mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-02 12:20:51 +00:00
3783 lines
115 KiB
C
3783 lines
115 KiB
C
/* Sign extension elimination optimization for GNU compiler.
|
||
Copyright (C) 2005 Free Software Foundation, Inc.
|
||
Contributed by Leehod Baruch <leehod@il.ibm.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
-Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA.
|
||
|
||
Problem description:
|
||
--------------------
|
||
In order to support 32bit computations on a 64bit machine, sign
|
||
extension instructions are generated to ensure the correctness of
|
||
the computation.
|
||
A possible policy (as currently implemented) is to generate a sign
|
||
extension right after each 32bit computation.
|
||
Depending on the instruction set of the architecture, some of these
|
||
sign extension instructions may be redundant.
|
||
There are two cases in which the extension may be redundant:
|
||
|
||
Case1:
|
||
The instruction that uses the 64bit operands that are sign
|
||
extended has a dual mode that works with 32bit operands.
|
||
For example:
|
||
|
||
int32 a, b;
|
||
|
||
a = .... --> a = ....
|
||
a = sign extend a -->
|
||
b = .... --> b = ....
|
||
b = sign extend a -->
|
||
-->
|
||
cmpd a, b --> cmpw a, b //half word compare
|
||
|
||
Case2:
|
||
The instruction that defines the 64bit operand (which is later sign
|
||
extended) has a dual mode that defines and sign-extends simultaneously
|
||
a 32bit operand. For example:
|
||
|
||
int32 a;
|
||
|
||
ld a --> lwa a // load half word and sign extend
|
||
a = sign extend a -->
|
||
-->
|
||
return a --> return a
|
||
|
||
|
||
General idea for solution:
|
||
--------------------------
|
||
First, try to merge the sign extension with the instruction that
|
||
defines the source of the extension and (separately) with the
|
||
instructions that uses the extended result. By doing this, both cases
|
||
of redundancies (as described above) will be eliminated.
|
||
|
||
Then, use partial redundancy elimination to place the non redundant
|
||
ones at optimal placements.
|
||
|
||
|
||
Implementation by example:
|
||
--------------------------
|
||
Note: The instruction stream is not changed till the last phase.
|
||
|
||
Phase 0: Initial code, as currently generated by gcc.
|
||
|
||
def1 def3
|
||
se1 def2 se3
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \|/ |
|
||
use1 use2 use3
|
||
use4
|
||
def1 + se1:
|
||
set ((reg:SI 10) (..def1rhs..))
|
||
set ((reg:DI 100) (sign_extend:DI (reg:SI 10)))
|
||
|
||
def2:
|
||
set ((reg:DI 100) (const_int 7))
|
||
|
||
def3 + se3:
|
||
set ((reg:SI 20) (..def3rhs..))
|
||
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
|
||
|
||
use1:
|
||
set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
|
||
|
||
use2, use3, use4:
|
||
set ((...) (reg:DI 100))
|
||
|
||
Phase 1: Propagate extensions to uses.
|
||
|
||
def1 def3
|
||
se1 def2 se3
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \|/ |
|
||
se se se
|
||
use1 use2 use3
|
||
se
|
||
use4
|
||
|
||
From here, all of the subregs are lowpart !
|
||
|
||
def1, def2, def3: No change.
|
||
|
||
use1:
|
||
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
|
||
set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
|
||
|
||
use2, use3, use4:
|
||
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
|
||
set ((...) (reg:DI 100))
|
||
|
||
|
||
Phase 2: Merge and eliminate locally redundant extensions.
|
||
|
||
|
||
*def1 def2 *def3
|
||
[se removed] se se3
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \|/ |
|
||
[se removed] se se
|
||
*use1 use2 use3
|
||
[se removed]
|
||
use4
|
||
|
||
The instructions that were changed at this phase are marked with
|
||
asterisk.
|
||
|
||
*def1: Merge failed.
|
||
Remove the sign extension instruction, modify def1 and
|
||
insert a move instruction to assure to correctness of the code.
|
||
set ((subreg:SI (reg:DI 100)) (..def1rhs..))
|
||
set ((reg:SI 10) (subreg:SI (reg:DI 100)))
|
||
|
||
def2 + se: There is no need for merge.
|
||
Def2 is not changed but a sign extension instruction is
|
||
created.
|
||
set ((reg:DI 100) (const_int 7))
|
||
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
|
||
|
||
*def3 + se3: Merge succeeded.
|
||
set ((reg:DI 100) (sign_extend:DI (..def3rhs..)))
|
||
set ((reg:SI 20) (reg:DI 100))
|
||
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
|
||
(The extension instruction is the original one).
|
||
|
||
*use1: Merge succeeded. Remove the sign extension instruction.
|
||
set ((reg:CC...)
|
||
(compare:CC (subreg:SI (reg:DI 100)) (...)))
|
||
|
||
use2, use3: Merge failed. No change.
|
||
|
||
use4: The extension is locally redundant, therefore it is eliminated
|
||
at this point.
|
||
|
||
|
||
Phase 3: Eliminate globally redundant extensions.
|
||
|
||
Following the LCM output:
|
||
|
||
def1 def2 def3
|
||
se se3
|
||
| \ | / |
|
||
| \ | / |
|
||
| se | / |
|
||
| \ | / |
|
||
| \ | / |
|
||
| \|/ |
|
||
[ses removed]
|
||
use1 use2 use3
|
||
use4
|
||
|
||
se:
|
||
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
|
||
|
||
se3:
|
||
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
|
||
|
||
|
||
Phase 4: Commit changes to the insn stream.
|
||
|
||
|
||
def1 def3 *def1 def2 *def3
|
||
se1 def2 se3 [se removed] [se removed]
|
||
| \ | / | | \ | / |
|
||
| \ | / | ------> | \ | / |
|
||
| \ | / | ------> | se | / |
|
||
| \ | / | | \ | / |
|
||
| \ | / | | \ | / |
|
||
| \|/ | | \|/ |
|
||
use1 use2 use3 *use1 use2 use3
|
||
use4 use4
|
||
|
||
The instructions that were changed during the whole optimization are
|
||
marked with asterisk.
|
||
|
||
The result:
|
||
|
||
def1 + se1:
|
||
[ set ((reg:SI 10) (..def1rhs..)) ] - Deleted
|
||
[ set ((reg:DI 100) (sign_extend:DI (reg:SI 10))) ] - Deleted
|
||
set ((subreg:SI (reg:DI 100)) (..def3rhs..)) - Inserted
|
||
set ((reg:SI 10) (subreg:SI (reg:DI 100))) - Inserted
|
||
|
||
def2:
|
||
set ((reg:DI 100) (const_int 7)) - No change
|
||
|
||
def3 + se3:
|
||
[ set ((reg:SI 20) (..def3rhs..)) ] - Deleted
|
||
[ set ((reg:DI 100) (sign_extend:DI (reg:SI 20))) ] - Deleted
|
||
set ((reg:DI 100) (sign_extend:DI (..def3rhs..))) - Inserted
|
||
set ((reg:SI 20) (reg:DI 100)) - Inserted
|
||
|
||
use1:
|
||
[ set ((reg:CC...) (compare:CC (reg:DI 100) (...))) ] - Deleted
|
||
set ((reg:CC...) - Inserted
|
||
(compare:CC (subreg:SI (reg:DI 100)) (...)))
|
||
|
||
use2, use3, use4:
|
||
set ((...) (reg:DI 100)) - No change
|
||
|
||
se: - Inserted
|
||
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
|
||
|
||
Note: Most of the simple move instructions that were inserted will be
|
||
trivially dead and therefore eliminated.
|
||
|
||
The implementation outline:
|
||
---------------------------
|
||
Some definitions:
|
||
A web is RELEVANT if at the end of phase 1, his leader's
|
||
relevancy is {ZERO, SIGN}_EXTENDED_DEF. The source_mode of
|
||
the web is the source_mode of his leader.
|
||
A definition is a candidate for the optimization if it is part
|
||
of a RELEVANT web and his local source_mode is not narrower
|
||
then the source_mode of its web.
|
||
A use is a candidate for the optimization if it is part of a
|
||
RELEVANT web.
|
||
A simple explicit extension is a single set instruction that
|
||
extends a register (or a subregister) to a register (or
|
||
subregister).
|
||
A complex explicit extension is an explicit extension instruction
|
||
that is not simple.
|
||
A def extension is a simple explicit extension that is
|
||
also a candidate for the optimization. This extension is part
|
||
of the instruction stream, it is not generated by this
|
||
optimization.
|
||
A use extension is a simple explicit extension that is generated
|
||
and stored for candidate use during this optimization. It is
|
||
not emitted to the instruction stream till the last phase of
|
||
the optimization.
|
||
A reference is an instruction that satisfy at least on of these
|
||
criteria:
|
||
- It contains a definition with EXTENDED_DEF relevancy in a RELEVANT web.
|
||
- It is followed by a def extension.
|
||
- It contains a candidate use.
|
||
|
||
Phase 1: Propagate extensions to uses.
|
||
In this phase, we find candidate extensions for the optimization
|
||
and we generate (but not emit) proper extensions "right before the
|
||
uses".
|
||
|
||
a. Build a DF object.
|
||
b. Traverse over all the instructions that contains a definition
|
||
and set their local relevancy and local source_mode like this:
|
||
- If the instruction is a simple explicit extension instruction,
|
||
mark it as {ZERO, SIGN}_EXTENDED_DEF according to the extension
|
||
type and mark its source_mode to be the mode of the quantity
|
||
that is been extended.
|
||
- Otherwise, If the instruction has an implicit extension,
|
||
which means that its high part is an extension of its low part,
|
||
or if it is a complicated explicit extension, mark it as
|
||
EXTENDED_DEF and set its source_mode to be the narrowest
|
||
mode that is been extended in the instruction.
|
||
c. Traverse over all the instructions that contains a use and set
|
||
their local relevancy to RELEVANT_USE (except for few corner
|
||
cases).
|
||
d. Produce the web. During union of two entries, update the
|
||
relevancy and source_mode of the leader. There are two major
|
||
guide lines for this update:
|
||
- If one of the entries is NOT_RELEVANT, mark the leader
|
||
NOT_RELEVANT.
|
||
- If one is ZERO_EXTENDED_DEF and the other is SIGN_EXTENDED_DEF
|
||
(or vice versa) mark the leader as NOT_RELEVANT. We don't
|
||
handle this kind of mixed webs.
|
||
(For more details about this update process,
|
||
see see_update_leader_extra_info ()).
|
||
e. Generate uses extensions according to the relevancy and
|
||
source_mode of the webs.
|
||
|
||
Phase 2: Merge and eliminate locally redundant extensions.
|
||
In this phase, we try to merge def extensions and use
|
||
extensions with their references, and eliminate redundant extensions
|
||
in the same basic block.
|
||
|
||
Traverse over all the references. Do this in basic block number and
|
||
luid number forward order.
|
||
For each reference do:
|
||
a. Peephole optimization - try to merge it with all its
|
||
def extensions and use extensions in the following
|
||
order:
|
||
- Try to merge only the def extensions, one by one.
|
||
- Try to merge only the use extensions, one by one.
|
||
- Try to merge any couple of use extensions simultaneously.
|
||
- Try to merge any def extension with one or two uses
|
||
extensions simultaneously.
|
||
b. Handle each EXTENDED_DEF in it as if it was already merged with
|
||
an extension.
|
||
|
||
During the merge process we save the following data for each
|
||
register in each basic block:
|
||
a. The first instruction that defines the register in the basic
|
||
block.
|
||
b. The last instruction that defines the register in the basic
|
||
block.
|
||
c. The first extension of this register before the first
|
||
instruction that defines it in the basic block.
|
||
c. The first extension of this register after the last
|
||
instruction that defines it in the basic block.
|
||
This data will help us eliminate (or more precisely, not generate)
|
||
locally redundant extensions, and will be useful in the next stage.
|
||
|
||
While merging extensions with their reference there are 4 possible
|
||
situations:
|
||
a. A use extension was merged with the reference:
|
||
Delete the extension instruction and save the merged reference
|
||
for phase 4. (For details, see see_use_extension_merged ())
|
||
b. A use extension failed to be merged with the reference:
|
||
If there is already such an extension in the same basic block
|
||
and it is not dead at this point, delete the unmerged extension
|
||
(it is locally redundant), otherwise properly update the above
|
||
basic block data.
|
||
(For details, see see_merge_one_use_extension ())
|
||
c. A def extension was merged with the reference:
|
||
Mark this extension as a merged_def extension and properly
|
||
update the above basic block data.
|
||
(For details, see see_merge_one_def_extension ())
|
||
d. A def extension failed to be merged with the reference:
|
||
Replace the definition of the NARROWmode register in the
|
||
reference with the proper subreg of WIDEmode register and save
|
||
the result as a merged reference. Also, properly update the
|
||
the above basic block data.
|
||
(For details, see see_def_extension_not_merged ())
|
||
|
||
Phase 3: Eliminate globally redundant extensions.
|
||
In this phase, we set the bit vectors input of the edge based LCM
|
||
using the recorded data on the registers in each basic block.
|
||
We also save pointers for all the anticipatable and available
|
||
occurrences of the relevant extensions. Then we run the LCM.
|
||
|
||
a. Initialize the comp, antloc, kill bit vectors to zero and the
|
||
transp bit vector to ones.
|
||
|
||
b. Traverse over all the references. Do this in basic block number
|
||
and luid number forward order. For each reference:
|
||
- Go over all its use extensions. For each such extension -
|
||
If it is not dead from the beginning of the basic block SET
|
||
the antloc bit of the current extension in the current
|
||
basic block bits.
|
||
If it is not dead till the end of the basic block SET the
|
||
comp bit of the current extension in the current basic
|
||
block bits.
|
||
- Go over all its def extensions that were merged with
|
||
it. For each such extension -
|
||
If it is not dead till the end of the basic block SET the
|
||
comp bit of the current extension in the current basic
|
||
block bits.
|
||
RESET the proper transp and kill bits.
|
||
- Go over all its def extensions that were not merged
|
||
with it. For each such extension -
|
||
RESET the transp bit and SET the kill bit of the current
|
||
extension in the current basic block bits.
|
||
|
||
c. Run the edge based LCM.
|
||
|
||
Phase 4: Commit changes to the insn stream.
|
||
This is the only phase that actually changes the instruction stream.
|
||
Up to this point the optimization could be aborted at any time.
|
||
Here we insert extensions at their best placements and delete the
|
||
redundant ones according to the output of the LCM. We also replace
|
||
some of the instructions according to the second phase merges results.
|
||
|
||
a. Use the pre_delete_map (from the output of the LCM) in order to
|
||
delete redundant extensions. This will prevent them from been
|
||
emitted in the first place.
|
||
|
||
b. Insert extensions on edges where needed according to
|
||
pre_insert_map and edge_list (from the output of the LCM).
|
||
|
||
c. For each reference do-
|
||
- Emit all the uses extensions that were not deleted until now,
|
||
right before the reference.
|
||
- Delete all the merged and unmerged def extensions from
|
||
the instruction stream.
|
||
- Replace the reference with the merged one, if exist.
|
||
|
||
The implementation consists of four data structures:
|
||
- Data structure I
|
||
Purpose: To handle the relevancy of the uses, definitions and webs.
|
||
Relevant structures: web_entry (from df.h), see_entry_extra_info.
|
||
Details: This is a disjoint-set data structure. Most of its functions are
|
||
implemented in web.c. Each definition and use in the code are
|
||
elements. A web_entry structure is allocated for each element to
|
||
hold the element's relevancy and source_mode. The union rules are
|
||
defined in see_update_leader_extra_info ().
|
||
- Data structure II
|
||
Purpose: To store references and their extensions (uses and defs)
|
||
and to enable traverse over these references according to basic
|
||
block order.
|
||
Relevant structure: see_ref_s.
|
||
Details: This data structure consists of an array of splay trees. One splay
|
||
tree for each basic block. The splay tree nodes are references and
|
||
the keys are the luids of the references.
|
||
A see_ref_s structure is allocated for each reference. It holds the
|
||
reference itself, its def and uses extensions and later the merged
|
||
version of the reference.
|
||
Using this data structure we can traverse over all the references of
|
||
a basic block and their extensions in forward order.
|
||
- Data structure III.
|
||
Purpose: To store local properties of registers for each basic block.
|
||
This data will later help us build the LCM sbitmap_vectors
|
||
input.
