1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-26 16:18:31 +00:00
freebsd/sys/gnu/fs/xfs/xfs_refcache.c
Craig Rodrigues 331b6cc0ea Sync XFS for FreeBSD tree with newer changes from SGI XFS for Linux tree.
Improve support for writing to XFS partitions.

Work done by:	Russell Cattelan <cattelan at xfs dot org>
2006-06-09 06:04:06 +00:00

432 lines
9.8 KiB
C

/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_itable.h"
#include "xfs_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_attr.h"
#include "xfs_error.h"
#include "xfs_buf_item.h"
#include "xfs_refcache.h"
STATIC lock_t xfs_refcache_lock;
STATIC xfs_inode_t **xfs_refcache;
STATIC int xfs_refcache_index;
STATIC int xfs_refcache_busy;
STATIC int xfs_refcache_count;
void
xfs_refcache_init(void)
{
spinlock_init(&xfs_refcache_lock, "xfs_refcache");
}
/*
* Insert the given inode into the reference cache.
*/
void
xfs_refcache_insert(
xfs_inode_t *ip)
{
vnode_t *vp;
xfs_inode_t *release_ip;
xfs_inode_t **refcache;
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE));
/*
* If an unmount is busy blowing entries out of the cache,
* then don't bother.
*/
if (xfs_refcache_busy) {
return;
}
/*
* If we tuned the refcache down to zero, don't do anything.
*/
if (!xfs_refcache_size) {
return;
}
/*
* The inode is already in the refcache, so don't bother
* with it.
*/
if (ip->i_refcache != NULL) {
return;
}
vp = XFS_ITOV(ip);
/* ASSERT(vp->v_count > 0); */
VN_HOLD(vp);
/*
* We allocate the reference cache on use so that we don't
* waste the memory on systems not being used as NFS servers.
*/
if (xfs_refcache == NULL) {
refcache = (xfs_inode_t **)kmem_zalloc(XFS_REFCACHE_SIZE_MAX *
sizeof(xfs_inode_t *),
KM_SLEEP);
} else {
refcache = NULL;
}
spin_lock(&xfs_refcache_lock);
/*
* If we allocated memory for the refcache above and it still
* needs it, then use the memory we allocated. Otherwise we'll
* free the memory below.
*/
if (refcache != NULL) {
if (xfs_refcache == NULL) {
xfs_refcache = refcache;
refcache = NULL;
}
}
/*
* If an unmount is busy clearing out the cache, don't add new
* entries to it.
*/
if (xfs_refcache_busy) {
spin_unlock(&xfs_refcache_lock);
VN_RELE(vp);
/*
* If we allocated memory for the refcache above but someone
* else beat us to using it, then free the memory now.
*/
if (refcache != NULL) {
kmem_free(refcache,
XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *));
}
return;
}
release_ip = xfs_refcache[xfs_refcache_index];
if (release_ip != NULL) {
release_ip->i_refcache = NULL;
xfs_refcache_count--;
ASSERT(xfs_refcache_count >= 0);
}
xfs_refcache[xfs_refcache_index] = ip;
ASSERT(ip->i_refcache == NULL);
ip->i_refcache = &(xfs_refcache[xfs_refcache_index]);
xfs_refcache_count++;
ASSERT(xfs_refcache_count <= xfs_refcache_size);
xfs_refcache_index++;
if (xfs_refcache_index == xfs_refcache_size) {
xfs_refcache_index = 0;
}
spin_unlock(&xfs_refcache_lock);
/*
* Save the pointer to the inode to be released so that we can
* VN_RELE it once we've dropped our inode locks in xfs_rwunlock().
* The pointer may be NULL, but that's OK.
*/
ip->i_release = release_ip;
/*
* If we allocated memory for the refcache above but someone
* else beat us to using it, then free the memory now.
*/
if (refcache != NULL) {
kmem_free(refcache,
XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *));
}
}
/*
* If the given inode is in the reference cache, purge its entry and
* release the reference on the vnode.
*/
void
xfs_refcache_purge_ip(
xfs_inode_t *ip)
{
vnode_t *vp;
int error;
/*
* If we're not pointing to our entry in the cache, then
* we must not be in the cache.
*/
if (ip->i_refcache == NULL) {
return;
}
spin_lock(&xfs_refcache_lock);
if (ip->i_refcache == NULL) {
spin_unlock(&xfs_refcache_lock);
return;
}
/*
* Clear both our pointer to the cache entry and its pointer
* back to us.
*/
ASSERT(*(ip->i_refcache) == ip);
*(ip->i_refcache) = NULL;
ip->i_refcache = NULL;
xfs_refcache_count--;
ASSERT(xfs_refcache_count >= 0);
spin_unlock(&xfs_refcache_lock);
vp = XFS_ITOV(ip);
/* ASSERT(vp->v_count > 1); */
VOP_RELEASE(vp, error);
VN_RELE(vp);
}
/*
* This is called from the XFS unmount code to purge all entries for the
* given mount from the cache. It uses the refcache busy counter to
* make sure that new entries are not added to the cache as we purge them.
*/
void
xfs_refcache_purge_mp(
