1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-13 14:40:22 +00:00
freebsd/sys/i386/xen/mp_machdep.c
Colin Percival 8cdabbaf32 Add VTOM(va) macro as xpmap_ptom(VTOP(va)) to convert to machine addresses.
Clean up the code by converting xpmap_ptom(VTOP(...)) to VTOM(...) and
converting xpmap_ptom(VM_PAGE_TO_PHYS(...)) to VM_PAGE_TO_MACH(...).  In
a few places we take advantage of the fact that xpmap_ptom can commute with
setting PG_* flags.

This commit should have no net effect save to improve the readability of
this code.
2010-11-20 20:04:29 +00:00

1261 lines
29 KiB
C

/*-
* Copyright (c) 1996, by Steve Passe
* Copyright (c) 2008, by Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_apic.h"
#include "opt_cpu.h"
#include "opt_kstack_pages.h"
#include "opt_mp_watchdog.h"
#include "opt_pmap.h"
#include "opt_sched.h"
#include "opt_smp.h"
#if !defined(lint)
#if !defined(SMP)
#error How did you get here?
#endif
#ifndef DEV_APIC
#error The apic device is required for SMP, add "device apic" to your config file.
#endif
#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
#error SMP not supported with CPU_DISABLE_CMPXCHG
#endif
#endif /* not lint */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cons.h> /* cngetc() */
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_page.h>
#include <x86/apicreg.h>
#include <machine/md_var.h>
#include <machine/mp_watchdog.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/smp.h>
#include <machine/specialreg.h>
#include <machine/pcpu.h>
#include <machine/xen/xen-os.h>
#include <xen/evtchn.h>
#include <xen/xen_intr.h>
#include <xen/hypervisor.h>
#include <xen/interface/vcpu.h>
int mp_naps; /* # of Applications processors */
int boot_cpu_id = -1; /* designated BSP */
extern struct pcpu __pcpu[];
static int bootAP;
static union descriptor *bootAPgdt;
static char resched_name[NR_CPUS][15];
static char callfunc_name[NR_CPUS][15];
/* Free these after use */
void *bootstacks[MAXCPU];
struct pcb stoppcbs[MAXCPU];
/* Variables needed for SMP tlb shootdown. */
vm_offset_t smp_tlb_addr1;
vm_offset_t smp_tlb_addr2;
volatile int smp_tlb_wait;
typedef void call_data_func_t(uintptr_t , uintptr_t);
static u_int logical_cpus;
static volatile cpumask_t ipi_nmi_pending;
/* used to hold the AP's until we are ready to release them */
static struct mtx ap_boot_mtx;
/* Set to 1 once we're ready to let the APs out of the pen. */
static volatile int aps_ready = 0;
/*
* Store data from cpu_add() until later in the boot when we actually setup
* the APs.
*/
struct cpu_info {
int cpu_present:1;
int cpu_bsp:1;
int cpu_disabled:1;
} static cpu_info[MAX_APIC_ID + 1];
int cpu_apic_ids[MAXCPU];
int apic_cpuids[MAX_APIC_ID + 1];
/* Holds pending bitmap based IPIs per CPU */
static volatile u_int cpu_ipi_pending[MAXCPU];
static int cpu_logical;
static int cpu_cores;
static void assign_cpu_ids(void);
static void set_interrupt_apic_ids(void);
int start_all_aps(void);
static int start_ap(int apic_id);
static void release_aps(void *dummy);
static u_int hyperthreading_cpus;
static cpumask_t hyperthreading_cpus_mask;
extern void Xhypervisor_callback(void);
extern void failsafe_callback(void);
extern void pmap_lazyfix_action(void);
struct cpu_group *
cpu_topo(void)
{
if (cpu_cores == 0)
cpu_cores = 1;
if (cpu_logical == 0)
cpu_logical = 1;
if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
printf("WARNING: Non-uniform processors.\n");
printf("WARNING: Using suboptimal topology.\n");
return (smp_topo_none());
}
/*
* No multi-core or hyper-threaded.
*/
if (cpu_logical * cpu_cores == 1)
return (smp_topo_none());
/*
* Only HTT no multi-core.
*/
if (cpu_logical > 1 && cpu_cores == 1)
return (smp_topo_1level(CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
/*
* Only multi-core no HTT.
*/
if (cpu_cores > 1 && cpu_logical == 1)
return (smp_topo_1level(CG_SHARE_NONE, cpu_cores, 0));
/*
* Both HTT and multi-core.
