1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/dev/mpt/mpt_pci.c
2008-07-01 19:44:38 +00:00

974 lines
26 KiB
C

/*-
* PCI specific probe and attach routines for LSI Fusion Adapters
* FreeBSD Version.
*
* Copyright (c) 2000, 2001 by Greg Ansley
* Partially derived from Matt Jacob's ISP driver.
* Copyright (c) 1997, 1998, 1999, 2000, 2001, 2002 by Matthew Jacob
* Feral Software
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002, 2006 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Support from Chris Ellsworth in order to make SAS adapters work
* is gratefully acknowledged.
*
* Support from LSI-Logic has also gone a great deal toward making this a
* workable subsystem and is gratefully acknowledged.
*/
/*
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>
#if __FreeBSD_version < 700000
#define pci_msix_count(x) 0
#define pci_msi_count(x) 0
#define pci_alloc_msi(x, y) 1
#define pci_alloc_msix(x, y) 1
#define pci_release_msi(x) do { ; } while (0)
#endif
#ifndef PCI_VENDOR_LSI
#define PCI_VENDOR_LSI 0x1000
#endif
#ifndef PCI_PRODUCT_LSI_FC909
#define PCI_PRODUCT_LSI_FC909 0x0620
#endif
#ifndef PCI_PRODUCT_LSI_FC909A
#define PCI_PRODUCT_LSI_FC909A 0x0621
#endif
#ifndef PCI_PRODUCT_LSI_FC919
#define PCI_PRODUCT_LSI_FC919 0x0624
#endif
#ifndef PCI_PRODUCT_LSI_FC929
#define PCI_PRODUCT_LSI_FC929 0x0622
#endif
#ifndef PCI_PRODUCT_LSI_FC929X
#define PCI_PRODUCT_LSI_FC929X 0x0626
#endif
#ifndef PCI_PRODUCT_LSI_FC919X
#define PCI_PRODUCT_LSI_FC919X 0x0628
#endif
#ifndef PCI_PRODUCT_LSI_FC7X04X
#define PCI_PRODUCT_LSI_FC7X04X 0x0640
#endif
#ifndef PCI_PRODUCT_LSI_FC646
#define PCI_PRODUCT_LSI_FC646 0x0646
#endif
#ifndef PCI_PRODUCT_LSI_1030
#define PCI_PRODUCT_LSI_1030 0x0030
#endif
#ifndef PCI_PRODUCT_LSI_SAS1064
#define PCI_PRODUCT_LSI_SAS1064 0x0050
#endif
#ifndef PCI_PRODUCT_LSI_SAS1064A
#define PCI_PRODUCT_LSI_SAS1064A 0x005C
#endif
#ifndef PCI_PRODUCT_LSI_SAS1064E
#define PCI_PRODUCT_LSI_SAS1064E 0x0056
#endif
#ifndef PCI_PRODUCT_LSI_SAS1066
#define PCI_PRODUCT_LSI_SAS1066 0x005E
#endif
#ifndef PCI_PRODUCT_LSI_SAS1066E
#define PCI_PRODUCT_LSI_SAS1066E 0x005A
#endif
#ifndef PCI_PRODUCT_LSI_SAS1068
#define PCI_PRODUCT_LSI_SAS1068 0x0054
#endif
#ifndef PCI_PRODUCT_LSI_SAS1068E
#define PCI_PRODUCT_LSI_SAS1068E 0x0058
#endif
#ifndef PCI_PRODUCT_LSI_SAS1078
#define PCI_PRODUCT_LSI_SAS1078 0x0062
#endif
#ifndef PCI_PRODUCT_LSI_SAS1078DE
#define PCI_PRODUCT_LSI_SAS1078DE 0x007C
#endif
#ifndef PCIM_CMD_SERRESPEN
#define PCIM_CMD_SERRESPEN 0x0100
#endif
#define MPT_IO_BAR 0
#define MPT_MEM_BAR 1
static int mpt_pci_probe(device_t);
static int mpt_pci_attach(device_t);
static void mpt_free_bus_resources(struct mpt_softc *mpt);
static int mpt_pci_detach(device_t);
static int mpt_pci_shutdown(device_t);
static int mpt_dma_mem_alloc(struct mpt_softc *mpt);
static void mpt_dma_mem_free(struct mpt_softc *mpt);
static void mpt_read_config_regs(struct mpt_softc *mpt);
