register xpt bus\n");
error = ENXIO;
goto err2;
}
if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
device_printf(dev, "unable to create path\n");
error = ENXIO;
goto err3;
}
mtx_unlock(&ch->state_mtx);
return (0);
err3:
xpt_bus_deregister(cam_sim_path(ch->sim));
err2:
cam_sim_free(ch->sim, /*free_devq*/TRUE);
ch->sim = NULL;
err1:
bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq);
mtx_unlock(&ch->state_mtx);
return (error);
#endif
}
int
ata_detach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
#ifndef ATA_CAM
device_t *children;
int nchildren, i;
#endif
/* check that we have a valid channel to detach */
if (!ch->r_irq)
return ENXIO;
/* grap the channel lock so no new requests gets launched */
mtx_lock(&ch->state_mtx);
ch->state |= ATA_STALL_QUEUE;
mtx_unlock(&ch->state_mtx);
#ifndef ATA_CAM
/* detach & delete all children */
if (!device_get_children(dev, &children, &nchildren)) {
for (i = 0; i < nchildren; i++)
if (children[i])
device_delete_child(dev, children[i]);
free(children, M_TEMP);
}
#endif
taskqueue_drain(taskqueue_thread, &ch->conntask);
#ifdef ATA_CAM
mtx_lock(&ch->state_mtx);
xpt_async(AC_LOST_DEVICE, ch->path, NULL);
xpt_free_path(ch->path);
xpt_bus_deregister(cam_sim_path(ch->sim));
cam_sim_free(ch->sim, /*free_devq*/TRUE);
ch->sim = NULL;
mtx_unlock(&ch->state_mtx);
#endif
/* release resources */
bus_teardown_intr(dev, ch->r_irq, ch->ih);
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
ch->r_irq = NULL;
/* free DMA resources if DMA HW present*/
if (ch->dma.free)
ch->dma.free(dev);
mtx_destroy(&ch->state_mtx);
mtx_destroy(&ch->queue_mtx);
return 0;
}
static void
ata_conn_event(void *context, int dummy)
{
device_t dev = (device_t)context;
#ifdef ATA_CAM
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb;
mtx_lock(&ch->state_mtx);
if (ch->sim == NULL) {
mtx_unlock(&ch->state_mtx);
return;
}
ata_reinit(dev);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL)
return;
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
mtx_unlock(&ch->state_mtx);
#else
ata_reinit(dev);
#endif
}
int
ata_reinit(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_request *request;
#ifndef ATA_CAM
device_t *children;
int nchildren, i;
/* check that we have a valid channel to reinit */
if (!ch || !ch->r_irq)
return ENXIO;
if (bootverbose)
device_printf(dev, "reiniting channel ..\n");
/* poll for locking the channel */
while (ATA_LOCKING(dev, ATA_LF_LOCK) != ch->unit)
pause("atarini", 1);
/* catch eventual request in ch->running */
mtx_lock(&ch->state_mtx);
if (ch->state & ATA_STALL_QUEUE) {
/* Recursive reinits and reinits during detach prohobited. */
mtx_unlock(&ch->state_mtx);
return (ENXIO);
}
if ((request = ch->running))
callout_stop(&request->callout);
ch->running = NULL;
/* unconditionally grap the channel lock */
ch->state |= ATA_STALL_QUEUE;
mtx_unlock(&ch->state_mtx);
/* reset the controller HW, the channel and device(s) */
ATA_RESET(dev);
/* reinit the children and delete any that fails */
if (!device_get_children(dev, &children, &nchildren)) {
mtx_lock(&Giant); /* newbus suckage it needs Giant */
for (i = 0; i < nchildren; i++) {
/* did any children go missing ? */
if (children[i] && device_is_attached(children[i]) &&
ATA_REINIT(children[i])) {
/*
* if we had a running request and its device matches
* this child we need to inform the request that the
* device is gone.
*/
if (request && request->dev == children[i]) {
request->result = ENXIO;
device_printf(request->dev, "FAILURE - device detached\n");
/* if not timeout finish request here */
if (!(request->flags & ATA_R_TIMEOUT))
ata_finish(request);
request = NULL;
}
device_delete_child(dev, children[i]);
}
}
free(children, M_TEMP);
mtx_unlock(&Giant); /* newbus suckage dealt with, release Giant */
}
/* if we still have a good request put it on the queue again */
if (request && !(request->flags & ATA_R_TIMEOUT)) {
device_printf(request->dev,
"WARNING - %s requeued due to channel reset",
ata_cmd2str(request));
if (!(request->flags & (ATA_R_ATAPI | ATA_R_CONTROL)))
printf(" LBA=%ju", request->u.ata.lba);
printf("\n");
request->flags |= ATA_R_REQUEUE;
ata_queue_request(request);
}
/* we're done release the channel for new work */
mtx_lock(&ch->state_mtx);
ch->state = ATA_IDLE;
mtx_unlock(&ch->state_mtx);
ATA_LOCKING(dev, ATA_LF_UNLOCK);
/* Add new children. */
/* ata_identify(dev); */
if (bootverbose)
device_printf(dev, "reinit done ..\n");
/* kick off requests on the queue */
ata_start(dev);
#else
xpt_freeze_simq(ch->sim, 1);
if ((request = ch->running)) {
ch->running = NULL;
if (ch->state == ATA_ACTIVE)
ch->state = ATA_IDLE;
callout_stop(&request->callout);