|
||
Relevant structure: see_register_properties.
|
||
Details: This data structure consists of an array of hash tables. One hash
|
||
for each basic block. The hash node are a register properties
|
||
and the keys are the numbers of the registers.
|
||
A see_register_properties structure is allocated for each register
|
||
that we might be interested in its properties.
|
||
Using this data structure we can easily find the properties of a
|
||
register in a specific basic block. This is necessary for locally
|
||
redundancy elimination and for setting up the LCM input.
|
||
- Data structure IV.
|
||
Purpose: To store the extensions that are candidate for PRE and their
|
||
anticipatable and available occurrences.
|
||
Relevant structure: see_occr, see_pre_extension_expr.
|
||
Details: This data structure is a hash tables. Its nodes are the extensions
|
||
that are candidate for PRE.
|
||
A see_pre_extension_expr structure is allocated for each candidate
|
||
extension. It holds a copy of the extension and a linked list of all
|
||
the anticipatable and available occurrences of it.
|
||
We use this data structure when we read the output of the LCM. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "obstack.h"
|
||
#include "rtl.h"
|
||
#include "output.h"
|
||
#include "df.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "splay-tree.h"
|
||
#include "hashtab.h"
|
||
#include "regs.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
|
||
/* Used to classify defs and uses according to relevancy. */
|
||
enum entry_type {
|
||
NOT_RELEVANT,
|
||
SIGN_EXTENDED_DEF,
|
||
ZERO_EXTENDED_DEF,
|
||
EXTENDED_DEF,
|
||
RELEVANT_USE
|
||
};
|
||
|
||
/* Used to classify extensions in relevant webs. */
|
||
enum extension_type {
|
||
DEF_EXTENSION,
|
||
EXPLICIT_DEF_EXTENSION,
|
||
IMPLICIT_DEF_EXTENSION,
|
||
USE_EXTENSION
|
||
};
|
||
|
||
/* Global data structures and flags. */
|
||
|
||
/* This structure will be assigned for each web_entry structure (defined
|
||
in df.h). It is placed in the extra_info field of a web_entry and holds the
|
||
relevancy and source mode of the web_entry. */
|
||
|
||
struct see_entry_extra_info
|
||
{
|
||
/* The relevancy of the ref. */
|
||
enum entry_type relevancy;
|
||
/* The relevancy of the ref.
|
||
This field is updated only once - when this structure is created. */
|
||
enum entry_type local_relevancy;
|
||
/* The source register mode. */
|
||
enum machine_mode source_mode;
|
||
/* This field is used only if the relevancy is ZERO/SIGN_EXTENDED_DEF.
|
||
It is updated only once when this structure is created. */
|
||
enum machine_mode local_source_mode;
|
||
/* This field is used only if the relevancy is EXTENDED_DEF.
|
||
It holds the narrowest mode that is sign extended. */
|
||
enum machine_mode source_mode_signed;
|
||
/* This field is used only if the relevancy is EXTENDED_DEF.
|
||
It holds the narrowest mode that is zero extended. */
|
||
enum machine_mode source_mode_unsigned;
|
||
};
|
||
|
||
/* There is one such structure for every reference. It stores the reference
|
||
itself as well as its extensions (uses and definitions).
|
||
Used as the value in splay_tree see_bb_splay_ar[]. */
|
||
struct see_ref_s
|
||
{
|
||
/* The luid of the insn. */
|
||
unsigned int luid;
|
||
/* The insn of the ref. */
|
||
rtx insn;
|
||
/* The merged insn that was formed from the reference's insn and extensions.
|
||
If all merges failed, it remains NULL. */
|
||
rtx merged_insn;
|
||
/* The def extensions of the reference that were not merged with
|
||
it. */
|
||
htab_t unmerged_def_se_hash;
|
||
/* The def extensions of the reference that were merged with
|
||
it. Implicit extensions of the reference will be stored here too. */
|
||
htab_t merged_def_se_hash;
|
||
/* The uses extensions of reference. */
|
||
htab_t use_se_hash;
|
||
};
|
||
|
||
/* There is one such structure for every relevant extended register in a
|
||
specific basic block. This data will help us build the LCM sbitmap_vectors
|
||
input. */
|
||
struct see_register_properties
|
||
{
|
||
/* The register number. */
|
||
unsigned int regno;
|
||
/* The last luid of the reference that defines this register in this basic
|
||
block. */
|
||
int last_def;
|
||
/* The luid of the reference that has the first extension of this register
|
||
that appears before any definition in this basic block. */
|
||
int first_se_before_any_def;
|
||
/* The luid of the reference that has the first extension of this register
|
||
that appears after the last definition in this basic block. */
|
||
int first_se_after_last_def;
|
||
};
|
||
|
||
/* Occurrence of an expression.
|
||
There must be at most one available occurrence and at most one anticipatable
|
||
occurrence per basic block. */
|
||
struct see_occr
|
||
{
|
||
/* Next occurrence of this expression. */
|
||
struct see_occr *next;
|
||
/* The insn that computes the expression. */
|
||
rtx insn;
|
||
int block_num;
|
||
};
|
||
|
||
/* There is one such structure for every relevant extension expression.
|
||
It holds a copy of this extension instruction as well as a linked lists of
|
||
pointers to all the antic and avail occurrences of it. */
|
||
struct see_pre_extension_expr
|
||
{
|
||
/* A copy of the extension instruction. */
|
||
rtx se_insn;
|
||
/* Index in the available expression bitmaps. */
|
||
int bitmap_index;
|
||
/* List of anticipatable occurrences in basic blocks in the function.
|
||
An "anticipatable occurrence" is the first occurrence in the basic block,
|
||
the operands are not modified in the basic block prior to the occurrence
|
||
and the output is not used between the start of the block and the
|
||
occurrence. */
|
||
struct see_occr *antic_occr;
|
||
/* List of available occurrence in basic blocks in the function.
|
||
An "available occurrence" is the last occurrence in the basic block and
|
||
the operands are not modified by following statements in the basic block
|
||
[including this insn]. */
|
||
struct see_occr *avail_occr;
|
||
};
|
||
|
||
/* Helper structure for the note_uses and see_replace_src functions. */
|
||
struct see_replace_data
|
||
{
|
||
rtx from;
|
||
rtx to;
|
||
};
|
||
|
||
/* Helper structure for the note_uses and see_mentioned_reg functions. */
|
||
struct see_mentioned_reg_data
|
||
{
|
||
rtx reg;
|
||
bool mentioned;
|
||
};
|
||
|
||
/* A data flow object that will be created once and used throughout the
|
||
optimization. */
|
||
static struct df *df = NULL;
|
||
/* An array of web_entries. The i'th definition in the df object is associated
|
||
with def_entry[i] */
|
||
static struct web_entry *def_entry = NULL;
|
||
/* An array of web_entries. The i'th use in the df object is associated with
|
||
use_entry[i] */
|
||
static struct web_entry *use_entry = NULL;
|
||
/* Array of splay_trees.
|
||
see_bb_splay_ar[i] refers to the splay tree of the i'th basic block.
|
||
The splay tree will hold see_ref_s structures. The key is the luid
|
||
of the insn. This way we can traverse over the references of each basic
|
||
block in forward or backward order. */
|
||
static splay_tree *see_bb_splay_ar = NULL;
|
||
/* Array of hashes.
|
||
see_bb_hash_ar[i] refers to the hash of the i'th basic block.
|
||
The hash will hold see_register_properties structure. The key is regno. */
|
||
static htab_t *see_bb_hash_ar = NULL;
|
||
/* Hash table that holds a copy of all the extensions. The key is the right
|
||
hand side of the se_insn field. */
|
||
static htab_t see_pre_extension_hash = NULL;
|
||
|
||
/* Local LCM properties of expressions. */
|
||
/* Nonzero for expressions that are transparent in the block. */
|
||
static sbitmap *transp = NULL;
|
||
/* Nonzero for expressions that are computed (available) in the block. */
|
||
static sbitmap *comp = NULL;
|
||
/* Nonzero for expressions that are locally anticipatable in the block. */
|
||
static sbitmap *antloc = NULL;
|
||
/* Nonzero for expressions that are locally killed in the block. */
|
||
static sbitmap *ae_kill = NULL;
|
||
/* Nonzero for expressions which should be inserted on a specific edge. */
|
||
static sbitmap *pre_insert_map = NULL;
|
||
/* Nonzero for expressions which should be deleted in a specific block. */
|
||
static sbitmap *pre_delete_map = NULL;
|
||
/* Contains the edge_list returned by pre_edge_lcm. */
|
||
static struct edge_list *edge_list = NULL;
|
||
/* Records the last basic block at the beginning of the optimization. */
|
||
static int last_bb;
|
||
/* Records the number of uses at the beginning of the optimization. */
|
||
static unsigned int uses_num;
|
||
/* Records the number of definitions at the beginning of the optimization. */
|
||
static unsigned int defs_num;
|
||
|
||
#define ENTRY_EI(ENTRY) ((struct see_entry_extra_info *) (ENTRY)->extra_info)
|
||
|
||
/* Functions implementation. */
|
||
|
||
/* Verifies that EXTENSION's pattern is this:
|
||
|
||
set (reg/subreg reg1) (sign/zero_extend:WIDEmode (reg/subreg reg2))
|
||
|
||
If it doesn't have the expected pattern return NULL.
|
||
Otherwise, if RETURN_DEST_REG is set, return reg1 else return reg2. */
|
||
|
||
static rtx
|
||
see_get_extension_reg (rtx extension, bool return_dest_reg)
|
||
{
|
||
rtx set, rhs, lhs;
|
||
rtx reg1 = NULL;
|
||
rtx reg2 = NULL;
|
||
|
||
/* Parallel pattern for extension not supported for the moment. */
|
||
if (GET_CODE (PATTERN (extension)) == PARALLEL)
|
||
return NULL;
|
||
|
||
set = single_set (extension);
|
||
if (!set)
|
||
return NULL;
|
||
lhs = SET_DEST (set);
|
||
rhs = SET_SRC (set);
|
||
|
||
if (REG_P (lhs))
|
||
reg1 = lhs;
|
||
else if (REG_P (SUBREG_REG (lhs)))
|
||
reg1 = SUBREG_REG (lhs);
|
||
else
|
||
return NULL;
|
||
|
||
if (GET_CODE (rhs) != SIGN_EXTEND && GET_CODE (rhs) != ZERO_EXTEND)
|
||
return NULL;
|
||
|
||
rhs = XEXP (rhs, 0);
|
||
if (REG_P (rhs))
|
||
reg2 = rhs;
|
||
else if (REG_P (SUBREG_REG (rhs)))
|
||
reg2 = SUBREG_REG (rhs);
|
||
else
|
||
return NULL;
|
||
|
||
if (return_dest_reg)
|
||
return reg1;
|
||
return reg2;
|
||
}
|
||
|
||
/* Verifies that EXTENSION's pattern is this:
|
||
|
||
set (reg/subreg reg1) (sign/zero_extend: (...expr...)
|
||
|
||
If it doesn't have the expected pattern return UNKNOWN.
|
||
Otherwise, set SOURCE_MODE to be the mode of the extended expr and return
|
||
the rtx code of the extension. */
|
||
|
||
static enum rtx_code
|
||
see_get_extension_data (rtx extension, enum machine_mode *source_mode)
|
||
{
|
||
rtx rhs, lhs, set;
|
||
|
||
if (!extension || !INSN_P (extension))
|
||
return UNKNOWN;
|
||
|
||
/* Parallel pattern for extension not supported for the moment. */
|
||
if (GET_CODE (PATTERN (extension)) == PARALLEL)
|
||
return NOT_RELEVANT;
|
||
|
||
set = single_set (extension);
|
||
if (!set)
|
||
return NOT_RELEVANT;
|
||
rhs = SET_SRC (set);
|
||
lhs = SET_DEST (set);
|
||
|
||
/* Don't handle extensions to something other then register or
|
||
subregister. */
|
||
if (!REG_P (lhs) && !SUBREG_REG (lhs))
|
||
return UNKNOWN;
|
||
|
||
if (GET_CODE (rhs) != SIGN_EXTEND && GET_CODE (rhs) != ZERO_EXTEND)
|
||
return UNKNOWN;
|
||
|
||
if (!REG_P (XEXP (rhs, 0))
|
||
&& !(GET_CODE (XEXP (rhs, 0)) == SUBREG
|
||
&& REG_P (SUBREG_REG (XEXP (rhs, 0)))))
|
||
return UNKNOWN;
|
||
|
||
*source_mode = GET_MODE (XEXP (rhs, 0));
|
||
|
||
if (GET_CODE (rhs) == SIGN_EXTEND)
|
||
return SIGN_EXTEND;
|
||
return ZERO_EXTEND;
|
||
}
|
||
|
||
|
||
/* Generate instruction with the pattern:
|
||
set ((reg r) (sign/zero_extend (subreg:mode (reg r))))
|
||
(the register r on both sides of the set is the same register).
|
||
And recognize it.
|
||
If the recognition failed, this is very bad, return NULL (This will abort
|
||
the entire optimization).
|
||
Otherwise, return the generated instruction. */
|
||
|
||
static rtx
|
||
see_gen_normalized_extension (rtx reg, enum rtx_code extension_code,
|
||
enum machine_mode mode)
|
||
{
|
||
rtx subreg, insn;
|
||
rtx extension = NULL;
|
||
|
||
if (!reg
|
||
|| !REG_P (reg)
|
||
|| (extension_code != SIGN_EXTEND && extension_code != ZERO_EXTEND))
|
||
return NULL;
|
||
|
||
subreg = gen_lowpart_SUBREG (mode, reg);
|
||
if (extension_code == SIGN_EXTEND)
|
||
extension = gen_rtx_SIGN_EXTEND (GET_MODE (reg), subreg);
|
||
else
|
||
extension = gen_rtx_ZERO_EXTEND (GET_MODE (reg), subreg);
|
||
|
||
start_sequence ();
|
||
emit_insn (gen_rtx_SET (VOIDmode, reg, extension));
|
||
insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (insn_invalid_p (insn))
|
||
/* Recognition failed, this is very bad for this optimization.
|
||
Abort the optimization. */
|
||
return NULL;
|
||
return insn;
|
||
}
|
||
|
||
/* Hashes and splay_trees related functions implementation. */
|
||
|
||
/* Helper functions for the pre_extension hash.
|
||
This kind of hash will hold see_pre_extension_expr structures.
|
||
|
||
The key is the right hand side of the se_insn field.
|
||
Note that the se_insn is an expression that looks like:
|
||
|
||
set ((reg:WIDEmode r1) (sign_extend:WIDEmode
|
||
(subreg:NARROWmode (reg:WIDEmode r2)))) */
|
||
|
||
/* Return TRUE if P1 has the same value in its rhs as P2.
|
||
Otherwise, return FALSE.
|
||
P1 and P2 are see_pre_extension_expr structures. */
|
||
|
||
static int
|
||
eq_descriptor_pre_extension (const void *p1, const void *p2)
|
||
{
|
||
const struct see_pre_extension_expr *extension1 = p1;
|
||
const struct see_pre_extension_expr *extension2 = p2;
|
||
rtx set1 = single_set (extension1->se_insn);
|
||
rtx set2 = single_set (extension2->se_insn);
|
||
rtx rhs1, rhs2;
|
||
|
||
gcc_assert (set1 && set2);
|
||
rhs1 = SET_SRC (set1);
|
||
rhs2 = SET_SRC (set2);
|
||
|
||
return rtx_equal_p (rhs1, rhs2);
|
||
}
|
||
|
||
|
||
/* P is a see_pre_extension_expr struct, use the RHS of the se_insn field.
|
||
Note that the RHS is an expression that looks like this:
|
||
(sign_extend:WIDEmode (subreg:NARROWmode (reg:WIDEmode r))) */
|
||
|
||
static hashval_t
|
||
hash_descriptor_pre_extension (const void *p)
|
||
{
|
||
const struct see_pre_extension_expr *extension = p;
|
||
rtx set = single_set (extension->se_insn);
|
||
rtx rhs;
|
||
|
||
gcc_assert (set);
|
||
rhs = SET_SRC (set);
|
||
|
||
return hash_rtx (rhs, GET_MODE (rhs), 0, NULL, 0);
|
||
}
|
||
|
||
|
||
/* Free the allocated memory of the current see_pre_extension_expr struct.