static void mpt_pci_intr(void *);
static device_method_t mpt_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mpt_pci_probe),
DEVMETHOD(device_attach, mpt_pci_attach),
DEVMETHOD(device_detach, mpt_pci_detach),
DEVMETHOD(device_shutdown, mpt_pci_shutdown),
{ 0, 0 }
};
static driver_t mpt_driver = {
"mpt", mpt_methods, sizeof(struct mpt_softc)
};
static devclass_t mpt_devclass;
DRIVER_MODULE(mpt, pci, mpt_driver, mpt_devclass, 0, 0);
MODULE_DEPEND(mpt, pci, 1, 1, 1);
MODULE_VERSION(mpt, 1);
static int
mpt_pci_probe(device_t dev)
{
char *desc;
if (pci_get_vendor(dev) != PCI_VENDOR_LSI) {
return (ENXIO);
}
switch ((pci_get_device(dev) & ~1)) {
case PCI_PRODUCT_LSI_FC909:
desc = "LSILogic FC909 FC Adapter";
break;
case PCI_PRODUCT_LSI_FC909A:
desc = "LSILogic FC909A FC Adapter";
break;
case PCI_PRODUCT_LSI_FC919:
desc = "LSILogic FC919 FC Adapter";
break;
case PCI_PRODUCT_LSI_FC929:
desc = "Dual LSILogic FC929 FC Adapter";
break;
case PCI_PRODUCT_LSI_FC919X:
desc = "LSILogic FC919 FC PCI-X Adapter";
break;
case PCI_PRODUCT_LSI_FC929X:
desc = "Dual LSILogic FC929X 2Gb/s FC PCI-X Adapter";
break;
case PCI_PRODUCT_LSI_FC646:
desc = "Dual LSILogic FC7X04X 4Gb/s FC PCI-Express Adapter";
break;
case PCI_PRODUCT_LSI_FC7X04X:
desc = "Dual LSILogic FC7X04X 4Gb/s FC PCI-X Adapter";
break;
case PCI_PRODUCT_LSI_1030:
desc = "LSILogic 1030 Ultra4 Adapter";
break;
case PCI_PRODUCT_LSI_SAS1064:
case PCI_PRODUCT_LSI_SAS1064A:
case PCI_PRODUCT_LSI_SAS1064E:
case PCI_PRODUCT_LSI_SAS1066:
case PCI_PRODUCT_LSI_SAS1066E:
case PCI_PRODUCT_LSI_SAS1068:
case PCI_PRODUCT_LSI_SAS1068E:
case PCI_PRODUCT_LSI_SAS1078:
case PCI_PRODUCT_LSI_SAS1078DE:
desc = "LSILogic SAS/SATA Adapter";
break;
default:
return (ENXIO);
}
device_set_desc(dev, desc);
return (0);
}
#if __FreeBSD_version < 500000
static void
mpt_set_options(struct mpt_softc *mpt)
{
int bitmap;
bitmap = 0;
if (getenv_int("mpt_disable", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->disabled = 1;
}
}
bitmap = 0;
if (getenv_int("mpt_debug", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->verbose = MPT_PRT_DEBUG;
}
}
bitmap = 0;
if (getenv_int("mpt_debug1", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->verbose = MPT_PRT_DEBUG1;
}
}
bitmap = 0;
if (getenv_int("mpt_debug2", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->verbose = MPT_PRT_DEBUG2;
}
}
bitmap = 0;
if (getenv_int("mpt_debug3", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->verbose = MPT_PRT_DEBUG3;
}
}
mpt->cfg_role = MPT_ROLE_DEFAULT;
bitmap = 0;
if (getenv_int("mpt_nil_role", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->cfg_role = 0;
}
mpt->do_cfg_role = 1;
}
bitmap = 0;
if (getenv_int("mpt_tgt_role", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->cfg_role |= MPT_ROLE_TARGET;
}
mpt->do_cfg_role = 1;
}
bitmap = 0;
if (getenv_int("mpt_ini_role", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->cfg_role |= MPT_ROLE_INITIATOR;
}