*/
return (smp_topo_2level(CG_SHARE_NONE, cpu_cores,
CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
}
/*
* Calculate usable address in base memory for AP trampoline code.
*/
u_int
mp_bootaddress(u_int basemem)
{
return (basemem);
}
void
cpu_add(u_int apic_id, char boot_cpu)
{
if (apic_id > MAX_APIC_ID) {
panic("SMP: APIC ID %d too high", apic_id);
return;
}
KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
apic_id));
cpu_info[apic_id].cpu_present = 1;
if (boot_cpu) {
KASSERT(boot_cpu_id == -1,
("CPU %d claims to be BSP, but CPU %d already is", apic_id,
boot_cpu_id));
boot_cpu_id = apic_id;
cpu_info[apic_id].cpu_bsp = 1;
}
if (mp_ncpus < MAXCPU)
mp_ncpus++;
if (bootverbose)
printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
"AP");
}
void
cpu_mp_setmaxid(void)
{
mp_maxid = MAXCPU - 1;
}
int
cpu_mp_probe(void)
{
/*
* Always record BSP in CPU map so that the mbuf init code works
* correctly.
*/
all_cpus = 1;
if (mp_ncpus == 0) {
/*
* No CPUs were found, so this must be a UP system. Setup
* the variables to represent a system with a single CPU
* with an id of 0.
*/
mp_ncpus = 1;
return (0);
}
/* At least one CPU was found. */
if (mp_ncpus == 1) {
/*
* One CPU was found, so this must be a UP system with
* an I/O APIC.
*/
return (0);
}
/* At least two CPUs were found. */
return (1);
}
/*
* Initialize the IPI handlers and start up the AP's.
*/
void
cpu_mp_start(void)
{
int i;
/* Initialize the logical ID to APIC ID table. */
for (i = 0; i < MAXCPU; i++) {
cpu_apic_ids[i] = -1;
cpu_ipi_pending[i] = 0;
}
/* Set boot_cpu_id if needed. */
if (boot_cpu_id == -1) {
boot_cpu_id = PCPU_GET(apic_id);
cpu_info[boot_cpu_id].cpu_bsp = 1;
} else
KASSERT(boot_cpu_id == PCPU_GET(apic_id),
("BSP's APIC ID doesn't match boot_cpu_id"));
cpu_apic_ids[0] = boot_cpu_id;
apic_cpuids[boot_cpu_id] = 0;
assign_cpu_ids();
/* Start each Application Processor */
start_all_aps();
/* Setup the initial logical CPUs info. */
logical_cpus = logical_cpus_mask = 0;
if (cpu_feature & CPUID_HTT)
logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
set_interrupt_apic_ids();
}
static void
iv_rendezvous(uintptr_t a, uintptr_t b)
{
smp_rendezvous_action();
}
static void
iv_invltlb(uintptr_t a, uintptr_t b)
{
xen_tlb_flush();
}
static void
iv_invlpg(uintptr_t a, uintptr_t b)
{
xen_invlpg(a);
}
static void
iv_invlrng(uintptr_t a, uintptr_t b)
{
vm_offset_t start = (vm_offset_t)a;
vm_offset_t end = (vm_offset_t)b;
while (start < end) {
xen_invlpg(start);
start += PAGE_SIZE;
}
}
static void
iv_invlcache(uintptr_t a, uintptr_t b)
{
wbinvd();
atomic_add_int(&smp_tlb_wait, 1);
}
static void
iv_lazypmap(uintptr_t a, uintptr_t b)
{
pmap_lazyfix_action();
atomic_add_int(&smp_tlb_wait, 1);
}
/*
* These start from "IPI offset" APIC_IPI_INTS
*/
static call_data_func_t *ipi_vectors[6] =
{
iv_rendezvous,
iv_invltlb,
iv_invlpg,
iv_invlrng,
iv_invlcache,
iv_lazypmap,
};
/*
* Reschedule call back. Nothing to do,
* all the work is done automatically when
* we return from the interrupt.