|
||
|
||
It frees the two linked list of the occurrences structures. */
|
||
|
||
static void
|
||
hash_del_pre_extension (void *p)
|
||
{
|
||
struct see_pre_extension_expr *extension = p;
|
||
struct see_occr *curr_occr = extension->antic_occr;
|
||
struct see_occr *next_occr = NULL;
|
||
|
||
/* Free the linked list of the anticipatable occurrences. */
|
||
while (curr_occr)
|
||
{
|
||
next_occr = curr_occr->next;
|
||
free (curr_occr);
|
||
curr_occr = next_occr;
|
||
}
|
||
|
||
/* Free the linked list of the available occurrences. */
|
||
curr_occr = extension->avail_occr;
|
||
while (curr_occr)
|
||
{
|
||
next_occr = curr_occr->next;
|
||
free (curr_occr);
|
||
curr_occr = next_occr;
|
||
}
|
||
|
||
/* Free the see_pre_extension_expr structure itself. */
|
||
free (extension);
|
||
}
|
||
|
||
|
||
/* Helper functions for the register_properties hash.
|
||
This kind of hash will hold see_register_properties structures.
|
||
|
||
The value of the key is the regno field of the structure. */
|
||
|
||
/* Return TRUE if P1 has the same value in the regno field as P2.
|
||
Otherwise, return FALSE.
|
||
Where P1 and P2 are see_register_properties structures. */
|
||
|
||
static int
|
||
eq_descriptor_properties (const void *p1, const void *p2)
|
||
{
|
||
const struct see_register_properties *curr_prop1 = p1;
|
||
const struct see_register_properties *curr_prop2 = p2;
|
||
|
||
return curr_prop1->regno == curr_prop2->regno;
|
||
}
|
||
|
||
|
||
/* P is a see_register_properties struct, use the register number in the
|
||
regno field. */
|
||
|
||
static hashval_t
|
||
hash_descriptor_properties (const void *p)
|
||
{
|
||
const struct see_register_properties *curr_prop = p;
|
||
return curr_prop->regno;
|
||
}
|
||
|
||
|
||
/* Free the allocated memory of the current see_register_properties struct. */
|
||
static void
|
||
hash_del_properties (void *p)
|
||
{
|
||
struct see_register_properties *curr_prop = p;
|
||
free (curr_prop);
|
||
}
|
||
|
||
|
||
/* Helper functions for an extension hash.
|
||
This kind of hash will hold insns that look like:
|
||
|
||
set ((reg:WIDEmode r1) (sign_extend:WIDEmode
|
||
(subreg:NARROWmode (reg:WIDEmode r2))))
|
||
or
|
||
set ((reg:WIDEmode r1) (sign_extend:WIDEmode (reg:NARROWmode r2)))
|
||
|
||
The value of the key is (REGNO (reg:WIDEmode r1))
|
||
It is possible to search this hash in two ways:
|
||
1. By a register rtx. The Value that is been compared to the keys is the
|
||
REGNO of it.
|
||
2. By an insn with the above pattern. The Value that is been compared to
|
||
the keys is the REGNO of the reg on the lhs. */
|
||
|
||
/* Return TRUE if P1 has the same value as P2. Otherwise, return FALSE.
|
||
Where P1 is an insn and P2 is an insn or a register. */
|
||
|
||
static int
|
||
eq_descriptor_extension (const void *p1, const void *p2)
|
||
{
|
||
const rtx insn = (rtx) p1;
|
||
const rtx element = (rtx) p2;
|
||
rtx set1 = single_set (insn);
|
||
rtx dest_reg1;
|
||
rtx set2 = NULL;
|
||
rtx dest_reg2 = NULL;
|
||
|
||
gcc_assert (set1 && element && (REG_P (element) || INSN_P (element)));
|
||
|
||
dest_reg1 = SET_DEST (set1);
|
||
|
||
if (INSN_P (element))
|
||
{
|
||
set2 = single_set (element);
|
||
dest_reg2 = SET_DEST (set2);
|
||
}
|
||
else
|
||
dest_reg2 = element;
|
||
|
||
return REGNO (dest_reg1) == REGNO (dest_reg2);
|
||
}
|
||
|
||
|
||
/* If P is an insn, use the register number of its lhs
|
||
otherwise, P is a register, use its number. */
|
||
|
||
static hashval_t
|
||
hash_descriptor_extension (const void *p)
|
||
{
|
||
const rtx r = (rtx) p;
|
||
rtx set, lhs;
|
||
|
||
if (r && REG_P (r))
|
||
return REGNO (r);
|
||
|
||
gcc_assert (r && INSN_P (r));
|
||
set = single_set (r);
|
||
gcc_assert (set);
|
||
lhs = SET_DEST (set);
|
||
return REGNO (lhs);
|
||
}
|
||
|
||
|
||
/* Helper function for a see_bb_splay_ar[i] splay tree.
|
||
It frees all the allocated memory of a struct see_ref_s pointer.
|
||
|
||
VALUE is the value of a splay tree node. */
|
||
|
||
static void
|
||
see_free_ref_s (splay_tree_value value)
|
||
{
|
||
struct see_ref_s *ref_s = (struct see_ref_s *)value;
|
||
|
||
if (ref_s->unmerged_def_se_hash)
|
||
htab_delete (ref_s->unmerged_def_se_hash);
|
||
if (ref_s->merged_def_se_hash)
|
||
htab_delete (ref_s->merged_def_se_hash);
|
||
if (ref_s->use_se_hash)
|
||
htab_delete (ref_s->use_se_hash);
|
||
free (ref_s);
|
||
}
|
||
|
||
|
||
/* Rest of the implementation. */
|
||
|
||
/* Search the extension hash for a suitable entry for EXTENSION.
|
||
TYPE is the type of EXTENSION (USE_EXTENSION or DEF_EXTENSION).
|
||
|
||
If TYPE is DEF_EXTENSION we need to normalize EXTENSION before searching the
|
||
extension hash.
|
||
|
||
If a suitable entry was found, return the slot. Otherwise, store EXTENSION
|
||
in the hash and return NULL. */
|
||
|
||
static struct see_pre_extension_expr *
|
||
see_seek_pre_extension_expr (rtx extension, enum extension_type type)
|
||
{
|
||
struct see_pre_extension_expr **slot_pre_exp, temp_pre_exp;
|
||
rtx dest_extension_reg = see_get_extension_reg (extension, 1);
|
||
enum rtx_code extension_code;
|
||
enum machine_mode source_extension_mode;
|
||
|
||
if (type == DEF_EXTENSION)
|
||
{
|
||
extension_code = see_get_extension_data (extension,
|
||
&source_extension_mode);
|
||
gcc_assert (extension_code != UNKNOWN);
|
||
extension =
|
||
see_gen_normalized_extension (dest_extension_reg, extension_code,
|
||
source_extension_mode);
|
||
}
|
||
temp_pre_exp.se_insn = extension;
|
||
slot_pre_exp =
|
||
(struct see_pre_extension_expr **) htab_find_slot (see_pre_extension_hash,
|
||
&temp_pre_exp, INSERT);
|
||
if (*slot_pre_exp == NULL)
|
||
/* This is the first time this extension instruction is encountered. Store
|
||
it in the hash. */
|
||
{
|
||
(*slot_pre_exp) = xmalloc (sizeof (struct see_pre_extension_expr));
|
||
(*slot_pre_exp)->se_insn = extension;
|
||
(*slot_pre_exp)->bitmap_index =
|
||
(htab_elements (see_pre_extension_hash) - 1);
|
||
(*slot_pre_exp)->antic_occr = NULL;
|
||
(*slot_pre_exp)->avail_occr = NULL;
|
||
return NULL;
|
||
}
|
||
return *slot_pre_exp;
|
||
}
|
||
|
||
|
||
/* This function defines how to update the extra_info of the web_entry.
|
||
|
||
FIRST is the pointer of the extra_info of the first web_entry.
|
||
SECOND is the pointer of the extra_info of the second web_entry.
|
||
The first web_entry will be the predecessor (leader) of the second web_entry
|
||
after the union.
|
||
|
||
Return true if FIRST and SECOND points to the same web entry structure and
|
||
nothing is done. Otherwise, return false. */
|
||
|
||
static bool
|
||
see_update_leader_extra_info (struct web_entry *first, struct web_entry *second)
|
||
{
|
||
struct see_entry_extra_info *first_ei, *second_ei;
|
||
|
||
first = unionfind_root (first);
|
||
second = unionfind_root (second);
|
||
|
||
if (unionfind_union (first, second))
|
||
return true;
|
||
|
||
first_ei = (struct see_entry_extra_info *) first->extra_info;
|
||
second_ei = (struct see_entry_extra_info *) second->extra_info;
|
||
|
||
gcc_assert (first_ei && second_ei);
|
||
|
||
if (second_ei->relevancy == NOT_RELEVANT)
|
||
{
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
return false;
|
||
}
|
||
switch (first_ei->relevancy)
|
||
{
|
||
case NOT_RELEVANT:
|
||
break;
|
||
case RELEVANT_USE:
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case RELEVANT_USE:
|
||
break;
|
||
case EXTENDED_DEF:
|
||
first_ei->relevancy = second_ei->relevancy;
|
||
first_ei->source_mode_signed = second_ei->source_mode_signed;
|
||
first_ei->source_mode_unsigned = second_ei->source_mode_unsigned;
|
||
break;
|
||
case SIGN_EXTENDED_DEF:
|
||
case ZERO_EXTENDED_DEF:
|
||
first_ei->relevancy = second_ei->relevancy;
|
||
first_ei->source_mode = second_ei->source_mode;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
case SIGN_EXTENDED_DEF:
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case SIGN_EXTENDED_DEF:
|
||
/* The mode of the root should be the wider one in this case. */
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode > second_ei->source_mode) ?
|
||
first_ei->source_mode : second_ei->source_mode;
|
||
break;
|
||
case RELEVANT_USE:
|
||
break;
|
||
case ZERO_EXTENDED_DEF:
|
||
/* Don't mix webs with zero extend and sign extend. */
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
else
|
||
/* The mode of the root should be the wider one in this case. */
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode > second_ei->source_mode_signed) ?
|
||
first_ei->source_mode : second_ei->source_mode_signed;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
/* This case is similar to the previous one, with little changes. */
|
||
case ZERO_EXTENDED_DEF:
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case SIGN_EXTENDED_DEF:
|
||
/* Don't mix webs with zero extend and sign extend. */
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
break;
|
||
case RELEVANT_USE:
|
||
break;
|
||
case ZERO_EXTENDED_DEF:
|
||
/* The mode of the root should be the wider one in this case. */
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode > second_ei->source_mode) ?
|
||
first_ei->source_mode : second_ei->source_mode;
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
else
|
||
/* The mode of the root should be the wider one in this case. */
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode > second_ei->source_mode_unsigned) ?
|
||
first_ei->source_mode : second_ei->source_mode_unsigned;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (first_ei->source_mode_signed != MAX_MACHINE_MODE
|
||
&& first_ei->source_mode_unsigned != MAX_MACHINE_MODE)
|
||
{
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case SIGN_EXTENDED_DEF:
|
||
first_ei->relevancy = SIGN_EXTENDED_DEF;
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode_signed > second_ei->source_mode) ?
|
||
first_ei->source_mode_signed : second_ei->source_mode;
|
||
break;
|
||
case RELEVANT_USE:
|
||
break;
|
||
case ZERO_EXTENDED_DEF:
|
||
first_ei->relevancy = ZERO_EXTENDED_DEF;
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode_unsigned > second_ei->source_mode) ?
|
||
first_ei->source_mode_unsigned : second_ei->source_mode;
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (second_ei->source_mode_unsigned != MAX_MACHINE_MODE)
|
||
first_ei->source_mode_unsigned =
|
||
(first_ei->source_mode_unsigned >
|
||
second_ei->source_mode_unsigned) ?
|
||
first_ei->source_mode_unsigned :
|
||
second_ei->source_mode_unsigned;
|
||
if (second_ei->source_mode_signed != MAX_MACHINE_MODE)
|
||
first_ei->source_mode_signed =
|
||
(first_ei->source_mode_signed >
|
||
second_ei->source_mode_signed) ?
|
||
first_ei->source_mode_signed : second_ei->source_mode_signed;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else if (first_ei->source_mode_signed == MAX_MACHINE_MODE)
|
||
{
|
||
gcc_assert (first_ei->source_mode_unsigned != MAX_MACHINE_MODE);
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case SIGN_EXTENDED_DEF:
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
break;
|
||
case RELEVANT_USE:
|
||
break;
|
||
case ZERO_EXTENDED_DEF:
|
||
first_ei->relevancy = ZERO_EXTENDED_DEF;
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode_unsigned > second_ei->source_mode) ?
|
||
first_ei->source_mode_unsigned : second_ei->source_mode;
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
else
|
||
first_ei->source_mode_unsigned =
|
||
(first_ei->source_mode_unsigned >
|
||
second_ei->source_mode_unsigned) ?
|
||
first_ei->source_mode_unsigned :
|
||
second_ei->source_mode_unsigned;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (first_ei->source_mode_unsigned == MAX_MACHINE_MODE);
|
||
gcc_assert (first_ei->source_mode_signed != MAX_MACHINE_MODE);
|
||
switch (second_ei->relevancy)
|
||
{
|
||
case SIGN_EXTENDED_DEF:
|
||
first_ei->relevancy = SIGN_EXTENDED_DEF;
|
||
first_ei->source_mode =
|
||
(first_ei->source_mode_signed > second_ei->source_mode) ?
|
||
first_ei->source_mode_signed : second_ei->source_mode;
|
||
break;
|
||
case RELEVANT_USE:
|
||
break;
|
||
case ZERO_EXTENDED_DEF:
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
break;
|
||
case EXTENDED_DEF:
|
||
if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
|
||
first_ei->relevancy = NOT_RELEVANT;
|
||
else
|
||
first_ei->source_mode_signed =
|
||
(first_ei->source_mode_signed >
|
||
second_ei->source_mode_signed) ?
|
||
first_ei->source_mode_signed : second_ei->source_mode_signed;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
/* Unknown patern type. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Free global data structures. */
|
||
|
||
static void
|
||
see_free_data_structures (void)
|
||
{
|
||
int i;
|
||
unsigned int j;
|
||
|
||
/* Free the bitmap vectors. */
|
||
if (transp)
|
||
{
|
||
sbitmap_vector_free (transp);
|
||
transp = NULL;
|
||
sbitmap_vector_free (comp);
|
||
comp = NULL;
|
||
sbitmap_vector_free (antloc);
|
||
antloc = NULL;
|
||
sbitmap_vector_free (ae_kill);
|
||
ae_kill = NULL;
|
||
}
|
||
if (pre_insert_map)
|
||
{
|
||
sbitmap_vector_free (pre_insert_map);
|
||
pre_insert_map = NULL;
|
||
}
|
||
if (pre_delete_map)
|
||
{
|
||
sbitmap_vector_free (pre_delete_map);
|
||
pre_delete_map = NULL;
|
||
}
|
||
if (edge_list)
|
||
{
|
||
free_edge_list (edge_list);
|
||
edge_list = NULL;
|
||
}
|
||
|
||
/* Free the extension hash. */
|
||
htab_delete (see_pre_extension_hash);
|
||
|
||
/* Free the array of hashes. */
|
||
for (i = 0; i < last_bb; i++)
|
||
if (see_bb_hash_ar[i])
|
||
htab_delete (see_bb_hash_ar[i]);
|
||
free (see_bb_hash_ar);
|
||
|
||
/* Free the array of splay trees. */
|
||
for (i = 0; i < last_bb; i++)
|
||
if (see_bb_splay_ar[i])
|
||
splay_tree_delete (see_bb_splay_ar[i]);
|
||
free (see_bb_splay_ar);
|
||
|
||
/* Free the array of web entries and their extra info field. */
|
||
for (j = 0; j < defs_num; j++)
|
||
free (def_entry[j].extra_info);
|
||
free (def_entry);
|
||
for (j = 0; j < uses_num; j++)
|
||
free (use_entry[j].extra_info);
|
||
free (use_entry);
|
||
}
|
||
|
||
|
||
/* Initialize global data structures and variables. */
|
||
|
||
static void
|
||
see_initialize_data_structures (void)
|
||
{
|
||
/* Build the df object. */
|
||
df = df_init (DF_HARD_REGS | DF_EQUIV_NOTES | DF_SUBREGS);
|
||
df_rd_add_problem (df, 0);
|
||
df_chain_add_problem (df, DF_DU_CHAIN | DF_UD_CHAIN);
|
||
df_analyze (df);
|
||
|
||
if (dump_file)
|
||
df_dump (df, dump_file);
|
||
|
||
/* Record the last basic block at the beginning of the optimization. */
|
||
last_bb = last_basic_block;
|
||
/* Record the number of uses at the beginning of the optimization. */
|
||
uses_num = DF_USES_SIZE (df);
|
||
/* Record the number of definitions at the beginning of the optimization. */
|
||
defs_num = DF_DEFS_SIZE (df);
|
||
|
||
/* Allocate web entries array for the union-find data structure. */
|
||
def_entry = xcalloc (defs_num, sizeof (struct web_entry));
|
||
use_entry = xcalloc (uses_num, sizeof (struct web_entry));
|
||
|
||
/* Allocate an array of splay trees.