xfs_mount_t *mp)
{
vnode_t *vp;
int error, i;
xfs_inode_t *ip;
if (xfs_refcache == NULL) {
return;
}
spin_lock(&xfs_refcache_lock);
/*
* Bumping the busy counter keeps new entries from being added
* to the cache. We use a counter since multiple unmounts could
* be in here simultaneously.
*/
xfs_refcache_busy++;
for (i = 0; i < xfs_refcache_size; i++) {
ip = xfs_refcache[i];
if ((ip != NULL) && (ip->i_mount == mp)) {
xfs_refcache[i] = NULL;
ip->i_refcache = NULL;
xfs_refcache_count--;
ASSERT(xfs_refcache_count >= 0);
spin_unlock(&xfs_refcache_lock);
vp = XFS_ITOV(ip);
VOP_RELEASE(vp, error);
VN_RELE(vp);
spin_lock(&xfs_refcache_lock);
}
}
xfs_refcache_busy--;
ASSERT(xfs_refcache_busy >= 0);
spin_unlock(&xfs_refcache_lock);
}
/*
* This is called from the XFS sync code to ensure that the refcache
* is emptied out over time. We purge a small number of entries with
* each call.
*/
void
xfs_refcache_purge_some(xfs_mount_t *mp)
{
int error, i;
xfs_inode_t *ip;
int iplist_index;
xfs_inode_t **iplist;
if ((xfs_refcache == NULL) || (xfs_refcache_count == 0)) {
return;
}
iplist_index = 0;
iplist = (xfs_inode_t **)kmem_zalloc(xfs_refcache_purge_count *
sizeof(xfs_inode_t *), KM_SLEEP);
spin_lock(&xfs_refcache_lock);
/*
* Store any inodes we find in the next several entries
* into the iplist array to be released after dropping
* the spinlock. We always start looking from the currently
* oldest place in the cache. We move the refcache index
* forward as we go so that we are sure to eventually clear
* out the entire cache when the system goes idle.
*/
for (i = 0; i < xfs_refcache_purge_count; i++) {
ip = xfs_refcache[xfs_refcache_index];
if (ip != NULL) {
xfs_refcache[xfs_refcache_index] = NULL;
ip->i_refcache = NULL;
xfs_refcache_count--;
ASSERT(xfs_refcache_count >= 0);
iplist[iplist_index] = ip;
iplist_index++;
}
xfs_refcache_index++;
if (xfs_refcache_index == xfs_refcache_size) {
xfs_refcache_index = 0;
}
}
spin_unlock(&xfs_refcache_lock);
/*
* Now drop the inodes we collected.
*/
for (i = 0; i < iplist_index; i++) {
VOP_RELEASE(XFS_ITOV(iplist[i]), error);
VN_RELE(XFS_ITOV(iplist[i]));
}
kmem_free(iplist, xfs_refcache_purge_count *
sizeof(xfs_inode_t *));
}
/*
* This is called when the refcache is dynamically resized
* via a sysctl.
*
* If the new size is smaller than the old size, purge all
* entries in slots greater than the new size, and move
* the index if necessary.
*
* If the refcache hasn't even been allocated yet, or the
* new size is larger than the old size, just set the value
* of xfs_refcache_size.
*/
void
xfs_refcache_resize(int xfs_refcache_new_size)
{
int i;
xfs_inode_t *ip;
int iplist_index = 0;
xfs_inode_t **iplist;
int error;
/*
* If the new size is smaller than the current size,
* purge entries to create smaller cache, and
* reposition index if necessary.
* Don't bother if no refcache yet.
*/
if (xfs_refcache && (xfs_refcache_new_size < xfs_refcache_size)) {
iplist = (xfs_inode_t **)kmem_zalloc(XFS_REFCACHE_SIZE_MAX *
sizeof(xfs_inode_t *), KM_SLEEP);
spin_lock(&xfs_refcache_lock);
for (i = xfs_refcache_new_size; i < xfs_refcache_size; i++) {
ip = xfs_refcache[i];
if (ip != NULL) {
xfs_refcache[i] = NULL;
ip->i_refcache = NULL;
xfs_refcache_count--;
ASSERT(xfs_refcache_count >= 0);
iplist[iplist_index] = ip;
iplist_index++;
}
}
xfs_refcache_size = xfs_refcache_new_size;
/*
* Move index to beginning of cache if it's now past the end
*/
if (xfs_refcache_index >= xfs_refcache_new_size)
xfs_refcache_index = 0;
spin_unlock(&xfs_refcache_lock);
/*
* Now drop the inodes we collected.
*/
for (i = 0; i < iplist_index; i++) {
VOP_RELEASE(XFS_ITOV(iplist[i]), error);
VN_RELE(XFS_ITOV(iplist[i]));
}
kmem_free(iplist, XFS_REFCACHE_SIZE_MAX *
sizeof(xfs_inode_t *));
} else {
spin_lock(&xfs_refcache_lock);
xfs_refcache_size = xfs_refcache_new_size;
spin_unlock(&xfs_refcache_lock);
}
}
void
xfs_refcache_iunlock(
xfs_inode_t *ip,
uint lock_flags)
{
xfs_inode_t *release_ip;
int error;
release_ip = ip->i_release;
ip->i_release = NULL;
xfs_iunlock(ip, lock_flags);
if (release_ip != NULL) {
VOP_RELEASE(XFS_ITOV(release_ip), error);
VN_RELE(XFS_ITOV(release_ip));
}
}
void
xfs_refcache_destroy(void)
{
if (xfs_refcache) {
kmem_free(xfs_refcache,
XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *));
xfs_refcache = NULL;
}
spinlock_destroy(&xfs_refcache_lock);
}