if (ch->dma.unload)
ch->dma.unload(request);
request->result = ERESTART;
ata_cam_end_transaction(dev, request);
}
/* reset the controller HW, the channel and device(s) */
ATA_RESET(dev);
/* Tell the XPT about the event */
xpt_async(AC_BUS_RESET, ch->path, NULL);
xpt_release_simq(ch->sim, TRUE);
#endif
return(0);
}
int
ata_suspend(device_t dev)
{
struct ata_channel *ch;
/* check for valid device */
if (!dev || !(ch = device_get_softc(dev)))
return ENXIO;
#ifdef ATA_CAM
mtx_lock(&ch->state_mtx);
xpt_freeze_simq(ch->sim, 1);
while (ch->state != ATA_IDLE)
msleep(ch, &ch->state_mtx, PRIBIO, "atasusp", hz/100);
mtx_unlock(&ch->state_mtx);
#else
/* wait for the channel to be IDLE or detached before suspending */
while (ch->r_irq) {
mtx_lock(&ch->state_mtx);
if (ch->state == ATA_IDLE) {
ch->state = ATA_ACTIVE;
mtx_unlock(&ch->state_mtx);
break;
}
mtx_unlock(&ch->state_mtx);
tsleep(ch, PRIBIO, "atasusp", hz/10);
}
ATA_LOCKING(dev, ATA_LF_UNLOCK);
#endif
return(0);
}
int
ata_resume(device_t dev)
{
struct ata_channel *ch;
int error;
/* check for valid device */
if (!dev || !(ch = device_get_softc(dev)))
return ENXIO;
#ifdef ATA_CAM
mtx_lock(&ch->state_mtx);
error = ata_reinit(dev);
xpt_release_simq(ch->sim, TRUE);
mtx_unlock(&ch->state_mtx);
#else
/* reinit the devices, we dont know what mode/state they are in */
error = ata_reinit(dev);
/* kick off requests on the queue */
ata_start(dev);
#endif
return error;
}
void
ata_interrupt(void *data)
{
#ifdef ATA_CAM
struct ata_channel *ch = (struct ata_channel *)data;
mtx_lock(&ch->state_mtx);
#endif
ata_interrupt_locked(data);
#ifdef ATA_CAM
mtx_unlock(&ch->state_mtx);
#endif
}
static void
ata_interrupt_locked(void *data)
{
struct ata_channel *ch = (struct ata_channel *)data;
struct ata_request *request;
#ifndef ATA_CAM
mtx_lock(&ch->state_mtx);
#endif
do {
/* ignore interrupt if its not for us */
if (ch->hw.status && !ch->hw.status(ch->dev))
break;
/* do we have a running request */
if (!(request = ch->running))
break;
ATA_DEBUG_RQ(request, "interrupt");
/* safetycheck for the right state */
if (ch->state == ATA_IDLE) {
device_printf(request->dev, "interrupt on idle channel ignored\n");
break;
}
/*
* we have the HW locks, so end the transaction for this request
* if it finishes immediately otherwise wait for next interrupt
*/
if (ch->hw.end_transaction(request) == ATA_OP_FINISHED) {
ch->running = NULL;
if (ch->state == ATA_ACTIVE)
ch->state = ATA_IDLE;
#ifdef ATA_CAM
ata_cam_end_transaction(ch->dev, request);
#else
mtx_unlock(&ch->state_mtx);
ATA_LOCKING(ch->dev, ATA_LF_UNLOCK);
ata_finish(request);
#endif
return;
}
} while (0);
#ifndef ATA_CAM
mtx_unlock(&ch->state_mtx);
#endif
}
void
ata_print_cable(device_t dev, u_int8_t *who)
{
device_printf(dev,
"DMA limited to UDMA33, %s found non-ATA66 cable\n", who);
}
int
ata_check_80pin(device_t dev, int mode)
{
struct ata_device *atadev = device_get_softc(dev);
if (!ata_dma_check_80pin) {
if (bootverbose)
device_printf(dev, "Skipping 80pin cable check\n");
return mode;
}
if (mode > ATA_UDMA2 && !(atadev->param.hwres & ATA_CABLE_ID)) {
ata_print_cable(dev, "device");
mode = ATA_UDMA2;
}
return mode;
}
void
ata_setmode(device_t dev)
{
struct ata_channel *ch = device_get_softc(device_get_parent(dev));
struct ata_device *atadev = device_get_softc(dev);
int error, mode, pmode;
mode = atadev->mode;
do {
pmode = mode = ata_limit_mode(dev, mode, ATA_DMA_MAX);
mode = ATA_SETMODE(device_get_parent(dev), atadev->unit, mode);
if ((ch->flags & (ATA_CHECKS_CABLE | ATA_SATA)) == 0)
mode = ata_check_80pin(dev, mode);
} while (pmode != mode); /* Interate till successfull negotiation. */
error = ata_controlcmd(dev, ATA_SETFEATURES, ATA_SF_SETXFER, 0, mode);
if (bootverbose)
device_printf(dev, "%ssetting %s\n",
(error) ? "FAILURE " : "", ata_mode2str(mode));
atadev->mode = mode;
}
/*
* device related interfaces
*/
#ifndef ATA_CAM
static int
ata_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
int32_t flag, struct thread *td)
{
device_t device, *children;
struct ata_ioc_devices *devices = (struct ata_ioc_devices *)data;
int *value = (int *)data;
int i, nchildren, error = ENOTTY;
switch (cmd) {
case IOCATAGMAXCHANNEL:
/* In case we have channel 0..n this will return n+1. */
*value = devclass_get_maxunit(ata_devclass);
error = 0;
break;
case IOCATAREINIT:
if (*value >= devclass_get_maxunit(ata_devclass) ||
!(device = devclass_get_device(ata_devclass, *value)) ||
!device_is_attached(device))
return ENXIO;
error = ata_reinit(device);
break;
case IOCATAATTACH:
if (*value >= devclass_get_maxunit(ata_devclass) ||
!(device = devclass_get_device(ata_devclass, *value)) ||
!device_is_attached(device))