|
||
One splay tree for each basic block. */
|
||
see_bb_splay_ar = xcalloc (last_bb, sizeof (splay_tree));
|
||
|
||
/* Allocate an array of hashes.
|
||
One hash for each basic block. */
|
||
see_bb_hash_ar = xcalloc (last_bb, sizeof (htab_t));
|
||
|
||
/* Allocate the extension hash. It will hold the extensions that we want
|
||
to PRE. */
|
||
see_pre_extension_hash = htab_create (10,
|
||
hash_descriptor_pre_extension,
|
||
eq_descriptor_pre_extension,
|
||
hash_del_pre_extension);
|
||
}
|
||
|
||
|
||
/* Function called by note_uses to check if a register is used in a
|
||
subexpressions.
|
||
|
||
X is a pointer to the subexpression and DATA is a pointer to a
|
||
see_mentioned_reg_data structure that contains the register to look for and
|
||
a place for the result. */
|
||
|
||
static void
|
||
see_mentioned_reg (rtx *x, void *data)
|
||
{
|
||
struct see_mentioned_reg_data *d
|
||
= (struct see_mentioned_reg_data *) data;
|
||
|
||
if (reg_mentioned_p (d->reg, *x))
|
||
d->mentioned = true;
|
||
}
|
||
|
||
|
||
/* We don't want to merge a use extension with a reference if the extended
|
||
register is used only in a simple move instruction. We also don't want to
|
||
merge a def extension with a reference if the source register of the
|
||
extension is defined only in a simple move in the reference.
|
||
|
||
REF is the reference instruction.
|
||
EXTENSION is the use extension or def extension instruction.
|
||
TYPE is the type of the extension (use or def).
|
||
|
||
Return true if the reference is complicated enough, so we would like to merge
|
||
it with the extension. Otherwise, return false. */
|
||
|
||
static bool
|
||
see_want_to_be_merged_with_extension (rtx ref, rtx extension,
|
||
enum extension_type type)
|
||
{
|
||
rtx pat;
|
||
rtx dest_extension_reg = see_get_extension_reg (extension, 1);
|
||
rtx source_extension_reg = see_get_extension_reg (extension, 0);
|
||
enum rtx_code code;
|
||
struct see_mentioned_reg_data d;
|
||
int i;
|
||
|
||
pat = PATTERN (ref);
|
||
code = GET_CODE (pat);
|
||
|
||
if (code == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx sub = XVECEXP (pat, 0, i);
|
||
|
||
if (GET_CODE (sub) == SET
|
||
&& (REG_P (SET_DEST (sub))
|
||
|| (GET_CODE (SET_DEST (sub)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (sub)))))
|
||
&& (REG_P (SET_SRC (sub))
|
||
|| (GET_CODE (SET_SRC (sub)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_SRC (sub))))))
|
||
{
|
||
/* This is a simple move SET. */
|
||
if (type == DEF_EXTENSION
|
||
&& reg_mentioned_p (source_extension_reg, SET_DEST (sub)))
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
/* This is not a simple move SET.
|
||
Check if it uses the source of the extension. */
|
||
if (type == USE_EXTENSION)
|
||
{
|
||
d.reg = dest_extension_reg;
|
||
d.mentioned = false;
|
||
note_uses (&sub, see_mentioned_reg, &d);
|
||
if (d.mentioned)
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
if (type == USE_EXTENSION)
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (code == SET
|
||
&& (REG_P (SET_DEST (pat))
|
||
|| (GET_CODE (SET_DEST (pat)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (pat)))))
|
||
&& (REG_P (SET_SRC (pat))
|
||
|| (GET_CODE (SET_SRC (pat)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_SRC (pat))))))
|
||
/* This is a simple move SET. */
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Print the register number of the current see_register_properties
|
||
structure.
|
||
|
||
This is a subroutine of see_main called via htab_traverse.
|
||
SLOT contains the current see_register_properties structure pointer. */
|
||
|
||
static int
|
||
see_print_register_properties (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
struct see_register_properties *prop = *slot;
|
||
|
||
gcc_assert (prop);
|
||
fprintf (dump_file, "Property found for register %d\n", prop->regno);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Print the extension instruction of the current see_register_properties
|
||
structure.
|
||
|
||
This is a subroutine of see_main called via htab_traverse.
|
||
SLOT contains the current see_pre_extension_expr structure pointer. */
|
||
|
||
static int
|
||
see_print_pre_extension_expr (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
struct see_pre_extension_expr *pre_extension = *slot;
|
||
|
||
gcc_assert (pre_extension
|
||
&& pre_extension->se_insn
|
||
&& INSN_P (pre_extension->se_insn));
|
||
|
||
fprintf (dump_file, "Index %d for:\n", pre_extension->bitmap_index);
|
||
print_rtl_single (dump_file, pre_extension->se_insn);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Phase 4 implementation: Commit changes to the insn stream. */
|
||
|
||
/* Delete the merged def extension.
|
||
|
||
This is a subroutine of see_commit_ref_changes called via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_delete_merged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx def_se = *slot;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Deleting merged def extension:\n");
|
||
print_rtl_single (dump_file, def_se);
|
||
}
|
||
|
||
if (INSN_DELETED_P (def_se))
|
||
/* This def extension is an implicit one. No need to delete it since
|
||
it is not in the insn stream. */
|
||
return 1;
|
||
|
||
delete_insn (def_se);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Delete the unmerged def extension.
|
||
|
||
This is a subroutine of see_commit_ref_changes called via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_delete_unmerged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx def_se = *slot;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Deleting unmerged def extension:\n");
|
||
print_rtl_single (dump_file, def_se);
|
||
}
|
||
|
||
delete_insn (def_se);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Emit the non-redundant use extension to the instruction stream.
|
||
|
||
This is a subroutine of see_commit_ref_changes called via htab_traverse.
|
||
|
||
SLOT contains the current use extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_emit_use_extension (void **slot, void *b)
|
||
{
|
||
rtx use_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
|
||
if (INSN_DELETED_P (use_se))
|
||
/* This use extension was previously removed according to the lcm
|
||
output. */
|
||
return 1;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Inserting use extension:\n");
|
||
print_rtl_single (dump_file, use_se);
|
||
}
|
||
|
||
add_insn_before (use_se, curr_ref_s->insn);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* For each relevant reference:
|
||
a. Emit the non-redundant use extensions.
|
||
b. Delete the def extensions.
|
||
c. Replace the original reference with the merged one (if exists) and add the
|
||
move instructions that were generated.
|
||
|
||
This is a subroutine of see_commit_changes called via splay_tree_foreach.
|
||
|
||
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
|
||
see_ref_s structure. */
|
||
|
||
static int
|
||
see_commit_ref_changes (splay_tree_node stn,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
|
||
htab_t unmerged_def_se_hash =
|
||
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
|
||
htab_t merged_def_se_hash =
|
||
((struct see_ref_s *) (stn->value))->merged_def_se_hash;
|
||
rtx ref = ((struct see_ref_s *) (stn->value))->insn;
|
||
rtx merged_ref = ((struct see_ref_s *) (stn->value))->merged_insn;
|
||
|
||
/* Emit the non-redundant use extensions. */
|
||
if (use_se_hash)
|
||
htab_traverse_noresize (use_se_hash, see_emit_use_extension,
|
||
(PTR) (stn->value));
|
||
|
||
/* Delete the def extensions. */
|
||
if (unmerged_def_se_hash)
|
||
htab_traverse (unmerged_def_se_hash, see_delete_unmerged_def_extension,
|
||
(PTR) (stn->value));
|
||
|
||
if (merged_def_se_hash)
|
||
htab_traverse (merged_def_se_hash, see_delete_merged_def_extension,
|
||
(PTR) (stn->value));
|
||
|
||
/* Replace the original reference with the merged one (if exists) and add the
|
||
move instructions that were generated. */
|
||
if (merged_ref && !INSN_DELETED_P (ref))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Replacing orig reference:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
fprintf (dump_file, "With merged reference:\n");
|
||
print_rtl_single (dump_file, merged_ref);
|
||
}
|
||
emit_insn_after (merged_ref, ref);
|
||
delete_insn (ref);
|
||
}
|
||
|
||
/* Continue to the next reference. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Insert partially redundant expressions on edges to make the expressions fully
|
||
redundant.
|
||
|
||
INDEX_MAP is a mapping of an index to an expression.
|
||
Return true if an instruction was inserted on an edge.
|
||
Otherwise, return false. */
|
||
|
||
static bool
|
||
see_pre_insert_extensions (struct see_pre_extension_expr **index_map)
|
||
{
|
||
int num_edges = NUM_EDGES (edge_list);
|
||
int set_size = pre_insert_map[0]->size;
|
||
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
|
||
|
||
int did_insert = 0;
|
||
int e;
|
||
int i;
|
||
int j;
|
||
|
||
for (e = 0; e < num_edges; e++)
|
||
{
|
||
int indx;
|
||
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
|
||
|
||
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
|
||
{
|
||
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
|
||
|
||
for (j = indx; insert && j < (int) pre_extension_num;
|
||
j++, insert >>= 1)
|
||
if (insert & 1)
|
||
{
|
||
struct see_pre_extension_expr *expr = index_map[j];
|
||
int idx = expr->bitmap_index;
|
||
rtx se_insn = NULL;
|
||
edge eg = INDEX_EDGE (edge_list, e);
|
||
|
||
start_sequence ();
|
||
emit_insn (PATTERN (expr->se_insn));
|
||
se_insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (eg->flags & EDGE_ABNORMAL)
|
||
{
|
||
rtx new_insn = NULL;
|
||
|
||
new_insn = insert_insn_end_bb_new (se_insn, bb);
|
||
gcc_assert (new_insn && INSN_P (new_insn));
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"PRE: end of bb %d, insn %d, ",
|
||
bb->index, INSN_UID (new_insn));
|
||
fprintf (dump_file,
|
||
"inserting expression %d\n", idx);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
insert_insn_on_edge (se_insn, eg);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "PRE: edge (%d,%d), ",
|
||
bb->index,
|
||
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
|
||
fprintf (dump_file, "inserting expression %d\n", idx);
|
||
}
|
||
}
|
||
did_insert = true;
|
||
}
|
||
}
|
||
}
|
||
return did_insert;
|
||
}
|
||
|
||
|
||
/* Since all the redundant extensions must be anticipatable, they must be a use
|
||
extensions. Mark them as deleted. This will prevent them from been emitted
|
||
in the first place.
|
||
|
||
This is a subroutine of see_commit_changes called via htab_traverse.
|
||
|
||
SLOT contains the current see_pre_extension_expr structure pointer. */
|
||
|
||
static int
|
||
see_pre_delete_extension (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
struct see_pre_extension_expr *expr = *slot;
|
||
struct see_occr *occr;
|
||
int indx = expr->bitmap_index;
|
||
|
||
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
if (TEST_BIT (pre_delete_map[occr->block_num], indx))
|
||
{
|
||
/* Mark as deleted. */
|
||
INSN_DELETED_P (occr->insn) = 1;
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,"Redundant extension deleted:\n");
|
||
print_rtl_single (dump_file, occr->insn);
|
||
}
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Create the index_map mapping of an index to an expression.
|
||
|
||
This is a subroutine of see_commit_changes called via htab_traverse.
|
||
|
||
SLOT contains the current see_pre_extension_expr structure pointer.
|
||
B a pointer to see_pre_extension_expr structure pointer. */
|
||
|
||
static int
|
||
see_map_extension (void **slot, void *b)
|
||
{
|
||
struct see_pre_extension_expr *expr = *slot;
|
||
struct see_pre_extension_expr **index_map =
|
||
(struct see_pre_extension_expr **) b;
|
||
|
||
index_map[expr->bitmap_index] = expr;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Phase 4 top level function.
|
||
In this phase we finally change the instruction stream.
|
||
Here we insert extensions at their best placements and delete the
|
||
redundant ones according to the output of the LCM. We also replace
|
||
some of the instructions according to phase 2 merges results. */
|
||
|
||
static void
|
||
see_commit_changes (void)
|
||
{
|
||
struct see_pre_extension_expr **index_map;
|
||
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
|
||
bool did_insert = false;
|
||
int i;
|
||
|
||
index_map = xcalloc (pre_extension_num,
|
||
sizeof (struct see_pre_extension_expr *));
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"* Phase 4: Commit changes to the insn stream. *\n");
|
||
|
||
/* Produce a mapping of all the pre_extensions. */
|
||
htab_traverse (see_pre_extension_hash, see_map_extension, (PTR) index_map);
|
||
|
||
/* Delete redundant extension. This will prevent them from been emitted in
|
||
the first place. */
|
||
htab_traverse (see_pre_extension_hash, see_pre_delete_extension, NULL);
|
||
|
||
/* At this point, we must free the DF object, since the number of basic blocks
|
||
may change. */
|
||
df_finish (df);
|
||
df = NULL;
|
||
|
||
/* Insert extensions on edges, according to the LCM result. */
|
||
did_insert = see_pre_insert_extensions (index_map);
|
||
|
||
if (did_insert)
|
||
commit_edge_insertions ();
|
||
|
||
/* Commit the rest of the changes. */
|
||
for (i = 0; i < last_bb; i++)
|
||
{
|
||
if (see_bb_splay_ar[i])
|
||
{
|
||
/* Traverse over all the references in the basic block in forward
|
||
order. */
|
||
splay_tree_foreach (see_bb_splay_ar[i],
|
||
see_commit_ref_changes, NULL);
|
||
}
|
||
}
|
||
|
||
free (index_map);
|
||
}
|
||
|
||
|
||
/* Phase 3 implementation: Eliminate globally redundant extensions. */
|
||
|
||
/* Analyze the properties of a merged def extension for the LCM and record avail
|
||
occurrences.
|
||
|
||
This is a subroutine of see_analyze_ref_local_prop called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_analyze_merged_def_local_prop (void **slot, void *b)
|
||
{
|
||
rtx def_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx ref = curr_ref_s->insn;
|
||
struct see_pre_extension_expr *extension_expr;
|
||
int indx;
|
||
int bb_num = BLOCK_NUM (ref);
|
||
htab_t curr_bb_hash;
|
||
struct see_register_properties *curr_prop, **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
struct see_occr *curr_occr = NULL;
|
||
struct see_occr *tmp_occr = NULL;
|
||
|
||
extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
|
||
/* The extension_expr must be found. */
|
||
gcc_assert (extension_expr);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[bb_num];
|
||
gcc_assert (curr_bb_hash);
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop);
|
||
|
||
indx = extension_expr->bitmap_index;
|
||
|
||
/* Reset the transparency bit. */
|
||
RESET_BIT (transp[bb_num], indx);
|
||
/* Reset the killed bit. */
|
||
RESET_BIT (ae_kill[bb_num], indx);
|
||
|
||
if (curr_prop->first_se_after_last_def == DF_INSN_LUID (df, ref))
|
||
{
|
||
/* Set the available bit. */
|
||
SET_BIT (comp[bb_num], indx);
|
||
/* Record the available occurrence. */
|
||
curr_occr = xmalloc (sizeof (struct see_occr));
|
||
curr_occr->next = NULL;
|
||
curr_occr->insn = def_se;
|
||
curr_occr->block_num = bb_num;
|
||
tmp_occr = extension_expr->avail_occr;
|
||
if (!tmp_occr)
|
||
extension_expr->avail_occr = curr_occr;
|
||
else
|
||
{
|
||
while (tmp_occr->next)
|
||
tmp_occr = tmp_occr->next;
|
||
tmp_occr->next = curr_occr;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Analyze the properties of a unmerged def extension for the LCM.