*/
static int
smp_reschedule_interrupt(void *unused)
{
int cpu = PCPU_GET(cpuid);
u_int ipi_bitmap;
ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
if (ipi_bitmap & (1 << IPI_PREEMPT)) {
#ifdef COUNT_IPIS
(*ipi_preempt_counts[cpu])++;
#endif
sched_preempt(curthread);
}
if (ipi_bitmap & (1 << IPI_AST)) {
#ifdef COUNT_IPIS
(*ipi_ast_counts[cpu])++;
#endif
/* Nothing to do for AST */
}
return (FILTER_HANDLED);
}
struct _call_data {
uint16_t func_id;
uint16_t wait;
uintptr_t arg1;
uintptr_t arg2;
atomic_t started;
atomic_t finished;
};
static struct _call_data *call_data;
static int
smp_call_function_interrupt(void *unused)
{
call_data_func_t *func;
uintptr_t arg1 = call_data->arg1;
uintptr_t arg2 = call_data->arg2;
int wait = call_data->wait;
atomic_t *started = &call_data->started;
atomic_t *finished = &call_data->finished;
/* We only handle function IPIs, not bitmap IPIs */
if (call_data->func_id < APIC_IPI_INTS || call_data->func_id > IPI_BITMAP_VECTOR)
panic("invalid function id %u", call_data->func_id);
func = ipi_vectors[call_data->func_id - APIC_IPI_INTS];
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function
*/
mb();
atomic_inc(started);
/*
* At this point the info structure may be out of scope unless wait==1
*/
(*func)(arg1, arg2);
if (wait) {
mb();
atomic_inc(finished);
}
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
/*
* Print various information about the SMP system hardware and setup.
*/
void
cpu_mp_announce(void)
{
int i, x;
/* List CPUs */
printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
continue;
if (cpu_info[x].cpu_disabled)
printf(" cpu (AP): APIC ID: %2d (disabled)\n", x);
else {
KASSERT(i < mp_ncpus,
("mp_ncpus and actual cpus are out of whack"));
printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
}
}
}
static int
xen_smp_intr_init(unsigned int cpu)
{
int rc;
unsigned int irq;
per_cpu(resched_irq, cpu) = per_cpu(callfunc_irq, cpu) = -1;
sprintf(resched_name[cpu], "resched%u", cpu);
rc = bind_ipi_to_irqhandler(RESCHEDULE_VECTOR,
cpu,
resched_name[cpu],
smp_reschedule_interrupt,
INTR_FAST|INTR_TYPE_TTY|INTR_MPSAFE, &irq);
printf("[XEN] IPI cpu=%d irq=%d vector=RESCHEDULE_VECTOR (%d)\n",
cpu, irq, RESCHEDULE_VECTOR);
per_cpu(resched_irq, cpu) = irq;
sprintf(callfunc_name[cpu], "callfunc%u", cpu);
rc = bind_ipi_to_irqhandler(CALL_FUNCTION_VECTOR,
cpu,
callfunc_name[cpu],
smp_call_function_interrupt,
INTR_FAST|INTR_TYPE_TTY|INTR_MPSAFE, &irq);
if (rc < 0)
goto fail;
per_cpu(callfunc_irq, cpu) = irq;
printf("[XEN] IPI cpu=%d irq=%d vector=CALL_FUNCTION_VECTOR (%d)\n",
cpu, irq, CALL_FUNCTION_VECTOR);
if ((cpu != 0) && ((rc = ap_cpu_initclocks(cpu)) != 0))
goto fail;
return 0;
fail:
if (per_cpu(resched_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(resched_irq, cpu));
if (per_cpu(callfunc_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu));
return rc;
}
static void
xen_smp_intr_init_cpus(void *unused)
{
int i;
for (i = 0; i < mp_ncpus; i++)
xen_smp_intr_init(i);
}
#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
/*
* AP CPU's call this to initialize themselves.
*/
void
init_secondary(void)
{
vm_offset_t addr;
int gsel_tss;
/* bootAP is set in start_ap() to our ID. */
PCPU_SET(currentldt, _default_ldt);
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
#if 0
gdt[bootAP * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
#endif
PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
#if 0
PCPU_SET(tss_gdt, &gdt[bootAP * NGDT + GPROC0_SEL].sd);
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
#endif
PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
/*
* Set to a known state:
* Set by mpboot.s: CR0_PG, CR0_PE
* Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
*/
/*
* signal our startup to the BSP.