mpt->do_cfg_role = 1;
}
mpt->msi_enable = 0;
}
#else
static void
mpt_set_options(struct mpt_softc *mpt)
{
int tval;
tval = 0;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "disable", &tval) == 0 && tval != 0) {
mpt->disabled = 1;
}
tval = 0;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "debug", &tval) == 0 && tval != 0) {
mpt->verbose = tval;
}
tval = -1;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "role", &tval) == 0 && tval >= 0 &&
tval <= 3) {
mpt->cfg_role = tval;
mpt->do_cfg_role = 1;
}
tval = 0;
mpt->msi_enable = 0;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "msi_enable", &tval) == 0 && tval == 1) {
mpt->msi_enable = 1;
}
}
#endif
static void
mpt_link_peer(struct mpt_softc *mpt)
{
struct mpt_softc *mpt2;
if (mpt->unit == 0) {
return;
}
/*
* XXX: depends on probe order
*/
mpt2 = (struct mpt_softc *)devclass_get_softc(mpt_devclass,mpt->unit-1);
if (mpt2 == NULL) {
return;
}
if (pci_get_vendor(mpt2->dev) != pci_get_vendor(mpt->dev)) {
return;
}
if (pci_get_device(mpt2->dev) != pci_get_device(mpt->dev)) {
return;
}
mpt->mpt2 = mpt2;
mpt2->mpt2 = mpt;
if (mpt->verbose >= MPT_PRT_DEBUG) {
mpt_prt(mpt, "linking with peer (mpt%d)\n",
device_get_unit(mpt2->dev));
}
}
static void
mpt_unlink_peer(struct mpt_softc *mpt)
{
if (mpt->mpt2) {
mpt->mpt2->mpt2 = NULL;
}
}
static int
mpt_pci_attach(device_t dev)
{
struct mpt_softc *mpt;
int iqd;
uint32_t data, cmd;
/* Allocate the softc structure */
mpt = (struct mpt_softc*)device_get_softc(dev);
if (mpt == NULL) {
device_printf(dev, "cannot allocate softc\n");
return (ENOMEM);
}
memset(mpt, 0, sizeof(struct mpt_softc));
switch ((pci_get_device(dev) & ~1)) {
case PCI_PRODUCT_LSI_FC909:
case PCI_PRODUCT_LSI_FC909A:
case PCI_PRODUCT_LSI_FC919:
case PCI_PRODUCT_LSI_FC929:
case PCI_PRODUCT_LSI_FC919X:
case PCI_PRODUCT_LSI_FC646:
case PCI_PRODUCT_LSI_FC7X04X:
mpt->is_fc = 1;
break;
case PCI_PRODUCT_LSI_SAS1064:
case PCI_PRODUCT_LSI_SAS1064A:
case PCI_PRODUCT_LSI_SAS1064E:
case PCI_PRODUCT_LSI_SAS1066:
case PCI_PRODUCT_LSI_SAS1066E:
case PCI_PRODUCT_LSI_SAS1068:
case PCI_PRODUCT_LSI_SAS1068E:
case PCI_PRODUCT_LSI_SAS1078:
case PCI_PRODUCT_LSI_SAS1078DE:
mpt->is_sas = 1;
break;
default:
mpt->is_spi = 1;
break;
}
mpt->dev = dev;
mpt->unit = device_get_unit(dev);
mpt->raid_resync_rate = MPT_RAID_RESYNC_RATE_DEFAULT;
mpt->raid_mwce_setting = MPT_RAID_MWCE_DEFAULT;
mpt->raid_queue_depth = MPT_RAID_QUEUE_DEPTH_DEFAULT;
mpt->verbose = MPT_PRT_NONE;
mpt->role = MPT_ROLE_NONE;
mpt_set_options(mpt);
if (mpt->verbose == MPT_PRT_NONE) {
mpt->verbose = MPT_PRT_WARN;
/* Print INFO level (if any) if bootverbose is set */
mpt->verbose += (bootverbose != 0)? 1 : 0;
}
/* Make sure memory access decoders are enabled */
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
if ((cmd & PCIM_CMD_MEMEN) == 0) {
device_printf(dev, "Memory accesses disabled");
return (ENXIO);
}
/*
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER are set.