return ENXIO;
error = DEVICE_ATTACH(device);
break;
case IOCATADETACH:
if (*value >= devclass_get_maxunit(ata_devclass) ||
!(device = devclass_get_device(ata_devclass, *value)) ||
!device_is_attached(device))
return ENXIO;
error = DEVICE_DETACH(device);
break;
case IOCATADEVICES:
if (devices->channel >= devclass_get_maxunit(ata_devclass) ||
!(device = devclass_get_device(ata_devclass, devices->channel)) ||
!device_is_attached(device))
return ENXIO;
bzero(devices->name[0], 32);
bzero(&devices->params[0], sizeof(struct ata_params));
bzero(devices->name[1], 32);
bzero(&devices->params[1], sizeof(struct ata_params));
if (!device_get_children(device, &children, &nchildren)) {
for (i = 0; i < nchildren; i++) {
if (children[i] && device_is_attached(children[i])) {
struct ata_device *atadev = device_get_softc(children[i]);
if (atadev->unit == ATA_MASTER) { /* XXX SOS PM */
strncpy(devices->name[0],
device_get_nameunit(children[i]), 32);
bcopy(&atadev->param, &devices->params[0],
sizeof(struct ata_params));
}
if (atadev->unit == ATA_SLAVE) { /* XXX SOS PM */
strncpy(devices->name[1],
device_get_nameunit(children[i]), 32);
bcopy(&atadev->param, &devices->params[1],
sizeof(struct ata_params));
}
}
}
free(children, M_TEMP);
error = 0;
}
else
error = ENODEV;
break;
default:
if (ata_raid_ioctl_func)
error = ata_raid_ioctl_func(cmd, data);
}
return error;
}
#endif
int
ata_device_ioctl(device_t dev, u_long cmd, caddr_t data)
{
struct ata_device *atadev = device_get_softc(dev);
struct ata_channel *ch = device_get_softc(device_get_parent(dev));
struct ata_ioc_request *ioc_request = (struct ata_ioc_request *)data;
struct ata_params *params = (struct ata_params *)data;
int *mode = (int *)data;
struct ata_request *request;
caddr_t buf;
int error;
switch (cmd) {
case IOCATAREQUEST:
if (ioc_request->count >
(ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS)) {
return (EFBIG);
}
if (!(buf = malloc(ioc_request->count, M_ATA, M_NOWAIT))) {
return ENOMEM;
}
if (!(request = ata_alloc_request())) {
free(buf, M_ATA);
return ENOMEM;
}
request->dev = atadev->dev;
if (ioc_request->flags & ATA_CMD_WRITE) {
error = copyin(ioc_request->data, buf, ioc_request->count);
if (error) {
free(buf, M_ATA);
ata_free_request(request);
return error;
}
}
if (ioc_request->flags & ATA_CMD_ATAPI) {
request->flags = ATA_R_ATAPI;
bcopy(ioc_request->u.atapi.ccb, request->u.atapi.ccb, 16);
}
else {
request->u.ata.command = ioc_request->u.ata.command;
request->u.ata.feature = ioc_request->u.ata.feature;
request->u.ata.lba = ioc_request->u.ata.lba;
request->u.ata.count = ioc_request->u.ata.count;
}
request->timeout = ioc_request->timeout;
request->data = buf;
request->bytecount = ioc_request->count;
request->transfersize = request->bytecount;
if (ioc_request->flags & ATA_CMD_CONTROL)
request->flags |= ATA_R_CONTROL;
if (ioc_request->flags & ATA_CMD_READ)
request->flags |= ATA_R_READ;
if (ioc_request->flags & ATA_CMD_WRITE)
request->flags |= ATA_R_WRITE;
ata_queue_request(request);
if (request->flags & ATA_R_ATAPI) {
bcopy(&request->u.atapi.sense, &ioc_request->u.atapi.sense,
sizeof(struct atapi_sense));
}
else {
ioc_request->u.ata.command = request->u.ata.command;
ioc_request->u.ata.feature = request->u.ata.feature;
ioc_request->u.ata.lba = request->u.ata.lba;
ioc_request->u.ata.count = request->u.ata.count;
}
ioc_request->error = request->result;
if (ioc_request->flags & ATA_CMD_READ)
error = copyout(buf, ioc_request->data, ioc_request->count);
else
error = 0;
free(buf, M_ATA);
ata_free_request(request);
return error;
case IOCATAGPARM:
ata_getparam(atadev, 0);
bcopy(&atadev->param, params, sizeof(struct ata_params));
return 0;
case IOCATASMODE:
atadev->mode = *mode;
ata_setmode(dev);
return 0;
case IOCATAGMODE:
*mode = atadev->mode |
(ATA_GETREV(device_get_parent(dev), atadev->unit) << 8);
return 0;
case IOCATASSPINDOWN:
atadev->spindown = *mode;
return 0;
case IOCATAGSPINDOWN:
*mode = atadev->spindown;
return 0;
default:
return ENOTTY;
}
}
#ifndef ATA_CAM
static void
ata_boot_attach(void)
{
struct ata_channel *ch;
int ctlr;
mtx_lock(&Giant); /* newbus suckage it needs Giant */
/* kick of probe and attach on all channels */
for (ctlr = 0; ctlr < devclass_get_maxunit(ata_devclass); ctlr++) {
if ((ch = devclass_get_softc(ata_devclass, ctlr))) {
ata_identify(ch->dev);
}
}
/* release the hook that got us here, we are only needed once during boot */
if (ata_delayed_attach) {
config_intrhook_disestablish(ata_delayed_attach);
free(ata_delayed_attach, M_TEMP);
ata_delayed_attach = NULL;
}
mtx_unlock(&Giant); /* newbus suckage dealt with, release Giant */
}
#endif
/*
* misc support functions
*/
#ifndef ATA_CAM