*/
mp_naps++;
/* Spin until the BSP releases the AP's. */
while (!aps_ready)
ia32_pause();
/* BSP may have changed PTD while we were waiting */
invltlb();
for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
invlpg(addr);
/* set up FPU state on the AP */
npxinit();
#if 0
/* set up SSE registers */
enable_sse();
#endif
#if 0 && defined(PAE)
/* Enable the PTE no-execute bit. */
if ((amd_feature & AMDID_NX) != 0) {
uint64_t msr;
msr = rdmsr(MSR_EFER) | EFER_NXE;
wrmsr(MSR_EFER, msr);
}
#endif
#if 0
/* A quick check from sanity claus */
if (PCPU_GET(apic_id) != lapic_id()) {
printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
printf("SMP: actual apic_id = %d\n", lapic_id());
printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
panic("cpuid mismatch! boom!!");
}
#endif
/* Initialize curthread. */
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
PCPU_SET(curthread, PCPU_GET(idlethread));
mtx_lock_spin(&ap_boot_mtx);
#if 0
/* Init local apic for irq's */
lapic_setup(1);
#endif
smp_cpus++;
CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
/* Determine if we are a logical CPU. */
if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
logical_cpus_mask |= PCPU_GET(cpumask);
/* Determine if we are a hyperthread. */
if (hyperthreading_cpus > 1 &&
PCPU_GET(apic_id) % hyperthreading_cpus != 0)
hyperthreading_cpus_mask |= PCPU_GET(cpumask);
/* Build our map of 'other' CPUs. */
PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
#if 0
if (bootverbose)
lapic_dump("AP");
#endif
if (smp_cpus == mp_ncpus) {
/* enable IPI's, tlb shootdown, freezes etc */
atomic_store_rel_int(&smp_started, 1);
smp_active = 1; /* historic */
}
mtx_unlock_spin(&ap_boot_mtx);
/* wait until all the AP's are up */
while (smp_started == 0)
ia32_pause();
PCPU_SET(curthread, PCPU_GET(idlethread));
/* enter the scheduler */
sched_throw(NULL);
panic("scheduler returned us to %s", __func__);
/* NOTREACHED */
}
/*******************************************************************
* local functions and data
*/
/*
* We tell the I/O APIC code about all the CPUs we want to receive
* interrupts. If we don't want certain CPUs to receive IRQs we
* can simply not tell the I/O APIC code about them in this function.
* We also do not tell it about the BSP since it tells itself about
* the BSP internally to work with UP kernels and on UP machines.
*/
static void
set_interrupt_apic_ids(void)
{
u_int i, apic_id;
for (i = 0; i < MAXCPU; i++) {
apic_id = cpu_apic_ids[i];
if (apic_id == -1)
continue;
if (cpu_info[apic_id].cpu_bsp)
continue;
if (cpu_info[apic_id].cpu_disabled)
continue;
/* Don't let hyperthreads service interrupts. */
if (hyperthreading_cpus > 1 &&
apic_id % hyperthreading_cpus != 0)
continue;
intr_add_cpu(i);
}
}
/*
* Assign logical CPU IDs to local APICs.
*/
static void
assign_cpu_ids(void)
{
u_int i;
/* Check for explicitly disabled CPUs. */
for (i = 0; i <= MAX_APIC_ID; i++) {
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
continue;
/* Don't use this CPU if it has been disabled by a tunable. */
if (resource_disabled("lapic", i)) {
cpu_info[i].cpu_disabled = 1;
continue;
}
}
/*
* Assign CPU IDs to local APIC IDs and disable any CPUs
* beyond MAXCPU. CPU 0 has already been assigned to the BSP,
* so we only have to assign IDs for APs.