|
||
|
||
This is a subroutine of see_analyze_ref_local_prop called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_analyze_unmerged_def_local_prop (void **slot, void *b)
|
||
{
|
||
rtx def_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx ref = curr_ref_s->insn;
|
||
struct see_pre_extension_expr *extension_expr;
|
||
int indx;
|
||
int bb_num = BLOCK_NUM (ref);
|
||
htab_t curr_bb_hash;
|
||
struct see_register_properties *curr_prop, **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
|
||
extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
|
||
/* The extension_expr must be found. */
|
||
gcc_assert (extension_expr);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[bb_num];
|
||
gcc_assert (curr_bb_hash);
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop);
|
||
|
||
indx = extension_expr->bitmap_index;
|
||
|
||
/* Reset the transparency bit. */
|
||
RESET_BIT (transp[bb_num], indx);
|
||
/* Set the killed bit. */
|
||
SET_BIT (ae_kill[bb_num], indx);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Analyze the properties of a use extension for the LCM and record anic and
|
||
avail occurrences.
|
||
|
||
This is a subroutine of see_analyze_ref_local_prop called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current use extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_analyze_use_local_prop (void **slot, void *b)
|
||
{
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx use_se = *slot;
|
||
rtx ref = curr_ref_s->insn;
|
||
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
|
||
struct see_pre_extension_expr *extension_expr;
|
||
struct see_register_properties *curr_prop, **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
struct see_occr *curr_occr = NULL;
|
||
struct see_occr *tmp_occr = NULL;
|
||
htab_t curr_bb_hash;
|
||
int indx;
|
||
int bb_num = BLOCK_NUM (ref);
|
||
|
||
extension_expr = see_seek_pre_extension_expr (use_se, USE_EXTENSION);
|
||
/* The extension_expr must be found. */
|
||
gcc_assert (extension_expr);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[bb_num];
|
||
gcc_assert (curr_bb_hash);
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop);
|
||
|
||
indx = extension_expr->bitmap_index;
|
||
|
||
if (curr_prop->first_se_before_any_def == DF_INSN_LUID (df, ref))
|
||
{
|
||
/* Set the anticipatable bit. */
|
||
SET_BIT (antloc[bb_num], indx);
|
||
/* Record the anticipatable occurrence. */
|
||
curr_occr = xmalloc (sizeof (struct see_occr));
|
||
curr_occr->next = NULL;
|
||
curr_occr->insn = use_se;
|
||
curr_occr->block_num = bb_num;
|
||
tmp_occr = extension_expr->antic_occr;
|
||
if (!tmp_occr)
|
||
extension_expr->antic_occr = curr_occr;
|
||
else
|
||
{
|
||
while (tmp_occr->next)
|
||
tmp_occr = tmp_occr->next;
|
||
tmp_occr->next = curr_occr;
|
||
}
|
||
if (curr_prop->last_def < 0)
|
||
{
|
||
/* Set the available bit. */
|
||
SET_BIT (comp[bb_num], indx);
|
||
/* Record the available occurrence. */
|
||
curr_occr = xmalloc (sizeof (struct see_occr));
|
||
curr_occr->next = NULL;
|
||
curr_occr->insn = use_se;
|
||
curr_occr->block_num = bb_num;
|
||
tmp_occr = extension_expr->avail_occr;
|
||
if (!tmp_occr)
|
||
extension_expr->avail_occr = curr_occr;
|
||
else
|
||
{
|
||
while (tmp_occr->next)
|
||
tmp_occr = tmp_occr->next;
|
||
tmp_occr->next = curr_occr;
|
||
}
|
||
}
|
||
/* Note: there is no need to reset the killed bit since it must be zero at
|
||
this point. */
|
||
}
|
||
else if (curr_prop->first_se_after_last_def == DF_INSN_LUID (df, ref))
|
||
{
|
||
/* Set the available bit. */
|
||
SET_BIT (comp[bb_num], indx);
|
||
/* Reset the killed bit. */
|
||
RESET_BIT (ae_kill[bb_num], indx);
|
||
/* Record the available occurrence. */
|
||
curr_occr = xmalloc (sizeof (struct see_occr));
|
||
curr_occr->next = NULL;
|
||
curr_occr->insn = use_se;
|
||
curr_occr->block_num = bb_num;
|
||
tmp_occr = extension_expr->avail_occr;
|
||
if (!tmp_occr)
|
||
extension_expr->avail_occr = curr_occr;
|
||
else
|
||
{
|
||
while (tmp_occr->next)
|
||
tmp_occr = tmp_occr->next;
|
||
tmp_occr->next = curr_occr;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Here we traverse over all the merged and unmerged extensions of the reference
|
||
and analyze their properties for the LCM.
|
||
|
||
This is a subroutine of see_execute_LCM called via splay_tree_foreach.
|
||
|
||
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
|
||
see_ref_s structure. */
|
||
|
||
static int
|
||
see_analyze_ref_local_prop (splay_tree_node stn,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
|
||
htab_t unmerged_def_se_hash =
|
||
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
|
||
htab_t merged_def_se_hash =
|
||
((struct see_ref_s *) (stn->value))->merged_def_se_hash;
|
||
|
||
/* Analyze use extensions that were not merged with the reference. */
|
||
if (use_se_hash)
|
||
htab_traverse_noresize (use_se_hash, see_analyze_use_local_prop,
|
||
(PTR) (stn->value));
|
||
|
||
/* Analyze def extensions that were not merged with the reference. */
|
||
if (unmerged_def_se_hash)
|
||
htab_traverse (unmerged_def_se_hash, see_analyze_unmerged_def_local_prop,
|
||
(PTR) (stn->value));
|
||
|
||
/* Analyze def extensions that were merged with the reference. */
|
||
if (merged_def_se_hash)
|
||
htab_traverse (merged_def_se_hash, see_analyze_merged_def_local_prop,
|
||
(PTR) (stn->value));
|
||
|
||
/* Continue to the next definition. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Phase 3 top level function.
|
||
In this phase, we set the input bit vectors of the LCM according to data
|
||
gathered in phase 2.
|
||
Then we run the edge based LCM. */
|
||
|
||
static void
|
||
see_execute_LCM (void)
|
||
{
|
||
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
|
||
int i = 0;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"* Phase 3: Eliminate globally redundant extensions. *\n");
|
||
|
||
/* Initialize the global sbitmap vectors. */
|
||
transp = sbitmap_vector_alloc (last_bb, pre_extension_num);
|
||
comp = sbitmap_vector_alloc (last_bb, pre_extension_num);
|
||
antloc = sbitmap_vector_alloc (last_bb, pre_extension_num);
|
||
ae_kill = sbitmap_vector_alloc (last_bb, pre_extension_num);
|
||
sbitmap_vector_ones (transp, last_bb);
|
||
sbitmap_vector_zero (comp, last_bb);
|
||
sbitmap_vector_zero (antloc, last_bb);
|
||
sbitmap_vector_zero (ae_kill, last_bb);
|
||
|
||
/* Traverse over all the splay trees of the basic blocks. */
|
||
for (i = 0; i < last_bb; i++)
|
||
{
|
||
if (see_bb_splay_ar[i])
|
||
{
|
||
/* Traverse over all the references in the basic block in forward
|
||
order. */
|
||
splay_tree_foreach (see_bb_splay_ar[i],
|
||
see_analyze_ref_local_prop, NULL);
|
||
}
|
||
}
|
||
|
||
/* Add fake exit edges before running the lcm. */
|
||
add_noreturn_fake_exit_edges ();
|
||
|
||
/* Run the LCM. */
|
||
edge_list = pre_edge_lcm (pre_extension_num, transp, comp, antloc,
|
||
ae_kill, &pre_insert_map, &pre_delete_map);
|
||
|
||
/* Remove the fake edges. */
|
||
remove_fake_exit_edges ();
|
||
}
|
||
|
||
|
||
/* Phase 2 implementation: Merge and eliminate locally redundant extensions. */
|
||
|
||
/* In this function we set the register properties for the register that is
|
||
defined and extended in the reference.
|
||
The properties are defined in see_register_properties structure which is
|
||
allocated per basic block and per register.
|
||
Later the extension is inserted into the see_pre_extension_hash for the next
|
||
phase of the optimization.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_set_prop_merged_def (void **slot, void *b)
|
||
{
|
||
rtx def_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx insn = curr_ref_s->insn;
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
htab_t curr_bb_hash;
|
||
struct see_register_properties *curr_prop = NULL;
|
||
struct see_register_properties **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
int ref_luid = DF_INSN_LUID (df, insn);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
|
||
if (!curr_bb_hash)
|
||
{
|
||
/* The hash doesn't exist yet. Create it. */
|
||
curr_bb_hash = htab_create (10,
|
||
hash_descriptor_properties,
|
||
eq_descriptor_properties,
|
||
hash_del_properties);
|
||
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
|
||
}
|
||
|
||
/* Find the right register properties in the right basic block. */
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
|
||
if (slot_prop && *slot_prop != NULL)
|
||
{
|
||
/* Property already exists. */
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
|
||
|
||
curr_prop->last_def = ref_luid;
|
||
curr_prop->first_se_after_last_def = ref_luid;
|
||
}
|
||
else
|
||
{
|
||
/* Property doesn't exist yet. */
|
||
curr_prop = xmalloc (sizeof (struct see_register_properties));
|
||
curr_prop->regno = REGNO (dest_extension_reg);
|
||
curr_prop->last_def = ref_luid;
|
||
curr_prop->first_se_before_any_def = -1;
|
||
curr_prop->first_se_after_last_def = ref_luid;
|
||
*slot_prop = curr_prop;
|
||
}
|
||
|
||
/* Insert the def_se into see_pre_extension_hash if it isn't already
|
||
there. */
|
||
see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* In this function we set the register properties for the register that is
|
||
defined but not extended in the reference.
|
||
The properties are defined in see_register_properties structure which is
|
||
allocated per basic block and per register.
|
||
Later the extension is inserted into the see_pre_extension_hash for the next
|
||
phase of the optimization.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_set_prop_unmerged_def (void **slot, void *b)
|
||
{
|
||
rtx def_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx insn = curr_ref_s->insn;
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
htab_t curr_bb_hash;
|
||
struct see_register_properties *curr_prop = NULL;
|
||
struct see_register_properties **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
int ref_luid = DF_INSN_LUID (df, insn);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
|
||
if (!curr_bb_hash)
|
||
{
|
||
/* The hash doesn't exist yet. Create it. */
|
||
curr_bb_hash = htab_create (10,
|
||
hash_descriptor_properties,
|
||
eq_descriptor_properties,
|
||
hash_del_properties);
|
||
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
|
||
}
|
||
|
||
/* Find the right register properties in the right basic block. */
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
|
||
if (slot_prop && *slot_prop != NULL)
|
||
{
|
||
/* Property already exists. */
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
|
||
|
||
curr_prop->last_def = ref_luid;
|
||
curr_prop->first_se_after_last_def = -1;
|
||
}
|
||
else
|
||
{
|
||
/* Property doesn't exist yet. */
|
||
curr_prop = xmalloc (sizeof (struct see_register_properties));
|
||
curr_prop->regno = REGNO (dest_extension_reg);
|
||
curr_prop->last_def = ref_luid;
|
||
curr_prop->first_se_before_any_def = -1;
|
||
curr_prop->first_se_after_last_def = -1;
|
||
*slot_prop = curr_prop;
|
||
}
|
||
|
||
/* Insert the def_se into see_pre_extension_hash if it isn't already
|
||
there. */
|
||
see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* In this function we set the register properties for the register that is used
|
||
in the reference.
|
||
The properties are defined in see_register_properties structure which is
|
||
allocated per basic block and per register.
|
||
When a redundant use extension is found it is removed from the hash of the
|
||
reference.
|
||
If the extension is non redundant it is inserted into the
|
||
see_pre_extension_hash for the next phase of the optimization.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current use extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_set_prop_unmerged_use (void **slot, void *b)
|
||
{
|
||
rtx use_se = *slot;
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx insn = curr_ref_s->insn;
|
||
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
|
||
htab_t curr_bb_hash;
|
||
struct see_register_properties *curr_prop = NULL;
|
||
struct see_register_properties **slot_prop;
|
||
struct see_register_properties temp_prop;
|
||
bool locally_redundant = false;
|
||
int ref_luid = DF_INSN_LUID (df, insn);
|
||
|
||
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
|
||
if (!curr_bb_hash)
|
||
{
|
||
/* The hash doesn't exist yet. Create it. */
|
||
curr_bb_hash = htab_create (10,
|
||
hash_descriptor_properties,
|
||
eq_descriptor_properties,
|
||
hash_del_properties);
|
||
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
|
||
}
|
||
|
||
/* Find the right register properties in the right basic block. */
|
||
temp_prop.regno = REGNO (dest_extension_reg);
|
||
slot_prop =
|
||
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
|
||
&temp_prop, INSERT);
|
||
|
||
if (slot_prop && *slot_prop != NULL)
|
||
{
|
||
/* Property already exists. */
|
||
curr_prop = *slot_prop;
|
||
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
|
||
|
||
|
||
if (curr_prop->last_def < 0 && curr_prop->first_se_before_any_def < 0)
|
||
curr_prop->first_se_before_any_def = ref_luid;
|
||
else if (curr_prop->last_def < 0
|
||
&& curr_prop->first_se_before_any_def >= 0)
|
||
{
|
||
/* In this case the extension is locally redundant. */
|
||
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
|
||
locally_redundant = true;
|
||
}
|
||
else if (curr_prop->last_def >= 0
|
||
&& curr_prop->first_se_after_last_def < 0)
|
||
curr_prop->first_se_after_last_def = ref_luid;
|
||
else if (curr_prop->last_def >= 0
|
||
&& curr_prop->first_se_after_last_def >= 0)
|
||
{
|
||
/* In this case the extension is locally redundant. */
|
||
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
|
||
locally_redundant = true;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
else
|
||
{
|
||
/* Property doesn't exist yet. Create a new one. */
|
||
curr_prop = xmalloc (sizeof (struct see_register_properties));
|
||
curr_prop->regno = REGNO (dest_extension_reg);
|
||
curr_prop->last_def = -1;
|
||
curr_prop->first_se_before_any_def = ref_luid;
|
||
curr_prop->first_se_after_last_def = -1;
|
||
*slot_prop = curr_prop;
|
||
}
|
||
|
||
/* Insert the use_se into see_pre_extension_hash if it isn't already
|
||
there. */
|
||
if (!locally_redundant)
|
||
see_seek_pre_extension_expr (use_se, USE_EXTENSION);
|
||
if (locally_redundant && dump_file)
|
||
{
|
||
fprintf (dump_file, "Locally redundant extension:\n");
|
||
print_rtl_single (dump_file, use_se);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Print an extension instruction.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
SLOT contains the extension instruction. */
|
||
|
||
static int
|
||
see_print_one_extension (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx def_se = *slot;
|
||
|
||
gcc_assert (def_se && INSN_P (def_se));
|
||
print_rtl_single (dump_file, def_se);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Function called by note_uses to replace used subexpressions.
|
||
|
||
X is a pointer to the subexpression and DATA is a pointer to a
|
||
see_replace_data structure that contains the data for the replacement. */
|
||
|
||
static void
|
||
see_replace_src (rtx *x, void *data)
|
||
{
|
||
struct see_replace_data *d
|
||
= (struct see_replace_data *) data;
|
||
|
||
*x = replace_rtx (*x, d->from, d->to);
|
||
}
|
||
|
||
|
||
/* At this point the pattern is expected to be:
|
||
|
||
ref: set (dest_reg) (rhs)
|
||
def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
|
||
|
||
The merge of these two instructions didn't succeed.
|
||
|
||
We try to generate the pattern:
|
||
set (subreg (dest_extension_reg)) (rhs)
|
||
|
||
We do this in 4 steps:
|
||
a. Replace every use of dest_reg with a new pseudo register.
|
||
b. Replace every instance of dest_reg with the subreg.
|
||
c. Replace every use of the new pseudo register back to dest_reg.
|
||
d. Try to recognize and simplify.