static device_t
ata_add_child(device_t parent, struct ata_device *atadev, int unit)
{
device_t child;
if ((child = device_add_child(parent, NULL, unit))) {
device_set_softc(child, atadev);
device_quiet(child);
atadev->dev = child;
atadev->max_iosize = DEV_BSIZE;
atadev->mode = ATA_PIO_MAX;
}
return child;
}
#endif
int
ata_getparam(struct ata_device *atadev, int init)
{
struct ata_channel *ch = device_get_softc(device_get_parent(atadev->dev));
struct ata_request *request;
const char *res;
char buf[64];
u_int8_t command = 0;
int error = ENOMEM, retries = 2, mode = -1;
if (ch->devices & (ATA_ATA_MASTER << atadev->unit))
command = ATA_ATA_IDENTIFY;
if (ch->devices & (ATA_ATAPI_MASTER << atadev->unit))
command = ATA_ATAPI_IDENTIFY;
if (!command)
return ENXIO;
while (retries-- > 0 && error) {
if (!(request = ata_alloc_request()))
break;
request->dev = atadev->dev;
request->timeout = 1;
request->retries = 0;
request->u.ata.command = command;
request->flags = (ATA_R_READ|ATA_R_AT_HEAD|ATA_R_DIRECT);
if (!bootverbose)
request->flags |= ATA_R_QUIET;
request->data = (void *)&atadev->param;
request->bytecount = sizeof(struct ata_params);
request->donecount = 0;
request->transfersize = DEV_BSIZE;
ata_queue_request(request);
error = request->result;
ata_free_request(request);
}
if (!error && (isprint(atadev->param.model[0]) ||
isprint(atadev->param.model[1]))) {
struct ata_params *atacap = &atadev->param;
int16_t *ptr;
for (ptr = (int16_t *)atacap;
ptr < (int16_t *)atacap + sizeof(struct ata_params)/2; ptr++) {
*ptr = le16toh(*ptr);
}
if (!(!strncmp(atacap->model, "FX", 2) ||
!strncmp(atacap->model, "NEC", 3) ||
!strncmp(atacap->model, "Pioneer", 7) ||
!strncmp(atacap->model, "SHARP", 5))) {
bswap(atacap->model, sizeof(atacap->model));
bswap(atacap->revision, sizeof(atacap->revision));
bswap(atacap->serial, sizeof(atacap->serial));
}
btrim(atacap->model, sizeof(atacap->model));
bpack(atacap->model, atacap->model, sizeof(atacap->model));
btrim(atacap->revision, sizeof(atacap->revision));
bpack(atacap->revision, atacap->revision, sizeof(atacap->revision));
btrim(atacap->serial, sizeof(atacap->serial));
bpack(atacap->serial, atacap->serial, sizeof(atacap->serial));
if (bootverbose)
printf("ata%d-%s: pio=%s wdma=%s udma=%s cable=%s wire\n",
device_get_unit(ch->dev),
ata_unit2str(atadev),
ata_mode2str(ata_pmode(atacap)),
ata_mode2str(ata_wmode(atacap)),
ata_mode2str(ata_umode(atacap)),
(atacap->hwres & ATA_CABLE_ID) ? "80":"40");
if (init) {
char buffer[64];
sprintf(buffer, "%.40s/%.8s", atacap->model, atacap->revision);
device_set_desc_copy(atadev->dev, buffer);
if ((atadev->param.config & ATA_PROTO_ATAPI) &&
(atadev->param.config != ATA_CFA_MAGIC1) &&
(atadev->param.config != ATA_CFA_MAGIC2)) {
if (atapi_dma &&
(atadev->param.config & ATA_DRQ_MASK) != ATA_DRQ_INTR &&
ata_umode(&atadev->param) >= ATA_UDMA2)
atadev->mode = ATA_DMA_MAX;
}
else {
if (ata_dma &&
(ata_umode(&atadev->param) > 0 ||
ata_wmode(&atadev->param) > 0))
atadev->mode = ATA_DMA_MAX;
}
snprintf(buf, sizeof(buf), "dev%d.mode", atadev->unit);
if (resource_string_value(device_get_name(ch->dev),
device_get_unit(ch->dev), buf, &res) == 0)
mode = ata_str2mode(res);
else if (resource_string_value(device_get_name(ch->dev),
device_get_unit(ch->dev), "mode", &res) == 0)
mode = ata_str2mode(res);
if (mode >= 0)
atadev->mode = mode;
}
}
else {
if (!error)
error = ENXIO;
}
return error;
}
#ifndef ATA_CAM
int
ata_identify(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_device *atadev;
device_t *children;
device_t child, master = NULL;
int nchildren, i, n = ch->devices;
if (bootverbose)
device_printf(dev, "Identifying devices: %08x\n", ch->devices);
mtx_lock(&Giant);
/* Skip existing devices. */
if (!device_get_children(dev, &children, &nchildren)) {
for (i = 0; i < nchildren; i++) {
if (children[i] && (atadev = device_get_softc(children[i])))
n &= ~((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << atadev->unit);
}
free(children, M_TEMP);
}
/* Create new devices. */
if (bootverbose)
device_printf(dev, "New devices: %08x\n", n);
if (n == 0) {
mtx_unlock(&Giant);
return (0);
}
for (i = 0; i < ATA_PM; ++i) {
if (n & (((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << i))) {
int unit = -1;
if (!(atadev = malloc(sizeof(struct ata_device),
M_ATA, M_NOWAIT | M_ZERO))) {
device_printf(dev, "out of memory\n");
return ENOMEM;
}
atadev->unit = i;
#ifdef ATA_STATIC_ID
if (n & (ATA_ATA_MASTER << i))
unit = (device_get_unit(dev) << 1) + i;
#endif
if ((child = ata_add_child(dev, atadev, unit))) {
/*
* PATA slave should be identified first, to allow
* device cable detection on master to work properly.