*/
mp_ncpus = 1;
for (i = 0; i <= MAX_APIC_ID; i++) {
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
cpu_info[i].cpu_disabled)
continue;
if (mp_ncpus < MAXCPU) {
cpu_apic_ids[mp_ncpus] = i;
apic_cpuids[i] = mp_ncpus;
mp_ncpus++;
} else
cpu_info[i].cpu_disabled = 1;
}
KASSERT(mp_maxid >= mp_ncpus - 1,
("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
mp_ncpus));
}
/*
* start each AP in our list
*/
/* Lowest 1MB is already mapped: don't touch*/
#define TMPMAP_START 1
int
start_all_aps(void)
{
int x,apic_id, cpu;
struct pcpu *pc;
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
/* set up temporary P==V mapping for AP boot */
/* XXX this is a hack, we should boot the AP on its own stack/PTD */
/* start each AP */
for (cpu = 1; cpu < mp_ncpus; cpu++) {
apic_id = cpu_apic_ids[cpu];
bootAP = cpu;
bootAPgdt = gdt + (512*cpu);
/* Get per-cpu data */
pc = &__pcpu[bootAP];
pcpu_init(pc, bootAP, sizeof(struct pcpu));
dpcpu_init((void *)kmem_alloc(kernel_map, DPCPU_SIZE), bootAP);
pc->pc_apic_id = cpu_apic_ids[bootAP];
pc->pc_prvspace = pc;
pc->pc_curthread = 0;
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
PT_SET_MA(bootAPgdt, VTOM(bootAPgdt) | PG_V | PG_RW);
bzero(bootAPgdt, PAGE_SIZE);
for (x = 0; x < NGDT; x++)
ssdtosd(&gdt_segs[x], &bootAPgdt[x].sd);
PT_SET_MA(bootAPgdt, vtomach(bootAPgdt) | PG_V);
#ifdef notyet
if (HYPERVISOR_vcpu_op(VCPUOP_get_physid, cpu, &cpu_id) == 0) {
apicid = xen_vcpu_physid_to_x86_apicid(cpu_id.phys_id);
acpiid = xen_vcpu_physid_to_x86_acpiid(cpu_id.phys_id);
#ifdef CONFIG_ACPI
if (acpiid != 0xff)
x86_acpiid_to_apicid[acpiid] = apicid;
#endif
}
#endif
/* attempt to start the Application Processor */
if (!start_ap(cpu)) {
printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
all_cpus |= (1 << cpu); /* record AP in CPU map */
}
/* build our map of 'other' CPUs */
PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
/* number of APs actually started */
return mp_naps;
}
extern uint8_t *pcpu_boot_stack;
extern trap_info_t trap_table[];
static void
smp_trap_init(trap_info_t *trap_ctxt)
{
const trap_info_t *t = trap_table;
for (t = trap_table; t->address; t++) {
trap_ctxt[t->vector].flags = t->flags;
trap_ctxt[t->vector].cs = t->cs;
trap_ctxt[t->vector].address = t->address;
}
}
extern int nkpt;
static void
cpu_initialize_context(unsigned int cpu)
{
/* vcpu_guest_context_t is too large to allocate on the stack.
* Hence we allocate statically and protect it with a lock */
vm_page_t m[4];
static vcpu_guest_context_t ctxt;
vm_offset_t boot_stack;
vm_offset_t newPTD;
vm_paddr_t ma[NPGPTD];
static int color;
int i;
/*
* Page 0,[0-3] PTD
* Page 1, [4] boot stack
* Page [5] PDPT
*
*/
for (i = 0; i < NPGPTD + 2; i++) {
m[i] = vm_page_alloc(NULL, color++,
VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
pmap_zero_page(m[i]);
}
boot_stack = kmem_alloc_nofault(kernel_map, 1);
newPTD = kmem_alloc_nofault(kernel_map, NPGPTD);
ma[0] = VM_PAGE_TO_MACH(m[0])|PG_V;
#ifdef PAE
pmap_kenter(boot_stack, VM_PAGE_TO_PHYS(m[NPGPTD + 1]));
for (i = 0; i < NPGPTD; i++) {
((vm_paddr_t *)boot_stack)[i] =
ma[i] = VM_PAGE_TO_MACH(m[i])|PG_V;
}
#endif
/*
* Copy cpu0 IdlePTD to new IdlePTD - copying only
* kernel mappings
*/
pmap_qenter(newPTD, m, 4);
memcpy((uint8_t *)newPTD + KPTDI*sizeof(vm_paddr_t),
(uint8_t *)PTOV(IdlePTD) + KPTDI*sizeof(vm_paddr_t),
nkpt*sizeof(vm_paddr_t));
pmap_qremove(newPTD, 4);
kmem_free(kernel_map, newPTD, 4);
/*
* map actual idle stack to boot_stack
*/
pmap_kenter(boot_stack, VM_PAGE_TO_PHYS(m[NPGPTD]));
xen_pgdpt_pin(VM_PAGE_TO_MACH(m[NPGPTD + 1]));
vm_page_lock_queues();
for (i = 0; i < 4; i++) {
int pdir = (PTDPTDI + i) / NPDEPG;
int curoffset = (PTDPTDI + i) % NPDEPG;
xen_queue_pt_update((vm_paddr_t)
((ma[pdir] & ~PG_V) + (curoffset*sizeof(vm_paddr_t))),
ma[i]);
}
PT_UPDATES_FLUSH();
vm_page_unlock_queues();
memset(&ctxt, 0, sizeof(ctxt));
ctxt.flags = VGCF_IN_KERNEL;
ctxt.user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
ctxt.user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
ctxt.user_regs.fs = GSEL(GPRIV_SEL, SEL_KPL);
ctxt.user_regs.gs = GSEL(GDATA_SEL, SEL_KPL);
ctxt.user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