*/
cmd |=
PCIM_CMD_SERRESPEN | PCIM_CMD_PERRESPEN |
PCIM_CMD_BUSMASTEREN | PCIM_CMD_MWRICEN;
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
/*
* Make sure we've disabled the ROM.
*/
data = pci_read_config(dev, PCIR_BIOS, 4);
data &= ~1;
pci_write_config(dev, PCIR_BIOS, data, 4);
/*
* Is this part a dual?
* If so, link with our partner (around yet)
*/
if ((pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_FC929 ||
(pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_FC646 ||
(pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_FC7X04X ||
(pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_1030) {
mpt_link_peer(mpt);
}
/*
* Set up register access. PIO mode is required for
* certain reset operations (but must be disabled for
* some cards otherwise).
*/
mpt->pci_pio_rid = PCIR_BAR(MPT_IO_BAR);
mpt->pci_pio_reg = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mpt->pci_pio_rid, 0, ~0, 0, RF_ACTIVE);
if (mpt->pci_pio_reg == NULL) {
device_printf(dev, "unable to map registers in PIO mode\n");
goto bad;
}
mpt->pci_pio_st = rman_get_bustag(mpt->pci_pio_reg);
mpt->pci_pio_sh = rman_get_bushandle(mpt->pci_pio_reg);
/* Allocate kernel virtual memory for the 9x9's Mem0 region */
mpt->pci_mem_rid = PCIR_BAR(MPT_MEM_BAR);
mpt->pci_reg = bus_alloc_resource(dev, SYS_RES_MEMORY,
&mpt->pci_mem_rid, 0, ~0, 0, RF_ACTIVE);
if (mpt->pci_reg == NULL) {
device_printf(dev, "Unable to memory map registers.\n");
if (mpt->is_sas) {
device_printf(dev, "Giving Up.\n");
goto bad;
}
device_printf(dev, "Falling back to PIO mode.\n");
mpt->pci_st = mpt->pci_pio_st;
mpt->pci_sh = mpt->pci_pio_sh;
} else {
mpt->pci_st = rman_get_bustag(mpt->pci_reg);
mpt->pci_sh = rman_get_bushandle(mpt->pci_reg);
}
/* Get a handle to the interrupt */
iqd = 0;
if (mpt->msi_enable) {
/*
* First try to alloc an MSI-X message. If that
* fails, then try to alloc an MSI message instead.
*/
if (pci_msix_count(dev) == 1) {
mpt->pci_msi_count = 1;
if (pci_alloc_msix(dev, &mpt->pci_msi_count) == 0) {
iqd = 1;
} else {
mpt->pci_msi_count = 0;
}
}
if (iqd == 0 && pci_msi_count(dev) == 1) {
mpt->pci_msi_count = 1;
if (pci_alloc_msi(dev, &mpt->pci_msi_count) == 0) {
iqd = 1;
} else {
mpt->pci_msi_count = 0;
}
}
}
mpt->pci_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &iqd,
RF_ACTIVE | RF_SHAREABLE);
if (mpt->pci_irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto bad;
}
MPT_LOCK_SETUP(mpt);
/* Disable interrupts at the part */
mpt_disable_ints(mpt);
/* Register the interrupt handler */
if (mpt_setup_intr(dev, mpt->pci_irq, MPT_IFLAGS, NULL, mpt_pci_intr,
mpt, &mpt->ih)) {
device_printf(dev, "could not setup interrupt\n");
goto bad;
}
/* Allocate dma memory */
/* XXX JGibbs -Should really be done based on IOCFacts. */
if (mpt_dma_mem_alloc(mpt)) {
mpt_prt(mpt, "Could not allocate DMA memory\n");
goto bad;
}
/*
* Save the PCI config register values
*
* Hard resets are known to screw up the BAR for diagnostic
* memory accesses (Mem1).