*/
if (i == 0 && (n & ATA_PORTMULTIPLIER) == 0 &&
(n & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << 1)) != 0) {
master = child;
continue;
}
if (ata_getparam(atadev, 1)) {
device_delete_child(dev, child);
free(atadev, M_ATA);
}
}
else
free(atadev, M_ATA);
}
}
if (master) {
atadev = device_get_softc(master);
if (ata_getparam(atadev, 1)) {
device_delete_child(dev, master);
free(atadev, M_ATA);
}
}
bus_generic_probe(dev);
bus_generic_attach(dev);
mtx_unlock(&Giant);
return 0;
}
#endif
void
ata_default_registers(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
/* fill in the defaults from whats setup already */
ch->r_io[ATA_ERROR].res = ch->r_io[ATA_FEATURE].res;
ch->r_io[ATA_ERROR].offset = ch->r_io[ATA_FEATURE].offset;
ch->r_io[ATA_IREASON].res = ch->r_io[ATA_COUNT].res;
ch->r_io[ATA_IREASON].offset = ch->r_io[ATA_COUNT].offset;
ch->r_io[ATA_STATUS].res = ch->r_io[ATA_COMMAND].res;
ch->r_io[ATA_STATUS].offset = ch->r_io[ATA_COMMAND].offset;
ch->r_io[ATA_ALTSTAT].res = ch->r_io[ATA_CONTROL].res;
ch->r_io[ATA_ALTSTAT].offset = ch->r_io[ATA_CONTROL].offset;
}
void
ata_modify_if_48bit(struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(request->parent);
struct ata_device *atadev = device_get_softc(request->dev);
request->flags &= ~ATA_R_48BIT;
if (((request->u.ata.lba + request->u.ata.count) >= ATA_MAX_28BIT_LBA ||
request->u.ata.count > 256) &&
atadev->param.support.command2 & ATA_SUPPORT_ADDRESS48) {
/* translate command into 48bit version */
switch (request->u.ata.command) {
case ATA_READ:
request->u.ata.command = ATA_READ48;
break;
case ATA_READ_MUL:
request->u.ata.command = ATA_READ_MUL48;
break;
case ATA_READ_DMA:
if (ch->flags & ATA_NO_48BIT_DMA) {
if (request->transfersize > DEV_BSIZE)
request->u.ata.command = ATA_READ_MUL48;
else
request->u.ata.command = ATA_READ48;
request->flags &= ~ATA_R_DMA;
}
else
request->u.ata.command = ATA_READ_DMA48;
break;
case ATA_READ_DMA_QUEUED:
if (ch->flags & ATA_NO_48BIT_DMA) {
if (request->transfersize > DEV_BSIZE)
request->u.ata.command = ATA_READ_MUL48;
else
request->u.ata.command = ATA_READ48;
request->flags &= ~ATA_R_DMA;
}
else
request->u.ata.command = ATA_READ_DMA_QUEUED48;
break;
case ATA_WRITE:
request->u.ata.command = ATA_WRITE48;
break;
case ATA_WRITE_MUL:
request->u.ata.command = ATA_WRITE_MUL48;
break;
case ATA_WRITE_DMA:
if (ch->flags & ATA_NO_48BIT_DMA) {
if (request->transfersize > DEV_BSIZE)
request->u.ata.command = ATA_WRITE_MUL48;
else
request->u.ata.command = ATA_WRITE48;
request->flags &= ~ATA_R_DMA;
}
else
request->u.ata.command = ATA_WRITE_DMA48;
break;
case ATA_WRITE_DMA_QUEUED:
if (ch->flags & ATA_NO_48BIT_DMA) {
if (request->transfersize > DEV_BSIZE)
request->u.ata.command = ATA_WRITE_MUL48;
else
request->u.ata.command = ATA_WRITE48;
request->u.ata.command = ATA_WRITE48;
request->flags &= ~ATA_R_DMA;
}
else
request->u.ata.command = ATA_WRITE_DMA_QUEUED48;
break;
case ATA_FLUSHCACHE:
request->u.ata.command = ATA_FLUSHCACHE48;
break;
case ATA_SET_MAX_ADDRESS:
request->u.ata.command = ATA_SET_MAX_ADDRESS48;
break;
default:
return;
}
request->flags |= ATA_R_48BIT;
}
else if (atadev->param.support.command2 & ATA_SUPPORT_ADDRESS48) {
/* translate command into 48bit version */
switch (request->u.ata.command) {
case ATA_FLUSHCACHE:
request->u.ata.command = ATA_FLUSHCACHE48;
break;
case ATA_READ_NATIVE_MAX_ADDRESS:
request->u.ata.command = ATA_READ_NATIVE_MAX_ADDRESS48;
break;
case ATA_SET_MAX_ADDRESS:
request->u.ata.command = ATA_SET_MAX_ADDRESS48;
break;
default:
return;
}
request->flags |= ATA_R_48BIT;
}
}
void
ata_udelay(int interval)
{
/* for now just use DELAY, the timer/sleep subsytems are not there yet */
if (1 || interval < (1000000/hz) || ata_delayed_attach)
DELAY(interval);
else
pause("ataslp", interval/(1000000/hz));
}
char *
ata_unit2str(struct ata_device *atadev)
{
struct ata_channel *ch = device_get_softc(device_get_parent(atadev->dev));
static char str[8];
if (ch->devices & ATA_PORTMULTIPLIER)
sprintf(str, "port%d", atadev->unit);
else
sprintf(str, "%s", atadev->unit == ATA_MASTER ? "master" : "slave");
return str;
}
const char *
ata_mode2str(int mode)
{
switch (mode) {
case -1: return "UNSUPPORTED";
case ATA_PIO0: return "PIO0";
case ATA_PIO1: return "PIO1";
case ATA_PIO2: return "PIO2";
case ATA_PIO3: return "PIO3";
case ATA_PIO4: return "PIO4";
case ATA_WDMA0: return "WDMA0";
case ATA_WDMA1: return "WDMA1";
case ATA_WDMA2: return "WDMA2";
case ATA_UDMA0: return "UDMA16";
case ATA_UDMA1: return "UDMA25";
case ATA_UDMA2: return "UDMA33";
case ATA_UDMA3: return "UDMA40";
case ATA_UDMA4: return "UDMA66";
case ATA_UDMA5: return "UDMA100";
case ATA_UDMA6: return "UDMA133";
case ATA_SA150: return "SATA150";
case ATA_SA300: return "SATA300";
default:
if (mode & ATA_DMA_MASK)
return "BIOSDMA";
else
return "BIOSPIO";
}
}