ctxt.user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
ctxt.user_regs.eip = (unsigned long)init_secondary;
ctxt.user_regs.eflags = PSL_KERNEL | 0x1000; /* IOPL_RING1 */
memset(&ctxt.fpu_ctxt, 0, sizeof(ctxt.fpu_ctxt));
smp_trap_init(ctxt.trap_ctxt);
ctxt.ldt_ents = 0;
ctxt.gdt_frames[0] = (uint32_t)((uint64_t)vtomach(bootAPgdt) >> PAGE_SHIFT);
ctxt.gdt_ents = 512;
#ifdef __i386__
ctxt.user_regs.esp = boot_stack + PAGE_SIZE;
ctxt.kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
ctxt.kernel_sp = boot_stack + PAGE_SIZE;
ctxt.event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
ctxt.event_callback_eip = (unsigned long)Xhypervisor_callback;
ctxt.failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
ctxt.failsafe_callback_eip = (unsigned long)failsafe_callback;
ctxt.ctrlreg[3] = VM_PAGE_TO_MACH(m[NPGPTD + 1]);
#else /* __x86_64__ */
ctxt.user_regs.esp = idle->thread.rsp0 - sizeof(struct pt_regs);
ctxt.kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
ctxt.kernel_sp = idle->thread.rsp0;
ctxt.event_callback_eip = (unsigned long)hypervisor_callback;
ctxt.failsafe_callback_eip = (unsigned long)failsafe_callback;
ctxt.syscall_callback_eip = (unsigned long)system_call;
ctxt.ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(init_level4_pgt));
ctxt.gs_base_kernel = (unsigned long)(cpu_pda(cpu));
#endif
printf("gdtpfn=%lx pdptpfn=%lx\n",
ctxt.gdt_frames[0],
ctxt.ctrlreg[3] >> PAGE_SHIFT);
PANIC_IF(HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, &ctxt));
DELAY(3000);
PANIC_IF(HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL));
}
/*
* This function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It isn't pretty,
* but it seems to work.
*/
int cpus;
static int
start_ap(int apic_id)
{
int ms;
/* used as a watchpoint to signal AP startup */
cpus = mp_naps;
cpu_initialize_context(apic_id);
/* Wait up to 5 seconds for it to start. */
for (ms = 0; ms < 5000; ms++) {
if (mp_naps > cpus)
return 1; /* return SUCCESS */
DELAY(1000);
}
return 0; /* return FAILURE */
}
/*
* Flush the TLB on all other CPU's
*/
static void
smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
{
u_int ncpu;
struct _call_data data;
ncpu = mp_ncpus - 1; /* does not shootdown self */
if (ncpu < 1)
return; /* no other cpus */
if (!(read_eflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
KASSERT(call_data == NULL, ("call_data isn't null?!"));
call_data = &data;
call_data->func_id = vector;
call_data->arg1 = addr1;
call_data->arg2 = addr2;
atomic_store_rel_int(&smp_tlb_wait, 0);
ipi_all_but_self(vector);
while (smp_tlb_wait < ncpu)
ia32_pause();
call_data = NULL;
mtx_unlock_spin(&smp_ipi_mtx);
}
static void
smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
{
int ncpu, othercpus;
struct _call_data data;
othercpus = mp_ncpus - 1;
if (mask == (u_int)-1) {
ncpu = othercpus;
if (ncpu < 1)
return;
} else {
mask &= ~PCPU_GET(cpumask);
if (mask == 0)
return;
ncpu = bitcount32(mask);
if (ncpu > othercpus) {
/* XXX this should be a panic offence */
printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
ncpu, othercpus);
ncpu = othercpus;
}
/* XXX should be a panic, implied by mask == 0 above */
if (ncpu < 1)
return;
}
if (!(read_eflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
KASSERT(call_data == NULL, ("call_data isn't null?!"));
call_data = &data;
call_data->func_id = vector;
call_data->arg1 = addr1;
call_data->arg2 = addr2;
atomic_store_rel_int(&smp_tlb_wait, 0);
if (mask == (u_int)-1)
ipi_all_but_self(vector);
else
ipi_selected(mask, vector);
while (smp_tlb_wait < ncpu)
ia32_pause();
call_data = NULL;
mtx_unlock_spin(&smp_ipi_mtx);
}
void
smp_cache_flush(void)
{
if (smp_started)
smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
}
void
smp_invltlb(void)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
}
}
void
smp_invlpg(vm_offset_t addr)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLPG, addr, 0);
}
}
void
smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
}
}
void
smp_masked_invltlb(cpumask_t mask)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
}
}
void
smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
}
}
void
smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
}
}
/*
* send an IPI to a set of cpus.