|
||
|
||
If the manipulation failed, leave the original ref but try to generate and
|
||
recognize a simple move instruction:
|
||
set (subreg (dest_extension_reg)) (dest_reg)
|
||
This move instruction will be emitted right after the ref to the instruction
|
||
stream and assure the correctness of the code after def_se will be removed.
|
||
|
||
CURR_REF_S is the current reference.
|
||
DEF_SE is the extension that couldn't be merged. */
|
||
|
||
static void
|
||
see_def_extension_not_merged (struct see_ref_s *curr_ref_s, rtx def_se)
|
||
{
|
||
struct see_replace_data d;
|
||
/* If the original insn was already merged with an extension before,
|
||
take the merged one. */
|
||
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
|
||
curr_ref_s->insn;
|
||
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
|
||
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
|
||
rtx ref_copy = copy_rtx (ref);
|
||
rtx source_extension_reg = see_get_extension_reg (def_se, 0);
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
rtx move_insn = NULL;
|
||
rtx set, rhs;
|
||
rtx dest_reg, dest_real_reg;
|
||
rtx new_pseudo_reg, subreg;
|
||
enum machine_mode source_extension_mode = GET_MODE (source_extension_reg);
|
||
enum machine_mode dest_mode;
|
||
|
||
set = single_set (def_se);
|
||
gcc_assert (set);
|
||
rhs = SET_SRC (set);
|
||
gcc_assert (GET_CODE (rhs) == SIGN_EXTEND
|
||
|| GET_CODE (rhs) == ZERO_EXTEND);
|
||
dest_reg = XEXP (rhs, 0);
|
||
gcc_assert (REG_P (dest_reg)
|
||
|| (GET_CODE (dest_reg) == SUBREG
|
||
&& REG_P (SUBREG_REG (dest_reg))));
|
||
dest_real_reg = REG_P (dest_reg) ? dest_reg : SUBREG_REG (dest_reg);
|
||
dest_mode = GET_MODE (dest_reg);
|
||
|
||
subreg = gen_lowpart_SUBREG (dest_mode, dest_extension_reg);
|
||
new_pseudo_reg = gen_reg_rtx (source_extension_mode);
|
||
|
||
/* Step a: Replace every use of dest_real_reg with a new pseudo register. */
|
||
d.from = dest_real_reg;
|
||
d.to = new_pseudo_reg;
|
||
note_uses (&PATTERN (ref_copy), see_replace_src, &d);
|
||
/* Step b: Replace every instance of dest_reg with the subreg. */
|
||
ref_copy = replace_rtx (ref_copy, dest_reg, subreg);
|
||
|
||
/* Step c: Replace every use of the new pseudo register back to
|
||
dest_real_reg. */
|
||
d.from = new_pseudo_reg;
|
||
d.to = dest_real_reg;
|
||
note_uses (&PATTERN (ref_copy), see_replace_src, &d);
|
||
|
||
if (rtx_equal_p (PATTERN (ref), PATTERN (ref_copy))
|
||
|| insn_invalid_p (ref_copy))
|
||
{
|
||
/* The manipulation failed. */
|
||
|
||
/* Create a new copy. */
|
||
ref_copy = copy_rtx (ref);
|
||
|
||
/* Create a simple move instruction that will replace the def_se. */
|
||
start_sequence ();
|
||
emit_move_insn (subreg, dest_reg);
|
||
move_insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Link the manipulated instruction to the newly created move instruction
|
||
and to the former created move instructions. */
|
||
PREV_INSN (ref_copy) = NULL_RTX;
|
||
NEXT_INSN (ref_copy) = move_insn;
|
||
PREV_INSN (move_insn) = ref_copy;
|
||
NEXT_INSN (move_insn) = merged_ref_next;
|
||
if (merged_ref_next != NULL_RTX)
|
||
PREV_INSN (merged_ref_next) = move_insn;
|
||
curr_ref_s->merged_insn = ref_copy;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Following def merge failure a move ");
|
||
fprintf (dump_file, "insn was added after the ref.\n");
|
||
fprintf (dump_file, "Original ref:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
fprintf (dump_file, "Move insn that was added:\n");
|
||
print_rtl_single (dump_file, move_insn);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* The manipulation succeeded. Store the new manipulated reference. */
|
||
|
||
/* Try to simplify the new manipulated insn. */
|
||
validate_simplify_insn (ref_copy);
|
||
|
||
/* Create a simple move instruction to assure the correctness of the code. */
|
||
start_sequence ();
|
||
emit_move_insn (dest_reg, subreg);
|
||
move_insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Link the manipulated instruction to the newly created move instruction and
|
||
to the former created move instructions. */
|
||
PREV_INSN (ref_copy) = NULL_RTX;
|
||
NEXT_INSN (ref_copy) = move_insn;
|
||
PREV_INSN (move_insn) = ref_copy;
|
||
NEXT_INSN (move_insn) = merged_ref_next;
|
||
if (merged_ref_next != NULL_RTX)
|
||
PREV_INSN (merged_ref_next) = move_insn;
|
||
curr_ref_s->merged_insn = ref_copy;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Following merge failure the ref was transformed!\n");
|
||
fprintf (dump_file, "Original ref:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
fprintf (dump_file, "Transformed ref:\n");
|
||
print_rtl_single (dump_file, ref_copy);
|
||
fprintf (dump_file, "Move insn that was added:\n");
|
||
print_rtl_single (dump_file, move_insn);
|
||
}
|
||
}
|
||
|
||
|
||
/* Merge the reference instruction (ref) with the current use extension.
|
||
|
||
use_se extends a NARROWmode register to a WIDEmode register.
|
||
ref uses the WIDEmode register.
|
||
|
||
The pattern we try to merge is this:
|
||
use_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
|
||
ref: use (dest_extension_reg)
|
||
|
||
where dest_extension_reg and source_extension_reg can be subregs.
|
||
|
||
The merge is done by generating, simplifying and recognizing the pattern:
|
||
use (sign/zero_extend (source_extension_reg))
|
||
|
||
If ref is too simple (according to see_want_to_be_merged_with_extension ())
|
||
we don't try to merge it with use_se and we continue as if the merge failed.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
SLOT contains the current use extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_merge_one_use_extension (void **slot, void *b)
|
||
{
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx use_se = *slot;
|
||
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
|
||
curr_ref_s->insn;
|
||
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
|
||
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
|
||
rtx ref_copy = copy_rtx (ref);
|
||
rtx extension_set = single_set (use_se);
|
||
rtx extension_rhs = NULL;
|
||
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
|
||
rtx note = NULL;
|
||
rtx simplified_note = NULL;
|
||
|
||
gcc_assert (use_se && curr_ref_s && extension_set);
|
||
|
||
extension_rhs = SET_SRC (extension_set);
|
||
|
||
/* In REG_EQUIV and REG_EQUAL notes that mention the register we need to
|
||
replace the uses of the dest_extension_reg with the rhs of the extension
|
||
instruction. This is necessary since there might not be an extension in
|
||
the path between the definition and the note when this optimization is
|
||
over. */
|
||
note = find_reg_equal_equiv_note (ref_copy);
|
||
if (note)
|
||
{
|
||
simplified_note = simplify_replace_rtx (XEXP (note, 0),
|
||
dest_extension_reg,
|
||
extension_rhs);
|
||
if (rtx_equal_p (XEXP (note, 0), simplified_note))
|
||
/* Replacement failed. Remove the note. */
|
||
remove_note (ref_copy, note);
|
||
else
|
||
XEXP (note, 0) = simplified_note;
|
||
}
|
||
|
||
if (!see_want_to_be_merged_with_extension (ref, use_se, USE_EXTENSION))
|
||
{
|
||
/* The use in the reference is too simple. Don't try to merge. */
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Use merge skipped!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, use_se);
|
||
print_rtl_single (dump_file, ref);
|
||
}
|
||
/* Don't remove the current use_se from the use_se_hash and continue to
|
||
the next extension. */
|
||
return 1;
|
||
}
|
||
|
||
validate_replace_src_group (dest_extension_reg, extension_rhs, ref_copy);
|
||
|
||
if (!num_changes_pending ())
|
||
/* In this case this is not a real use (the only use is/was in the notes
|
||
list). Remove the use extension from the hash. This will prevent it
|
||
from been emitted in the first place. */
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Use extension not necessary before:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
}
|
||
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
|
||
PREV_INSN (ref_copy) = NULL_RTX;
|
||
NEXT_INSN (ref_copy) = merged_ref_next;
|
||
if (merged_ref_next != NULL_RTX)
|
||
PREV_INSN (merged_ref_next) = ref_copy;
|
||
curr_ref_s->merged_insn = ref_copy;
|
||
return 1;
|
||
}
|
||
|
||
if (!apply_change_group ())
|
||
{
|
||
/* The merge failed. */
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Use merge failed!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, use_se);
|
||
print_rtl_single (dump_file, ref);
|
||
}
|
||
/* Don't remove the current use_se from the use_se_hash and continue to
|
||
the next extension. */
|
||
return 1;
|
||
}
|
||
|
||
/* The merge succeeded! */
|
||
|
||
/* Try to simplify the new merged insn. */
|
||
validate_simplify_insn (ref_copy);
|
||
|
||
PREV_INSN (ref_copy) = NULL_RTX;
|
||
NEXT_INSN (ref_copy) = merged_ref_next;
|
||
if (merged_ref_next != NULL_RTX)
|
||
PREV_INSN (merged_ref_next) = ref_copy;
|
||
curr_ref_s->merged_insn = ref_copy;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Use merge succeeded!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, use_se);
|
||
print_rtl_single (dump_file, ref);
|
||
fprintf (dump_file, "Merged instruction:\n");
|
||
print_rtl_single (dump_file, ref_copy);
|
||
}
|
||
|
||
/* Remove the current use_se from the use_se_hash. This will prevent it from
|
||
been emitted in the first place. */
|
||
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Merge the reference instruction (ref) with the extension that follows it
|
||
in the same basic block (def_se).
|
||
ref sets a NARROWmode register and def_se extends it to WIDEmode register.
|
||
|
||
The pattern we try to merge is this:
|
||
ref: set (dest_reg) (rhs)
|
||
def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
|
||
|
||
where dest_reg and source_extension_reg can both be subregs (together)
|
||
and (REGNO (dest_reg) == REGNO (source_extension_reg))
|
||
|
||
The merge is done by generating, simplifying and recognizing the pattern:
|
||
set (dest_extension_reg) (sign/zero_extend (rhs))
|
||
If ref is a parallel instruction we just replace the relevant set in it.
|
||
|
||
If ref is too simple (according to see_want_to_be_merged_with_extension ())
|
||
we don't try to merge it with def_se and we continue as if the merge failed.
|
||
|
||
This is a subroutine of see_handle_extensions_for_one_ref called
|
||
via htab_traverse.
|
||
|
||
SLOT contains the current def extension instruction.
|
||
B is the see_ref_s structure pointer. */
|
||
|
||
static int
|
||
see_merge_one_def_extension (void **slot, void *b)
|
||
{
|
||
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
|
||
rtx def_se = *slot;
|
||
/* If the original insn was already merged with an extension before,
|
||
take the merged one. */
|
||
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
|
||
curr_ref_s->insn;
|
||
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
|
||
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
|
||
rtx ref_copy = copy_rtx (ref);
|
||
rtx new_set = NULL;
|
||
rtx source_extension_reg = see_get_extension_reg (def_se, 0);
|
||
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
|
||
rtx move_insn, *rtx_slot, subreg;
|
||
rtx temp_extension = NULL;
|
||
rtx simplified_temp_extension = NULL;
|
||
rtx *pat;
|
||
enum rtx_code code;
|
||
enum rtx_code extension_code;
|
||
enum machine_mode source_extension_mode;
|
||
enum machine_mode source_mode;
|
||
enum machine_mode dest_extension_mode;
|
||
bool merge_success = false;
|
||
int i;
|
||
|
||
gcc_assert (def_se
|
||
&& INSN_P (def_se)
|
||
&& curr_ref_s
|
||
&& ref
|
||
&& INSN_P (ref));
|
||
|
||
if (!see_want_to_be_merged_with_extension (ref, def_se, DEF_EXTENSION))
|
||
{
|
||
/* The definition in the reference is too simple. Don't try to merge. */
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Def merge skipped!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
print_rtl_single (dump_file, def_se);
|
||
}
|
||
|
||
see_def_extension_not_merged (curr_ref_s, def_se);
|
||
/* Continue to the next extension. */
|
||
return 1;
|
||
}
|
||
|
||
extension_code = see_get_extension_data (def_se, &source_mode);
|
||
|
||
/* Try to merge and simplify the extension. */
|
||
source_extension_mode = GET_MODE (source_extension_reg);
|
||
dest_extension_mode = GET_MODE (dest_extension_reg);
|
||
|
||
pat = &PATTERN (ref_copy);
|
||
code = GET_CODE (*pat);
|
||
|
||
if (code == PARALLEL)
|
||
{
|
||
bool need_to_apply_change = false;
|
||
|
||
for (i = 0; i < XVECLEN (*pat, 0); i++)
|
||
{
|
||
rtx *sub = &XVECEXP (*pat, 0, i);
|
||
|
||
if (GET_CODE (*sub) == SET
|
||
&& GET_MODE (SET_SRC (*sub)) != VOIDmode
|
||
&& GET_MODE (SET_DEST (*sub)) == source_mode
|
||
&& ((REG_P (SET_DEST (*sub))
|
||
&& REGNO (SET_DEST (*sub)) == REGNO (source_extension_reg))
|
||
|| (GET_CODE (SET_DEST (*sub)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (*sub)))
|
||
&& (REGNO (SUBREG_REG (SET_DEST (*sub))) ==
|
||
REGNO (source_extension_reg)))))
|
||
{
|
||
rtx orig_src = SET_SRC (*sub);
|
||
|
||
if (extension_code == SIGN_EXTEND)
|
||
temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode,
|
||
orig_src);
|
||
else
|
||
temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode,
|
||
orig_src);
|
||
simplified_temp_extension = simplify_rtx (temp_extension);
|
||
temp_extension =
|
||
(simplified_temp_extension) ? simplified_temp_extension :
|
||
temp_extension;
|
||
new_set = gen_rtx_SET (VOIDmode, dest_extension_reg,
|
||
temp_extension);
|
||
validate_change (ref_copy, sub, new_set, 1);
|
||
need_to_apply_change = true;
|
||
}
|
||
}
|
||
if (need_to_apply_change)
|
||
if (apply_change_group ())
|
||
merge_success = true;
|
||
}
|
||
else if (code == SET
|
||
&& GET_MODE (SET_SRC (*pat)) != VOIDmode
|
||
&& GET_MODE (SET_DEST (*pat)) == source_mode
|
||
&& ((REG_P (SET_DEST (*pat))
|
||
&& REGNO (SET_DEST (*pat)) == REGNO (source_extension_reg))
|
||
|| (GET_CODE (SET_DEST (*pat)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (*pat)))
|
||
&& (REGNO (SUBREG_REG (SET_DEST (*pat))) ==
|
||
REGNO (source_extension_reg)))))
|
||
{
|
||
rtx orig_src = SET_SRC (*pat);
|
||
|
||
if (extension_code == SIGN_EXTEND)
|
||
temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode, orig_src);
|
||
else
|
||
temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode, orig_src);
|
||
simplified_temp_extension = simplify_rtx (temp_extension);
|
||
temp_extension = (simplified_temp_extension) ? simplified_temp_extension :
|
||
temp_extension;
|
||
new_set = gen_rtx_SET (VOIDmode, dest_extension_reg, temp_extension);
|
||
if (validate_change (ref_copy, pat, new_set, 0))
|
||
merge_success = true;
|
||
}
|
||
if (!merge_success)
|
||
{
|
||
/* The merge failed. */
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Def merge failed!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
print_rtl_single (dump_file, def_se);
|
||
}
|
||
|
||
see_def_extension_not_merged (curr_ref_s, def_se);
|
||
/* Continue to the next extension. */
|
||
return 1;
|
||
}
|
||
|
||
/* The merge succeeded! */
|
||
|
||
/* Create a simple move instruction to assure the correctness of the code. */
|
||
subreg = gen_lowpart_SUBREG (source_extension_mode, dest_extension_reg);
|
||
start_sequence ();
|
||
emit_move_insn (source_extension_reg, subreg);
|
||
move_insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Link the merged instruction to the newly created move instruction and
|
||
to the former created move instructions. */
|
||
PREV_INSN (ref_copy) = NULL_RTX;
|
||
NEXT_INSN (ref_copy) = move_insn;
|
||
PREV_INSN (move_insn) = ref_copy;
|
||
NEXT_INSN (move_insn) = merged_ref_next;
|
||
if (merged_ref_next != NULL_RTX)
|
||
PREV_INSN (merged_ref_next) = move_insn;
|
||
curr_ref_s->merged_insn = ref_copy;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Def merge succeeded!\n");
|
||
fprintf (dump_file, "Original instructions:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
print_rtl_single (dump_file, def_se);
|
||
fprintf (dump_file, "Merged instruction:\n");
|
||
print_rtl_single (dump_file, ref_copy);
|
||
fprintf (dump_file, "Move instruction that was added:\n");
|
||
print_rtl_single (dump_file, move_insn);
|
||
}
|
||
|
||
/* Remove the current def_se from the unmerged_def_se_hash and insert it to
|
||
the merged_def_se_hash. */
|
||
htab_clear_slot (curr_ref_s->unmerged_def_se_hash, (PTR *)slot);
|
||
if (!curr_ref_s->merged_def_se_hash)
|
||
curr_ref_s->merged_def_se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
rtx_slot = (rtx *) htab_find_slot (curr_ref_s->merged_def_se_hash,
|
||
dest_extension_reg, INSERT);
|
||
gcc_assert (*rtx_slot == NULL);
|
||
*rtx_slot = def_se;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Try to eliminate extensions in this order:
|
||
a. Try to merge only the def extensions, one by one.