*
* Using Mem1 is known to make the chip stop responding to
* configuration space transfers, so we need to save it now
*/
mpt_read_config_regs(mpt);
/*
* Disable PIO until we need it
*/
if (mpt->is_sas) {
pci_disable_io(dev, SYS_RES_IOPORT);
}
/* Initialize the hardware */
if (mpt->disabled == 0) {
if (mpt_attach(mpt) != 0) {
goto bad;
}
} else {
mpt_prt(mpt, "device disabled at user request\n");
goto bad;
}
mpt->eh = EVENTHANDLER_REGISTER(shutdown_post_sync, mpt_pci_shutdown,
dev, SHUTDOWN_PRI_DEFAULT);
if (mpt->eh == NULL) {
mpt_prt(mpt, "shutdown event registration failed\n");
(void) mpt_detach(mpt);
goto bad;
}
return (0);
bad:
mpt_dma_mem_free(mpt);
mpt_free_bus_resources(mpt);
mpt_unlink_peer(mpt);
MPT_LOCK_DESTROY(mpt);
/*
* but return zero to preserve unit numbering
*/
return (0);
}
/*
* Free bus resources
*/
static void
mpt_free_bus_resources(struct mpt_softc *mpt)
{
if (mpt->ih) {
bus_teardown_intr(mpt->dev, mpt->pci_irq, mpt->ih);
mpt->ih = 0;
}
if (mpt->pci_irq) {
bus_release_resource(mpt->dev, SYS_RES_IRQ,
mpt->pci_msi_count ? 1 : 0, mpt->pci_irq);
mpt->pci_irq = 0;
}
if (mpt->pci_msi_count) {
pci_release_msi(mpt->dev);
mpt->pci_msi_count = 0;
}
if (mpt->pci_pio_reg) {
bus_release_resource(mpt->dev, SYS_RES_IOPORT, mpt->pci_pio_rid,
mpt->pci_pio_reg);
mpt->pci_pio_reg = 0;
}
if (mpt->pci_reg) {
bus_release_resource(mpt->dev, SYS_RES_MEMORY, mpt->pci_mem_rid,
mpt->pci_reg);
mpt->pci_reg = 0;
}
MPT_LOCK_DESTROY(mpt);
}
/*
* Disconnect ourselves from the system.
*/
static int
mpt_pci_detach(device_t dev)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc*)device_get_softc(dev);
if (mpt) {
mpt_disable_ints(mpt);
mpt_detach(mpt);
mpt_reset(mpt, /*reinit*/FALSE);
mpt_dma_mem_free(mpt);
mpt_free_bus_resources(mpt);
mpt_raid_free_mem(mpt);
if (mpt->eh != NULL) {
EVENTHANDLER_DEREGISTER(shutdown_post_sync, mpt->eh);
}
}
return(0);
}
/*
* Disable the hardware
*/
static int
mpt_pci_shutdown(device_t dev)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)device_get_softc(dev);
if (mpt) {
int r;
r = mpt_shutdown(mpt);
return (r);
}
return(0);
}
static int
mpt_dma_mem_alloc(struct mpt_softc *mpt)
{
int i, error, nsegs;
uint8_t *vptr;
uint32_t pptr, end;
size_t len;
struct mpt_map_info mi;
/* Check if we alreay have allocated the reply memory */
if (mpt->reply_phys != 0) {
return 0;
}
len = sizeof (request_t) * MPT_MAX_REQUESTS(mpt);
#ifdef RELENG_4
mpt->request_pool = (request_t *)malloc(len, M_DEVBUF, M_WAITOK);
if (mpt->request_pool == NULL) {
mpt_prt(mpt, "cannot allocate request pool\n");
return (1);
}
memset(mpt->request_pool, 0, len);
#else
mpt->request_pool = (request_t *)malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
if (mpt->request_pool == NULL) {
mpt_prt(mpt, "cannot allocate request pool\n");
return (1);
}
#endif
/*
* Create a parent dma tag for this device.