int
ata_str2mode(const char *str)
{
if (!strcasecmp(str, "PIO0")) return (ATA_PIO0);
if (!strcasecmp(str, "PIO1")) return (ATA_PIO1);
if (!strcasecmp(str, "PIO2")) return (ATA_PIO2);
if (!strcasecmp(str, "PIO3")) return (ATA_PIO3);
if (!strcasecmp(str, "PIO4")) return (ATA_PIO4);
if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0);
if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1);
if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2);
if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6);
if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6);
return (-1);
}
const char *
ata_satarev2str(int rev)
{
switch (rev) {
case 0: return "";
case 1: return "SATA 1.5Gb/s";
case 2: return "SATA 3Gb/s";
case 3: return "SATA 6Gb/s";
case 0xff: return "SATA";
default: return "???";
}
}
int
ata_atapi(device_t dev, int target)
{
struct ata_channel *ch = device_get_softc(dev);
return (ch->devices & (ATA_ATAPI_MASTER << target));
}
int
ata_pmode(struct ata_params *ap)
{
if (ap->atavalid & ATA_FLAG_64_70) {
if (ap->apiomodes & 0x02)
return ATA_PIO4;
if (ap->apiomodes & 0x01)
return ATA_PIO3;
}
if (ap->mwdmamodes & 0x04)
return ATA_PIO4;
if (ap->mwdmamodes & 0x02)
return ATA_PIO3;
if (ap->mwdmamodes & 0x01)
return ATA_PIO2;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200)
return ATA_PIO2;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100)
return ATA_PIO1;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000)
return ATA_PIO0;
return ATA_PIO0;
}
int
ata_wmode(struct ata_params *ap)
{
if (ap->mwdmamodes & 0x04)
return ATA_WDMA2;
if (ap->mwdmamodes & 0x02)
return ATA_WDMA1;
if (ap->mwdmamodes & 0x01)
return ATA_WDMA0;
return -1;
}
int
ata_umode(struct ata_params *ap)
{
if (ap->atavalid & ATA_FLAG_88) {
if (ap->udmamodes & 0x40)
return ATA_UDMA6;
if (ap->udmamodes & 0x20)
return ATA_UDMA5;
if (ap->udmamodes & 0x10)
return ATA_UDMA4;
if (ap->udmamodes & 0x08)
return ATA_UDMA3;
if (ap->udmamodes & 0x04)
return ATA_UDMA2;
if (ap->udmamodes & 0x02)
return ATA_UDMA1;
if (ap->udmamodes & 0x01)
return ATA_UDMA0;
}
return -1;
}
int
ata_limit_mode(device_t dev, int mode, int maxmode)
{
struct ata_device *atadev = device_get_softc(dev);
if (maxmode && mode > maxmode)
mode = maxmode;
if (mode >= ATA_UDMA0 && ata_umode(&atadev->param) > 0)
return min(mode, ata_umode(&atadev->param));
if (mode >= ATA_WDMA0 && ata_wmode(&atadev->param) > 0)
return min(mode, ata_wmode(&atadev->param));
if (mode > ata_pmode(&atadev->param))
return min(mode, ata_pmode(&atadev->param));
return mode;
}
static void
bswap(int8_t *buf, int len)
{
u_int16_t *ptr = (u_int16_t*)(buf + len);
while (--ptr >= (u_int16_t*)buf)
*ptr = ntohs(*ptr);
}
static void
btrim(int8_t *buf, int len)
{
int8_t *ptr;
for (ptr = buf; ptr < buf+len; ++ptr)
if (!*ptr || *ptr == '_')
*ptr = ' ';
for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr)
*ptr = 0;
}
static void
bpack(int8_t *src, int8_t *dst, int len)
{
int i, j, blank;
for (i = j = blank = 0 ; i < len; i++) {
if (blank && src[i] == ' ') continue;
if (blank && src[i] != ' ') {
dst[j++] = src[i];
blank = 0;
continue;
}
if (src[i] == ' ') {
blank = 1;
if (i == 0)
continue;
}
dst[j++] = src[i];
}
if (j < len)
dst[j] = 0x00;
}
#ifdef ATA_CAM
void
ata_cam_begin_transaction(device_t dev, union ccb *ccb)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_request *request;
if (!(request = ata_alloc_request())) {
device_printf(dev, "FAILURE - out of memory in start\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
bzero(request, sizeof(*request));
/* setup request */
request->dev = NULL;
request->parent = dev;
request->unit = ccb->ccb_h.target_id;
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
request->data = ccb->ataio.data_ptr;
request->bytecount = ccb->ataio.dxfer_len;
request->u.ata.command = ccb->ataio.cmd.command;
request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) |
(uint16_t)ccb->ataio.cmd.features;
request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) |
(uint16_t)ccb->ataio.cmd.sector_count;
if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) {
request->flags |= ATA_R_48BIT;
request->u.ata.lba =
((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) |
((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) |
((uint64_t)ccb->ataio.cmd.lba_low_exp << 24);
} else {
request->u.ata.lba =
((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24);
}
request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) |
((uint64_t)ccb->ataio.cmd.lba_mid << 8) |
(uint64_t)ccb->ataio.cmd.lba_low;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ccb->ataio.cmd.flags & CAM_ATAIO_DMA)
request->flags |= ATA_R_DMA;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
request->flags |= ATA_R_READ;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