|
||
b. Try to merge only the use extensions, one by one.
|
||
|
||
TODO:
|
||
Try to merge any couple of use extensions simultaneously.
|
||
Try to merge any def extension with one or two uses extensions
|
||
simultaneously.
|
||
|
||
After all the merges are done, update the register properties for the basic
|
||
block and eliminate locally redundant use extensions.
|
||
|
||
This is a subroutine of see_merge_and_eliminate_extensions called
|
||
via splay_tree_foreach.
|
||
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
|
||
see_ref_s structure. */
|
||
|
||
static int
|
||
see_handle_extensions_for_one_ref (splay_tree_node stn,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
|
||
htab_t unmerged_def_se_hash =
|
||
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
|
||
htab_t merged_def_se_hash;
|
||
rtx ref = ((struct see_ref_s *) (stn->value))->insn;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Handling ref:\n");
|
||
print_rtl_single (dump_file, ref);
|
||
}
|
||
|
||
/* a. Try to eliminate only def extensions, one by one. */
|
||
if (unmerged_def_se_hash)
|
||
htab_traverse_noresize (unmerged_def_se_hash, see_merge_one_def_extension,
|
||
(PTR) (stn->value));
|
||
|
||
if (use_se_hash)
|
||
/* b. Try to eliminate only use extensions, one by one. */
|
||
htab_traverse_noresize (use_se_hash, see_merge_one_use_extension,
|
||
(PTR) (stn->value));
|
||
|
||
merged_def_se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "The hashes of the current reference:\n");
|
||
if (unmerged_def_se_hash)
|
||
{
|
||
fprintf (dump_file, "unmerged_def_se_hash:\n");
|
||
htab_traverse (unmerged_def_se_hash, see_print_one_extension, NULL);
|
||
}
|
||
if (merged_def_se_hash)
|
||
{
|
||
fprintf (dump_file, "merged_def_se_hash:\n");
|
||
htab_traverse (merged_def_se_hash, see_print_one_extension, NULL);
|
||
}
|
||
if (use_se_hash)
|
||
{
|
||
fprintf (dump_file, "use_se_hash:\n");
|
||
htab_traverse (use_se_hash, see_print_one_extension, NULL);
|
||
}
|
||
}
|
||
|
||
/* Now that all the merges are done, update the register properties of the
|
||
basic block and eliminate locally redundant extensions.
|
||
It is important that we first traverse the use extensions hash and
|
||
afterwards the def extensions hashes. */
|
||
|
||
if (use_se_hash)
|
||
htab_traverse_noresize (use_se_hash, see_set_prop_unmerged_use,
|
||
(PTR) (stn->value));
|
||
|
||
if (unmerged_def_se_hash)
|
||
htab_traverse (unmerged_def_se_hash, see_set_prop_unmerged_def,
|
||
(PTR) (stn->value));
|
||
|
||
if (merged_def_se_hash)
|
||
htab_traverse (merged_def_se_hash, see_set_prop_merged_def,
|
||
(PTR) (stn->value));
|
||
|
||
/* Continue to the next definition. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Phase 2 top level function.
|
||
In this phase, we try to merge def extensions and use extensions with their
|
||
references, and eliminate redundant extensions in the same basic block.
|
||
We also gather information for the next phases. */
|
||
|
||
static void
|
||
see_merge_and_eliminate_extensions (void)
|
||
{
|
||
int i = 0;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"* Phase 2: Merge and eliminate locally redundant extensions. *\n");
|
||
|
||
/* Traverse over all the splay trees of the basic blocks. */
|
||
for (i = 0; i < last_bb; i++)
|
||
{
|
||
if (see_bb_splay_ar[i])
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Handling references for bb %d\n", i);
|
||
/* Traverse over all the references in the basic block in forward
|
||
order. */
|
||
splay_tree_foreach (see_bb_splay_ar[i],
|
||
see_handle_extensions_for_one_ref, NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Phase 1 implementation: Propagate extensions to uses. */
|
||
|
||
/* Insert REF_INSN into the splay tree of its basic block.
|
||
SE_INSN is the extension to store in the proper hash according to TYPE.
|
||
|
||
Return true if everything went well.
|
||
Otherwise, return false (this will cause the optimization to be aborted). */
|
||
|
||
static bool
|
||
see_store_reference_and_extension (rtx ref_insn, rtx se_insn,
|
||
enum extension_type type)
|
||
{
|
||
rtx *rtx_slot;
|
||
int curr_bb_num;
|
||
splay_tree_node stn = NULL;
|
||
htab_t se_hash = NULL;
|
||
struct see_ref_s *ref_s = NULL;
|
||
|
||
/* Check the arguments. */
|
||
gcc_assert (ref_insn && se_insn);
|
||
if (!see_bb_splay_ar)
|
||
return false;
|
||
|
||
curr_bb_num = BLOCK_NUM (ref_insn);
|
||
gcc_assert (curr_bb_num < last_bb && curr_bb_num >= 0);
|
||
|
||
/* Insert the reference to the splay tree of its basic block. */
|
||
if (!see_bb_splay_ar[curr_bb_num])
|
||
/* The splay tree for this block doesn't exist yet, create it. */
|
||
see_bb_splay_ar[curr_bb_num] = splay_tree_new (splay_tree_compare_ints,
|
||
NULL, see_free_ref_s);
|
||
else
|
||
/* Splay tree already exists, check if the current reference is already
|
||
in it. */
|
||
{
|
||
stn = splay_tree_lookup (see_bb_splay_ar[curr_bb_num],
|
||
DF_INSN_LUID (df, ref_insn));
|
||
if (stn)
|
||
switch (type)
|
||
{
|
||
case EXPLICIT_DEF_EXTENSION:
|
||
se_hash =
|
||
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
|
||
if (!se_hash)
|
||
{
|
||
se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash =
|
||
se_hash;
|
||
}
|
||
break;
|
||
case IMPLICIT_DEF_EXTENSION:
|
||
se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
|
||
if (!se_hash)
|
||
{
|
||
se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
((struct see_ref_s *) (stn->value))->merged_def_se_hash =
|
||
se_hash;
|
||
}
|
||
break;
|
||
case USE_EXTENSION:
|
||
se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
|
||
if (!se_hash)
|
||
{
|
||
se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
((struct see_ref_s *) (stn->value))->use_se_hash = se_hash;
|
||
}
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Initialize a new see_ref_s structure and insert it to the splay
|
||
tree. */
|
||
if (!stn)
|
||
{
|
||
ref_s = xmalloc (sizeof (struct see_ref_s));
|
||
ref_s->luid = DF_INSN_LUID (df, ref_insn);
|
||
ref_s->insn = ref_insn;
|
||
ref_s->merged_insn = NULL;
|
||
|
||
/* Initialize the hashes. */
|
||
switch (type)
|
||
{
|
||
case EXPLICIT_DEF_EXTENSION:
|
||
ref_s->unmerged_def_se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
se_hash = ref_s->unmerged_def_se_hash;
|
||
ref_s->merged_def_se_hash = NULL;
|
||
ref_s->use_se_hash = NULL;
|
||
break;
|
||
case IMPLICIT_DEF_EXTENSION:
|
||
ref_s->merged_def_se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
se_hash = ref_s->merged_def_se_hash;
|
||
ref_s->unmerged_def_se_hash = NULL;
|
||
ref_s->use_se_hash = NULL;
|
||
break;
|
||
case USE_EXTENSION:
|
||
ref_s->use_se_hash = htab_create (10,
|
||
hash_descriptor_extension,
|
||
eq_descriptor_extension,
|
||
NULL);
|
||
se_hash = ref_s->use_se_hash;
|
||
ref_s->unmerged_def_se_hash = NULL;
|
||
ref_s->merged_def_se_hash = NULL;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Insert the new extension instruction into the correct se_hash of the
|
||
current reference. */
|
||
rtx_slot = (rtx *) htab_find_slot (se_hash, se_insn, INSERT);
|
||
if (*rtx_slot != NULL)
|
||
{
|
||
gcc_assert (type == USE_EXTENSION);
|
||
gcc_assert (rtx_equal_p (PATTERN (*rtx_slot), PATTERN (se_insn)));
|
||
}
|
||
else
|
||
*rtx_slot = se_insn;
|
||
|
||
/* If this is a new reference, insert it into the splay_tree. */
|
||
if (!stn)
|
||
splay_tree_insert (see_bb_splay_ar[curr_bb_num],
|
||
DF_INSN_LUID (df, ref_insn), (splay_tree_value) ref_s);
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Go over all the defs, for each relevant definition (defined below) store its
|
||
instruction as a reference.
|
||
|
||
A definition is relevant if its root has
|
||
((entry_type == SIGN_EXTENDED_DEF) || (entry_type == ZERO_EXTENDED_DEF)) and
|
||
his source_mode is not narrower then the the roots source_mode.
|
||
|
||
Return the number of relevant defs or negative number if something bad had
|
||
happened and the optimization should be aborted. */
|
||
|
||
static int
|
||
see_handle_relevant_defs (void)
|
||
{
|
||
rtx insn = NULL;
|
||
rtx se_insn = NULL;
|
||
rtx reg = NULL;
|
||
rtx ref_insn = NULL;
|
||
struct web_entry *root_entry = NULL;
|
||
unsigned int i;
|
||
int num_relevant_defs = 0;
|
||
enum rtx_code extension_code;
|
||
|
||
for (i = 0; i < defs_num; i++)
|
||
{
|
||
insn = DF_REF_INSN (DF_DEFS_GET (df, i));
|
||
reg = DF_REF_REAL_REG (DF_DEFS_GET (df, i));
|
||
|
||
if (!insn)
|
||
continue;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
root_entry = unionfind_root (&def_entry[i]);
|
||
|
||
if (ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF
|
||
&& ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF)
|
||
/* The current web is not relevant. Continue to the next def. */
|
||
continue;
|
||
|
||
if (root_entry->reg)
|
||
/* It isn't possible to have two different register for the same
|
||
web. */
|
||
gcc_assert (rtx_equal_p (root_entry->reg, reg));
|
||
else
|
||
root_entry->reg = reg;
|
||
|
||
/* The current definition is an EXTENDED_DEF or a definition that its
|
||
source_mode is narrower then its web's source_mode.
|
||
This means that we need to generate the implicit extension explicitly
|
||
and store it in the current reference's merged_def_se_hash. */
|
||
if (ENTRY_EI (&def_entry[i])->local_relevancy == EXTENDED_DEF
|
||
|| (ENTRY_EI (&def_entry[i])->local_source_mode <
|
||
ENTRY_EI (root_entry)->source_mode))
|
||
{
|
||
num_relevant_defs++;
|
||
|
||
if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
|
||
extension_code = SIGN_EXTEND;
|
||
else
|
||
extension_code = ZERO_EXTEND;
|
||
|
||
se_insn =
|
||
see_gen_normalized_extension (reg, extension_code,
|
||
ENTRY_EI (root_entry)->source_mode);
|
||
|
||
/* This is a dummy extension, mark it as deleted. */
|
||
INSN_DELETED_P (se_insn) = 1;
|
||
|
||
if (!see_store_reference_and_extension (insn, se_insn,
|
||
IMPLICIT_DEF_EXTENSION))
|
||
/* Something bad happened. Abort the optimization. */
|
||
return -1;
|
||
continue;
|
||
}
|
||
|
||
ref_insn = PREV_INSN (insn);
|
||
gcc_assert (BLOCK_NUM (ref_insn) == BLOCK_NUM (insn));
|
||
|
||
num_relevant_defs++;
|
||
|
||
if (!see_store_reference_and_extension (ref_insn, insn,
|
||
EXPLICIT_DEF_EXTENSION))
|
||
/* Something bad happened. Abort the optimization. */
|
||
return -1;
|
||
}
|
||
return num_relevant_defs;
|
||
}
|
||
|
||
|
||
/* Go over all the uses, for each use in relevant web store its instruction as
|
||
a reference and generate an extension before it.
|
||
|
||
Return the number of relevant uses or negative number if something bad had
|
||
happened and the optimization should be aborted. */
|
||
|
||
static int
|
||
see_handle_relevant_uses (void)
|
||
{
|
||
rtx insn = NULL;
|
||
rtx reg = NULL;
|
||
struct web_entry *root_entry = NULL;
|
||
rtx se_insn = NULL;
|
||
unsigned int i;
|
||
int num_relevant_uses = 0;
|
||
enum rtx_code extension_code;
|
||
|
||
for (i = 0; i < uses_num; i++)
|
||
{
|
||
insn = DF_REF_INSN (DF_USES_GET (df, i));
|
||
reg = DF_REF_REAL_REG (DF_USES_GET (df, i));
|
||
|
||
if (!insn)
|
||
continue;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
root_entry = unionfind_root (&use_entry[i]);
|
||
|
||
if (ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF
|
||
&& ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF)
|
||
/* The current web is not relevant. Continue to the next use. */
|
||
continue;
|
||
|
||
if (root_entry->reg)
|
||
/* It isn't possible to have two different register for the same
|
||
web. */
|
||
gcc_assert (rtx_equal_p (root_entry->reg, reg));
|
||
else
|
||
root_entry->reg = reg;
|
||
|
||
/* Generate the use extension. */
|
||
if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
|
||
extension_code = SIGN_EXTEND;
|
||
else
|
||
extension_code = ZERO_EXTEND;
|
||
|
||
se_insn =
|
||
see_gen_normalized_extension (reg, extension_code,
|
||
ENTRY_EI (root_entry)->source_mode);
|
||
if (!se_insn)
|
||
/* This is very bad, abort the transformation. */
|
||
return -1;
|
||
|
||
num_relevant_uses++;
|
||
|
||
if (!see_store_reference_and_extension (insn, se_insn,
|
||
USE_EXTENSION))
|
||
/* Something bad happened. Abort the optimization. */
|
||
return -1;
|
||
}
|
||
|
||
return num_relevant_uses;
|
||
}
|
||
|
||
|
||
/* Updates the relevancy of all the uses.
|
||
The information of the i'th use is stored in use_entry[i].