*
* Align at byte boundaries,
* Limit to 32-bit addressing for request/reply queues.
*/
if (mpt_dma_tag_create(mpt, /*parent*/bus_get_dma_tag(mpt->dev),
/*alignment*/1, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/BUS_SPACE_MAXSIZE_32BIT,
/*nsegments*/BUS_SPACE_MAXSIZE_32BIT,
/*maxsegsz*/BUS_SPACE_UNRESTRICTED, /*flags*/0,
&mpt->parent_dmat) != 0) {
mpt_prt(mpt, "cannot create parent dma tag\n");
return (1);
}
/* Create a child tag for reply buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, 2 * PAGE_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->reply_dmat) != 0) {
mpt_prt(mpt, "cannot create a dma tag for replies\n");
return (1);
}
/* Allocate some DMA accessable memory for replies */
if (bus_dmamem_alloc(mpt->reply_dmat, (void **)&mpt->reply,
BUS_DMA_NOWAIT, &mpt->reply_dmap) != 0) {
mpt_prt(mpt, "cannot allocate %lu bytes of reply memory\n",
(u_long) (2 * PAGE_SIZE));
return (1);
}
mi.mpt = mpt;
mi.error = 0;
/* Load and lock it into "bus space" */
bus_dmamap_load(mpt->reply_dmat, mpt->reply_dmap, mpt->reply,
2 * PAGE_SIZE, mpt_map_rquest, &mi, 0);
if (mi.error) {
mpt_prt(mpt, "error %d loading dma map for DMA reply queue\n",
mi.error);
return (1);
}
mpt->reply_phys = mi.phys;
/* Create a child tag for data buffers */
/*
* XXX: we should say that nsegs is 'unrestricted, but that
* XXX: tickles a horrible bug in the busdma code. Instead,
* XXX: we'll derive a reasonable segment limit from MAXPHYS
*/
nsegs = (MAXPHYS / PAGE_SIZE) + 1;
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, MAXBSIZE, nsegs, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->buffer_dmat) != 0) {
mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
return (1);
}
/* Create a child tag for request buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->request_dmat) != 0) {
mpt_prt(mpt, "cannot create a dma tag for requests\n");
return (1);
}
/* Allocate some DMA accessable memory for requests */
if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
BUS_DMA_NOWAIT, &mpt->request_dmap) != 0) {
mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
MPT_REQ_MEM_SIZE(mpt));
return (1);
}
mi.mpt = mpt;
mi.error = 0;
/* Load and lock it into "bus space" */
bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
if (mi.error) {
mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
mi.error);
return (1);
}
mpt->request_phys = mi.phys;
/*
* Now create per-request dma maps
*/
i = 0;
pptr = mpt->request_phys;
vptr = mpt->request;
end = pptr + MPT_REQ_MEM_SIZE(mpt);
while(pptr < end) {
request_t *req = &mpt->request_pool[i];
req->index = i++;
/* Store location of Request Data */
req->req_pbuf = pptr;
req->req_vbuf = vptr;
pptr += MPT_REQUEST_AREA;
vptr += MPT_REQUEST_AREA;
req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
if (error) {
mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
error);
return (1);
}
}
return (0);
}
/* Deallocate memory that was allocated by mpt_dma_mem_alloc
*/
static void
mpt_dma_mem_free(struct mpt_softc *mpt)