request->flags |= ATA_R_WRITE;
} else {
request->data = ccb->csio.data_ptr;
request->bytecount = ccb->csio.dxfer_len;
bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes,
request->u.atapi.ccb, ccb->csio.cdb_len);
request->flags |= ATA_R_ATAPI;
if (ch->curr[ccb->ccb_h.target_id].atapi == 16)
request->flags |= ATA_R_ATAPI16;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA)
request->flags |= ATA_R_DMA;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
request->flags |= ATA_R_READ;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
request->flags |= ATA_R_WRITE;
}
request->transfersize = min(request->bytecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
request->retries = 0;
request->timeout = (ccb->ccb_h.timeout + 999) / 1000;
callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED);
request->ccb = ccb;
ch->running = request;
ch->state = ATA_ACTIVE;
if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) {
ch->running = NULL;
ch->state = ATA_IDLE;
ata_cam_end_transaction(dev, request);
return;
}
}
void
ata_cam_end_transaction(device_t dev, struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb = request->ccb;
int fatalerr = 0;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
if (request->flags & ATA_R_TIMEOUT) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT | CAM_RELEASE_SIMQ;
fatalerr = 1;
} else if (request->status & ATA_S_ERROR) {
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR;
} else {
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
}
} else if (request->result == ERESTART)
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
else if (request->result != 0)
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
else
ccb->ccb_h.status |= CAM_REQ_CMP;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP &&
!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
((request->status & ATA_S_ERROR) ||
(ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT))) {
struct ata_res *res = &ccb->ataio.res;
res->status = request->status;
res->error = request->error;
res->lba_low = request->u.ata.lba;
res->lba_mid = request->u.ata.lba >> 8;
res->lba_high = request->u.ata.lba >> 16;
res->device = request->u.ata.lba >> 24;
res->lba_low_exp = request->u.ata.lba >> 24;
res->lba_mid_exp = request->u.ata.lba >> 32;
res->lba_high_exp = request->u.ata.lba >> 40;
res->sector_count = request->u.ata.count;
res->sector_count_exp = request->u.ata.count >> 8;
}
ata_free_request(request);
xpt_done(ccb);
/* Do error recovery if needed. */
if (fatalerr)
ata_reinit(dev);
}
static int
ata_check_ids(device_t dev, union ccb *ccb)
{
struct ata_channel *ch = device_get_softc(dev);
if (ccb->ccb_h.target_id > ((ch->flags & ATA_NO_SLAVE) ? 0 : 1)) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return (-1);
}
if (ccb->ccb_h.target_lun != 0) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return (-1);
}
return (0);
}
static void
ataaction(struct cam_sim *sim, union ccb *ccb)
{
device_t dev, parent;
struct ata_channel *ch;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ataaction func_code=%x\n",
ccb->ccb_h.func_code));
ch = (struct ata_channel *)cam_sim_softc(sim);
dev = ch->dev;
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ATA_IO: /* Execute the requested I/O operation */
case XPT_SCSI_IO:
if (ata_check_ids(dev, ccb))
return;
if ((ch->devices & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER)
<< ccb->ccb_h.target_id)) == 0) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
}
if (ch->running)
device_printf(dev, "already running!\n");
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
(ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) &&
(ccb->ataio.cmd.control & ATA_A_RESET)) {
struct ata_res *res = &ccb->ataio.res;
bzero(res, sizeof(*res));
if (ch->devices & (ATA_ATA_MASTER << ccb->ccb_h.target_id)) {
res->lba_high = 0;
res->lba_mid = 0;
} else {
res->lba_high = 0xeb;
res->lba_mid = 0x14;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
ata_cam_begin_transaction(dev, ccb);
return;
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct ata_cam_device *d;
if (ata_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
if (ch->flags & ATA_SATA) {
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION)
d->revision = cts->xport_specific.sata.revision;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) {
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
d->mode = ATA_SETMODE(ch->dev,
ccb->ccb_h.target_id,
cts->xport_specific.sata.mode);
} else
d->mode = cts->xport_specific.sata.mode;
}
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT)
d->bytecount = min(8192, cts->xport_specific.sata.bytecount);
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI)
d->atapi = cts->xport_specific.sata.atapi;
} else {
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_MODE) {