|
||
Currently all the uses are relevant for the optimization except for uses that
|
||
are in LIBCALL or RETVAL instructions. */
|
||
|
||
static void
|
||
see_update_uses_relevancy (void)
|
||
{
|
||
rtx insn = NULL;
|
||
rtx reg = NULL;
|
||
struct see_entry_extra_info *curr_entry_extra_info;
|
||
enum entry_type et;
|
||
unsigned int i;
|
||
|
||
if (!df || !use_entry)
|
||
return;
|
||
|
||
for (i = 0; i < uses_num; i++)
|
||
{
|
||
|
||
insn = DF_REF_INSN (DF_USES_GET (df, i));
|
||
reg = DF_REF_REAL_REG (DF_USES_GET (df, i));
|
||
|
||
et = RELEVANT_USE;
|
||
|
||
if (insn)
|
||
{
|
||
if (!INSN_P (insn))
|
||
et = NOT_RELEVANT;
|
||
if (insn && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
||
et = NOT_RELEVANT;
|
||
if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
|
||
et = NOT_RELEVANT;
|
||
}
|
||
else
|
||
et = NOT_RELEVANT;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "u%i insn %i reg %i ",
|
||
i, (insn ? INSN_UID (insn) : -1), REGNO (reg));
|
||
if (et == NOT_RELEVANT)
|
||
fprintf (dump_file, "NOT RELEVANT \n");
|
||
else
|
||
fprintf (dump_file, "RELEVANT USE \n");
|
||
}
|
||
|
||
curr_entry_extra_info = xmalloc (sizeof (struct see_entry_extra_info));
|
||
curr_entry_extra_info->relevancy = et;
|
||
curr_entry_extra_info->local_relevancy = et;
|
||
use_entry[i].extra_info = curr_entry_extra_info;
|
||
use_entry[i].reg = NULL;
|
||
use_entry[i].pred = NULL;
|
||
}
|
||
}
|
||
|
||
|
||
/* A definition in a candidate for this optimization only if its pattern is
|
||
recognized as relevant in this function.
|
||
INSN is the instruction to be recognized.
|
||
|
||
- If this is the pattern of a common sign extension after definition:
|
||
PREV_INSN (INSN): def (reg:NARROWmode r)
|
||
INSN: set ((reg:WIDEmode r')
|
||
(sign_extend:WIDEmode (reg:NARROWmode r)))
|
||
return SIGN_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
|
||
|
||
- If this is the pattern of a common zero extension after definition:
|
||
PREV_INSN (INSN): def (reg:NARROWmode r)
|
||
INSN: set ((reg:WIDEmode r')
|
||
(zero_extend:WIDEmode (reg:NARROWmode r)))
|
||
return ZERO_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
|
||
|
||
- Otherwise,
|
||
|
||
For the pattern:
|
||
INSN: set ((reg:WIDEmode r) (sign_extend:WIDEmode (...expr...)))
|
||
return EXTENDED_DEF and set SOURCE_MODE to the mode of expr.
|
||
|
||
For the pattern:
|
||
INSN: set ((reg:WIDEmode r) (zero_extend:WIDEmode (...expr...)))
|
||
return EXTENDED_DEF and set SOURCE_MODE_UNSIGNED to the mode of expr.
|
||
|
||
For the pattern:
|
||
INSN: set ((reg:WIDEmode r) (CONST_INT (...)))
|
||
return EXTENDED_DEF and set SOURCE_MODE(_UNSIGNED) to the narrowest mode that
|
||
is implicitly sign(zero) extended to WIDEmode in the INSN.
|
||
|
||
- FIXME: Extensions that are not adjacent to their definition and EXTENDED_DEF
|
||
that is part of a PARALLEL instruction are not handled.
|
||
These restriction can be relaxed. */
|
||
|
||
static enum entry_type
|
||
see_analyze_one_def (rtx insn, enum machine_mode *source_mode,
|
||
enum machine_mode *source_mode_unsigned)
|
||
{
|
||
enum rtx_code extension_code;
|
||
rtx rhs = NULL;
|
||
rtx lhs = NULL;
|
||
rtx set = NULL;
|
||
rtx source_register = NULL;
|
||
rtx prev_insn = NULL;
|
||
rtx next_insn = NULL;
|
||
enum machine_mode mode;
|
||
enum machine_mode next_source_mode;
|
||
HOST_WIDE_INT val = 0;
|
||
HOST_WIDE_INT val2 = 0;
|
||
int i = 0;
|
||
|
||
*source_mode = MAX_MACHINE_MODE;
|
||
*source_mode_unsigned = MAX_MACHINE_MODE;
|
||
|
||
if (!insn)
|
||
return NOT_RELEVANT;
|
||
|
||
if (!INSN_P (insn))
|
||
return NOT_RELEVANT;
|
||
|
||
extension_code = see_get_extension_data (insn, source_mode);
|
||
switch (extension_code)
|
||
{
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
source_register = see_get_extension_reg (insn, 0);
|
||
/* FIXME: This restriction can be relaxed. The only thing that is
|
||
important is that the reference would be inside the same basic block
|
||
as the extension. */
|
||
prev_insn = PREV_INSN (insn);
|
||
if (!prev_insn || !INSN_P (prev_insn))
|
||
return NOT_RELEVANT;
|
||
|
||
if (!reg_set_between_p (source_register, PREV_INSN (prev_insn), insn))
|
||
return NOT_RELEVANT;
|
||
|
||
if (find_reg_note (prev_insn, REG_LIBCALL, NULL_RTX))
|
||
return NOT_RELEVANT;
|
||
|
||
if (find_reg_note (prev_insn, REG_RETVAL, NULL_RTX))
|
||
return NOT_RELEVANT;
|
||
|
||
/* If we can't use copy_rtx on the reference it can't be a reference. */
|
||
if (GET_CODE (PATTERN (prev_insn)) == PARALLEL
|
||
&& asm_noperands (PATTERN (prev_insn)) >= 0)
|
||
return NOT_RELEVANT;
|
||
|
||
/* Now, check if this extension is a reference itself. If so, it is not
|
||
relevant. Handling this extension as relevant would make things much
|
||
more complicated. */
|
||
next_insn = NEXT_INSN (insn);
|
||
if (next_insn
|
||
&& INSN_P (next_insn)
|
||
&& (see_get_extension_data (next_insn, &next_source_mode) !=
|
||
NOT_RELEVANT))
|
||
{
|
||
rtx curr_dest_register = see_get_extension_reg (insn, 1);
|
||
rtx next_source_register = see_get_extension_reg (next_insn, 0);
|
||
|
||
if (REGNO (curr_dest_register) == REGNO (next_source_register))
|
||
return NOT_RELEVANT;
|
||
}
|
||
|
||
if (extension_code == SIGN_EXTEND)
|
||
return SIGN_EXTENDED_DEF;
|
||
else
|
||
return ZERO_EXTENDED_DEF;
|
||
|
||
case UNKNOWN:
|
||
/* This may still be an EXTENDED_DEF. */
|
||
|
||
/* FIXME: This restriction can be relaxed. It is possible to handle
|
||
PARALLEL insns too. */
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return NOT_RELEVANT;
|
||
rhs = SET_SRC (set);
|
||
lhs = SET_DEST (set);
|
||
|
||
/* Don't handle extensions to something other then register or
|
||
subregister. */
|
||
if (!REG_P (lhs) && !SUBREG_REG (lhs))
|
||
return NOT_RELEVANT;
|
||
|
||
switch (GET_CODE (rhs))
|
||
{
|
||
case SIGN_EXTEND:
|
||
*source_mode = GET_MODE (XEXP (rhs, 0));
|
||
*source_mode_unsigned = MAX_MACHINE_MODE;
|
||
return EXTENDED_DEF;
|
||
case ZERO_EXTEND:
|
||
*source_mode = MAX_MACHINE_MODE;
|
||
*source_mode_unsigned = GET_MODE (XEXP (rhs, 0));
|
||
return EXTENDED_DEF;
|
||
case CONST_INT:
|
||
|
||
val = INTVAL (rhs);
|
||
|
||
/* Find the narrowest mode, val could fit into. */
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT), i = 0;
|
||
GET_MODE_BITSIZE (mode) < BITS_PER_WORD;
|
||
mode = GET_MODE_WIDER_MODE (mode), i++)
|
||
{
|
||
val2 = trunc_int_for_mode (val, mode);
|
||
if (val2 == val && *source_mode == MAX_MACHINE_MODE)
|
||
*source_mode = mode;
|
||
if (val == (val & (HOST_WIDE_INT)GET_MODE_MASK (mode))
|
||
&& *source_mode_unsigned == MAX_MACHINE_MODE)
|
||
*source_mode_unsigned = mode;
|
||
if (*source_mode != MAX_MACHINE_MODE
|
||
&& *source_mode_unsigned !=MAX_MACHINE_MODE)
|
||
return EXTENDED_DEF;
|
||
}
|
||
if (*source_mode != MAX_MACHINE_MODE
|
||
|| *source_mode_unsigned !=MAX_MACHINE_MODE)
|
||
return EXTENDED_DEF;
|
||
return NOT_RELEVANT;
|
||
default:
|
||
return NOT_RELEVANT;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Updates the relevancy and source_mode of all the definitions.
|
||
The information of the i'th definition is stored in def_entry[i]. */
|
||
|
||
static void
|
||
see_update_defs_relevancy (void)
|
||
{
|
||
struct see_entry_extra_info *curr_entry_extra_info;
|
||
unsigned int i;
|
||
rtx insn = NULL;
|
||
rtx reg = NULL;
|
||
enum entry_type et;
|
||
enum machine_mode source_mode;
|
||
enum machine_mode source_mode_unsigned;
|
||
|
||
if (!df || !def_entry)
|
||
return;
|
||
|
||
for (i = 0; i < defs_num; i++)
|
||
{
|
||
insn = DF_REF_INSN (DF_DEFS_GET (df, i));
|
||
reg = DF_REF_REAL_REG (DF_DEFS_GET (df, i));
|
||
|
||
et = see_analyze_one_def (insn, &source_mode, &source_mode_unsigned);
|
||
|
||
curr_entry_extra_info = xmalloc (sizeof (struct see_entry_extra_info));
|
||
curr_entry_extra_info->relevancy = et;
|
||
curr_entry_extra_info->local_relevancy = et;
|
||
if (et != EXTENDED_DEF)
|
||
{
|
||
curr_entry_extra_info->source_mode = source_mode;
|
||
curr_entry_extra_info->local_source_mode = source_mode;
|
||
}
|
||
else
|
||
{
|
||
curr_entry_extra_info->source_mode_signed = source_mode;
|
||
curr_entry_extra_info->source_mode_unsigned = source_mode_unsigned;
|
||
}
|
||
def_entry[i].extra_info = curr_entry_extra_info;
|
||
def_entry[i].reg = NULL;
|
||
def_entry[i].pred = NULL;
|
||
|
||
if (dump_file)
|
||
{
|
||
if (et == NOT_RELEVANT)
|
||
{
|
||
fprintf (dump_file, "d%i insn %i reg %i ",
|
||
i, (insn ? INSN_UID (insn) : -1), REGNO (reg));
|
||
fprintf (dump_file, "NOT RELEVANT \n");
|
||
}
|
||
else
|
||
{
|
||
fprintf (dump_file, "d%i insn %i reg %i ",
|
||
i ,INSN_UID (insn), REGNO (reg));
|
||
fprintf (dump_file, "RELEVANT - ");
|
||
switch (et)
|
||
{
|
||
case SIGN_EXTENDED_DEF :
|
||
fprintf (dump_file, "SIGN_EXTENDED_DEF, source_mode = %s\n",
|
||
GET_MODE_NAME (source_mode));
|
||
break;
|
||
case ZERO_EXTENDED_DEF :
|
||
fprintf (dump_file, "ZERO_EXTENDED_DEF, source_mode = %s\n",
|
||
GET_MODE_NAME (source_mode));
|
||
break;
|
||
case EXTENDED_DEF :
|
||
fprintf (dump_file, "EXTENDED_DEF, ");
|
||
if (source_mode != MAX_MACHINE_MODE
|
||
&& source_mode_unsigned != MAX_MACHINE_MODE)
|
||
{
|
||
fprintf (dump_file, "positive const, ");
|
||
fprintf (dump_file, "source_mode_signed = %s, ",
|
||
GET_MODE_NAME (source_mode));
|
||
fprintf (dump_file, "source_mode_unsigned = %s\n",
|
||
GET_MODE_NAME (source_mode_unsigned));
|
||
}
|
||
else if (source_mode != MAX_MACHINE_MODE)
|
||
fprintf (dump_file, "source_mode_signed = %s\n",
|
||
GET_MODE_NAME (source_mode));
|
||
else
|
||
fprintf (dump_file, "source_mode_unsigned = %s\n",
|
||
GET_MODE_NAME (source_mode_unsigned));
|
||
break;
|
||
default :
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Phase 1 top level function.
|
||
In this phase the relevancy of all the definitions and uses are checked,
|
||
later the webs are produces and the extensions are generated.
|
||
These extensions are not emitted yet into the insns stream.
|
||
|
||
returns true if at list one relevant web was found and there were no
|
||
problems, otherwise return false. */
|
||
|
||
static bool
|
||
see_propagate_extensions_to_uses (void)
|
||
{
|
||
unsigned int i = 0;
|
||
int num_relevant_uses;
|
||
int num_relevant_defs;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"* Phase 1: Propagate extensions to uses. *\n");
|
||
|
||
/* Update the relevancy of references using the DF object. */
|
||
see_update_defs_relevancy ();
|
||
see_update_uses_relevancy ();
|
||
|
||
/* Produce the webs and update the extra_info of the root.
|
||
In general, a web is relevant if all its definitions and uses are relevant
|
||
and there is at least one definition that was marked as SIGN_EXTENDED_DEF
|
||
or ZERO_EXTENDED_DEF. */
|
||
for (i = 0; i < uses_num; i++)
|
||
union_defs (df, DF_USES_GET (df, i), def_entry, use_entry,
|
||
see_update_leader_extra_info);
|
||
|
||
/* Generate use extensions for references and insert these
|
||
references to see_bb_splay_ar data structure. */
|
||
num_relevant_uses = see_handle_relevant_uses ();
|
||
|
||
if (num_relevant_uses < 0)
|
||
return false;
|
||
|
||
/* Store the def extensions in their references structures and insert these
|
||
references to see_bb_splay_ar data structure. */
|
||
num_relevant_defs = see_handle_relevant_defs ();
|
||
|
||
if (num_relevant_defs < 0)
|
||
return false;
|
||
|
||
return num_relevant_uses > 0 || num_relevant_defs > 0;
|
||
}
|
||
|
||
|
||
/* Main entry point for the sign extension elimination optimization. */
|
||
|
||
static void
|
||
see_main (void)
|
||
{
|
||
bool cont = false;
|
||
int i = 0;
|
||
|
||
/* Initialize global data structures. */
|
||
see_initialize_data_structures ();
|
||
|
||
/* Phase 1: Propagate extensions to uses. */
|
||
cont = see_propagate_extensions_to_uses ();
|
||
|
||
if (cont)
|
||
{
|
||
init_recog ();
|
||
|
||
/* Phase 2: Merge and eliminate locally redundant extensions. */
|
||
see_merge_and_eliminate_extensions ();
|
||
|
||
/* Phase 3: Eliminate globally redundant extensions. */
|
||
see_execute_LCM ();
|
||
|
||
/* Phase 4: Commit changes to the insn stream. */
|
||
see_commit_changes ();
|
||
|
||
if (dump_file)
|
||
{
|
||
/* For debug purpose only. */
|
||
fprintf (dump_file, "see_pre_extension_hash:\n");
|
||
htab_traverse (see_pre_extension_hash, see_print_pre_extension_expr,
|
||
NULL);
|
||
|
||
for (i = 0; i < last_bb; i++)
|
||
{
|
||
if (see_bb_hash_ar[i])
|
||
/* Traverse over all the references in the basic block in
|
||
forward order. */
|
||
{
|
||
fprintf (dump_file,
|
||
"Searching register properties in bb %d\n", i);
|
||
htab_traverse (see_bb_hash_ar[i],
|
||
see_print_register_properties, NULL);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Free global data structures. */
|
||
see_free_data_structures ();
|
||
}
|
||
|
||
|
||
static bool
|
||
gate_handle_see (void)
|
||
{
|
||
return optimize > 1 && flag_see;
|
||
}
|
||
|
||
static unsigned int
|
||
rest_of_handle_see (void)
|
||
{
|
||
int no_new_pseudos_bcp = no_new_pseudos;
|
||
|
||
no_new_pseudos = 0;
|
||
see_main ();
|
||
no_new_pseudos = no_new_pseudos_bcp;
|
||
|
||
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
||
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
(PROP_DEATH_NOTES));
|
||
cleanup_cfg (CLEANUP_EXPENSIVE);
|
||
reg_scan (get_insns (), max_reg_num ());
|
||
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_see =
|
||
{
|
||
"see", /* name */
|
||
gate_handle_see, /* gate */
|
||
rest_of_handle_see, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_SEE, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
'u' /* letter */
|
||
};
|
||
|