{
int i;
/* Make sure we aren't double destroying */
if (mpt->reply_dmat == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
return;
}
for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
}
bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
bus_dma_tag_destroy(mpt->request_dmat);
bus_dma_tag_destroy(mpt->buffer_dmat);
bus_dmamap_unload(mpt->reply_dmat, mpt->reply_dmap);
bus_dmamem_free(mpt->reply_dmat, mpt->reply, mpt->reply_dmap);
bus_dma_tag_destroy(mpt->reply_dmat);
bus_dma_tag_destroy(mpt->parent_dmat);
mpt->reply_dmat = 0;
free(mpt->request_pool, M_DEVBUF);
mpt->request_pool = 0;
}
/* Reads modifiable (via PCI transactions) config registers */
static void
mpt_read_config_regs(struct mpt_softc *mpt)
{
mpt->pci_cfg.Command = pci_read_config(mpt->dev, PCIR_COMMAND, 2);
mpt->pci_cfg.LatencyTimer_LineSize =
pci_read_config(mpt->dev, PCIR_CACHELNSZ, 2);
mpt->pci_cfg.IO_BAR = pci_read_config(mpt->dev, PCIR_BAR(0), 4);
mpt->pci_cfg.Mem0_BAR[0] = pci_read_config(mpt->dev, PCIR_BAR(1), 4);
mpt->pci_cfg.Mem0_BAR[1] = pci_read_config(mpt->dev, PCIR_BAR(2), 4);
mpt->pci_cfg.Mem1_BAR[0] = pci_read_config(mpt->dev, PCIR_BAR(3), 4);
mpt->pci_cfg.Mem1_BAR[1] = pci_read_config(mpt->dev, PCIR_BAR(4), 4);
mpt->pci_cfg.ROM_BAR = pci_read_config(mpt->dev, PCIR_BIOS, 4);
mpt->pci_cfg.IntLine = pci_read_config(mpt->dev, PCIR_INTLINE, 1);
mpt->pci_cfg.PMCSR = pci_read_config(mpt->dev, 0x44, 4);
}
/* Sets modifiable config registers */
void
mpt_set_config_regs(struct mpt_softc *mpt)
{
uint32_t val;
#define MPT_CHECK(reg, offset, size) \
val = pci_read_config(mpt->dev, offset, size); \
if (mpt->pci_cfg.reg != val) { \
mpt_prt(mpt, \
"Restoring " #reg " to 0x%X from 0x%X\n", \
mpt->pci_cfg.reg, val); \
}
if (mpt->verbose >= MPT_PRT_DEBUG) {
MPT_CHECK(Command, PCIR_COMMAND, 2);
MPT_CHECK(LatencyTimer_LineSize, PCIR_CACHELNSZ, 2);
MPT_CHECK(IO_BAR, PCIR_BAR(0), 4);
MPT_CHECK(Mem0_BAR[0], PCIR_BAR(1), 4);
MPT_CHECK(Mem0_BAR[1], PCIR_BAR(2), 4);
MPT_CHECK(Mem1_BAR[0], PCIR_BAR(3), 4);
MPT_CHECK(Mem1_BAR[1], PCIR_BAR(4), 4);
MPT_CHECK(ROM_BAR, PCIR_BIOS, 4);
MPT_CHECK(IntLine, PCIR_INTLINE, 1);
MPT_CHECK(PMCSR, 0x44, 4);
}
#undef MPT_CHECK
pci_write_config(mpt->dev, PCIR_COMMAND, mpt->pci_cfg.Command, 2);
pci_write_config(mpt->dev, PCIR_CACHELNSZ,
mpt->pci_cfg.LatencyTimer_LineSize, 2);
pci_write_config(mpt->dev, PCIR_BAR(0), mpt->pci_cfg.IO_BAR, 4);
pci_write_config(mpt->dev, PCIR_BAR(1), mpt->pci_cfg.Mem0_BAR[0], 4);
pci_write_config(mpt->dev, PCIR_BAR(2), mpt->pci_cfg.Mem0_BAR[1], 4);
pci_write_config(mpt->dev, PCIR_BAR(3), mpt->pci_cfg.Mem1_BAR[0], 4);
pci_write_config(mpt->dev, PCIR_BAR(4), mpt->pci_cfg.Mem1_BAR[1], 4);
pci_write_config(mpt->dev, PCIR_BIOS, mpt->pci_cfg.ROM_BAR, 4);
pci_write_config(mpt->dev, PCIR_INTLINE, mpt->pci_cfg.IntLine, 1);
pci_write_config(mpt->dev, 0x44, mpt->pci_cfg.PMCSR, 4);
}
static void
mpt_pci_intr(void *arg)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)arg;
MPT_LOCK(mpt);
mpt_intr(mpt);
MPT_UNLOCK(mpt);
}