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
d->mode = ATA_SETMODE(ch->dev,
ccb->ccb_h.target_id,
cts->xport_specific.ata.mode);
} else
d->mode = cts->xport_specific.ata.mode;
}
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_BYTECOUNT)
d->bytecount = cts->xport_specific.ata.bytecount;
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_ATAPI)
d->atapi = cts->xport_specific.ata.atapi;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct ata_cam_device *d;
if (ata_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
cts->protocol = PROTO_ATA;
cts->protocol_version = PROTO_VERSION_UNSPECIFIED;
if (ch->flags & ATA_SATA) {
cts->transport = XPORT_SATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->xport_specific.sata.valid = 0;
cts->xport_specific.sata.mode = d->mode;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE;
cts->xport_specific.sata.bytecount = d->bytecount;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
cts->xport_specific.sata.revision =
ATA_GETREV(dev, ccb->ccb_h.target_id);
if (cts->xport_specific.sata.revision != 0xff) {
cts->xport_specific.sata.valid |=
CTS_SATA_VALID_REVISION;
}
} else {
cts->xport_specific.sata.revision = d->revision;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION;
}
cts->xport_specific.sata.atapi = d->atapi;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI;
} else {
cts->transport = XPORT_ATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->xport_specific.ata.valid = 0;
cts->xport_specific.ata.mode = d->mode;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_MODE;
cts->xport_specific.ata.bytecount = d->bytecount;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_BYTECOUNT;
cts->xport_specific.ata.atapi = d->atapi;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_ATAPI;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
ata_reinit(dev);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
parent = device_get_parent(dev);
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
if (ch->flags & ATA_NO_SLAVE)
cpi->max_target = 0;
else
cpi->max_target = 1;
cpi->max_lun = 0;
cpi->initiator_id = 0;
cpi->bus_id = cam_sim_bus(sim);
if (ch->flags & ATA_SATA)
cpi->base_transfer_speed = 150000;
else
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "ATA", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
if (ch->flags & ATA_SATA)
cpi->transport = XPORT_SATA;
else
cpi->transport = XPORT_ATA;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->protocol = PROTO_ATA;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->maxio = ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS;
if (device_get_devclass(device_get_parent(parent)) ==
devclass_find("pci")) {
cpi->hba_vendor = pci_get_vendor(parent);
cpi->hba_device = pci_get_device(parent);
cpi->hba_subvendor = pci_get_subvendor(parent);
cpi->hba_subdevice = pci_get_subdevice(parent);
}
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
static void
atapoll(struct cam_sim *sim)
{
struct ata_channel *ch = (struct ata_channel *)cam_sim_softc(sim);
ata_interrupt_locked(ch);
}
#endif
/*
* module handeling
*/
static int
ata_module_event_handler(module_t mod, int what, void *arg)
{
#ifndef ATA_CAM
static struct cdev *atacdev;
#endif
switch (what) {
case MOD_LOAD:
#ifndef ATA_CAM
/* register controlling device */
atacdev = make_dev(&ata_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "ata");
if (cold) {
/* register boot attach to be run when interrupts are enabled */
if (!(ata_delayed_attach = (struct intr_config_hook *)
malloc(sizeof(struct intr_config_hook),
M_TEMP, M_NOWAIT | M_ZERO))) {
printf("ata: malloc of delayed attach hook failed\n");
return EIO;
}
ata_delayed_attach->ich_func = (void*)ata_boot_attach;
if (config_intrhook_establish(ata_delayed_attach) != 0) {
printf("ata: config_intrhook_establish failed\n");
free(ata_delayed_attach, M_TEMP);
}
}
#endif
return 0;
case MOD_UNLOAD:
#ifndef ATA_CAM
/* deregister controlling device */
destroy_dev(atacdev);
#endif
return 0;
default:
return EOPNOTSUPP;
}
}
static moduledata_t ata_moduledata = { "ata", ata_module_event_handler, NULL };
DECLARE_MODULE(ata, ata_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
MODULE_VERSION(ata, 1);
#ifdef ATA_CAM
MODULE_DEPEND(ata, cam, 1, 1, 1);
#endif
static void
ata_init(void)
{
ata_request_zone = uma_zcreate("ata_request", sizeof(struct ata_request),
NULL, NULL, NULL, NULL, 0, 0);
ata_composite_zone = uma_zcreate("ata_composite",
sizeof(struct ata_composite),
NULL, NULL, NULL, NULL, 0, 0);
}
SYSINIT(ata_register, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_init, NULL);
static void
ata_uninit(void)
{
uma_zdestroy(ata_composite_zone);
uma_zdestroy(ata_request_zone);
}
SYSUNINIT(ata_unregister, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_uninit, NULL);