*/
void
ipi_selected(cpumask_t cpus, u_int ipi)
{
int cpu;
u_int bitmap = 0;
u_int old_pending;
u_int new_pending;
if (IPI_IS_BITMAPED(ipi)) {
bitmap = 1 << ipi;
ipi = IPI_BITMAP_VECTOR;
}
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
atomic_set_int(&ipi_nmi_pending, cpus);
CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
while ((cpu = ffs(cpus)) != 0) {
cpu--;
cpus &= ~(1 << cpu);
if (bitmap) {
do {
old_pending = cpu_ipi_pending[cpu];
new_pending = old_pending | bitmap;
} while (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
old_pending, new_pending));
if (!old_pending)
ipi_pcpu(cpu, RESCHEDULE_VECTOR);
} else {
KASSERT(call_data != NULL, ("call_data not set"));
ipi_pcpu(cpu, CALL_FUNCTION_VECTOR);
}
}
}
/*
* send an IPI to a specific CPU.
*/
void
ipi_cpu(int cpu, u_int ipi)
{
u_int bitmap = 0;
u_int old_pending;
u_int new_pending;
if (IPI_IS_BITMAPED(ipi)) {
bitmap = 1 << ipi;
ipi = IPI_BITMAP_VECTOR;
}
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
atomic_set_int(&ipi_nmi_pending, 1 << cpu);
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
if (bitmap) {
do {
old_pending = cpu_ipi_pending[cpu];
new_pending = old_pending | bitmap;
} while (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
old_pending, new_pending));
if (!old_pending)
ipi_pcpu(cpu, RESCHEDULE_VECTOR);
} else {
KASSERT(call_data != NULL, ("call_data not set"));
ipi_pcpu(cpu, CALL_FUNCTION_VECTOR);
}
}
/*
* send an IPI to all CPUs EXCEPT myself
*/
void
ipi_all_but_self(u_int ipi)
{
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
ipi_selected(PCPU_GET(other_cpus), ipi);
}
int
ipi_nmi_handler()
{
cpumask_t cpumask;
/*
* As long as there is not a simple way to know about a NMI's
* source, if the bitmask for the current CPU is present in
* the global pending bitword an IPI_STOP_HARD has been issued
* and should be handled.
*/
cpumask = PCPU_GET(cpumask);
if ((ipi_nmi_pending & cpumask) == 0)
return (1);
atomic_clear_int(&ipi_nmi_pending, cpumask);
cpustop_handler();
return (0);
}
/*
* Handle an IPI_STOP by saving our current context and spinning until we
* are resumed.
*/
void
cpustop_handler(void)
{
int cpu = PCPU_GET(cpuid);
int cpumask = PCPU_GET(cpumask);
savectx(&stoppcbs[cpu]);
/* Indicate that we are stopped */
atomic_set_int(&stopped_cpus, cpumask);
/* Wait for restart */
while (!(started_cpus & cpumask))
ia32_pause();
atomic_clear_int(&started_cpus, cpumask);
atomic_clear_int(&stopped_cpus, cpumask);
if (cpu == 0 && cpustop_restartfunc != NULL) {
cpustop_restartfunc();
cpustop_restartfunc = NULL;
}
}
/*
* This is called once the rest of the system is up and running and we're
* ready to let the AP's out of the pen.
*/
static void
release_aps(void *dummy __unused)
{
if (mp_ncpus == 1)
return;
atomic_store_rel_int(&aps_ready, 1);
while (smp_started == 0)
ia32_pause();
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
SYSINIT(start_ipis, SI_SUB_INTR, SI_ORDER_ANY, xen_smp_intr_init_cpus, NULL);