1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sys/geom/geom_ccd.c
Poul-Henning Kamp d2bae332d6 Remove the absolute count g_access_abs() function since experience has
shown that it is not useful.

Rename the relative count g_access_rel() function to g_access(), only
the name has changed.

Change all g_access_rel() calls in our CVS tree to call g_access() instead.

Add an #ifndef BURN_BRIDGES #define of g_access_rel() for source
code compatibility.
2004-02-12 22:42:11 +00:00

869 lines
22 KiB
C

/*
* Copyright (c) 2003 Poul-Henning Kamp.
* Copyright (c) 1995 Jason R. Thorpe.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* All rights reserved.
* Copyright (c) 1988 University of Utah.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Dynamic configuration and disklabel support by:
* Jason R. Thorpe <thorpej@nas.nasa.gov>
* Numerical Aerodynamic Simulation Facility
* Mail Stop 258-6
* NASA Ames Research Center
* Moffett Field, CA 94035
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
* @(#)cd.c 8.2 (Berkeley) 11/16/93
* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <geom/geom.h>
/*
* Number of blocks to untouched in front of a component partition.
* This is to avoid violating its disklabel area when it starts at the
* beginning of the slice.
*/
#if !defined(CCD_OFFSET)
#define CCD_OFFSET 16
#endif
/* sc_flags */
#define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */
#define CCDF_MIRROR 0x04 /* use mirroring */
/* Mask of user-settable ccd flags. */
#define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR)
/*
* Interleave description table.
* Computed at boot time to speed irregular-interleave lookups.
* The idea is that we interleave in "groups". First we interleave
* evenly over all component disks up to the size of the smallest
* component (the first group), then we interleave evenly over all
* remaining disks up to the size of the next-smallest (second group),
* and so on.
*
* Each table entry describes the interleave characteristics of one
* of these groups. For example if a concatenated disk consisted of
* three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at
* DEV_BSIZE (1), the table would have three entries:
*
* ndisk startblk startoff dev
* 3 0 0 0, 1, 2
* 2 9 3 0, 2
* 1 13 5 2
* 0 - - -
*
* which says that the first nine blocks (0-8) are interleaved over
* 3 disks (0, 1, 2) starting at block offset 0 on any component disk,
* the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
* at component block 3, and the remaining blocks (13-14) are on disk
* 2 starting at offset 5.
*/
struct ccdiinfo {
int ii_ndisk; /* # of disks range is interleaved over */
daddr_t ii_startblk; /* starting scaled block # for range */
daddr_t ii_startoff; /* starting component offset (block #) */
int *ii_index; /* ordered list of components in range */
};
/*
* Component info table.
* Describes a single component of a concatenated disk.
*/
struct ccdcinfo {
daddr_t ci_size; /* size */
struct g_provider *ci_provider; /* provider */
struct g_consumer *ci_consumer; /* consumer */
};
/*
* A concatenated disk is described by this structure.
*/
struct ccd_s {
LIST_ENTRY(ccd_s) list;
int sc_unit; /* logical unit number */
int sc_flags; /* flags */
daddr_t sc_size; /* size of ccd */
int sc_ileave; /* interleave */
u_int sc_ndisks; /* number of components */
struct ccdcinfo *sc_cinfo; /* component info */
struct ccdiinfo *sc_itable; /* interleave table */
u_int32_t sc_secsize; /* # bytes per sector */
int sc_pick; /* side of mirror picked */
daddr_t sc_blk[2]; /* mirror localization */
};
static g_start_t g_ccd_start;
static void ccdiodone(struct bio *bp);
static void ccdinterleave(struct ccd_s *);
static int ccdinit(struct gctl_req *req, struct ccd_s *);
static int ccdbuffer(struct bio **ret, struct ccd_s *,
struct bio *, daddr_t, caddr_t, long);
static void
g_ccd_orphan(struct g_consumer *cp)
{
/*
* XXX: We don't do anything here. It is not obvious
* XXX: what DTRT would be, so we do what the previous
* XXX: code did: ignore it and let the user cope.
*/
}
static int
g_ccd_access(struct g_provider *pp, int dr, int dw, int de)
{
struct g_geom *gp;
struct g_consumer *cp1, *cp2;
int error;
de += dr;
de += dw;
gp = pp->geom;
error = ENXIO;
LIST_FOREACH(cp1, &gp->consumer, consumer) {
error = g_access(cp1, dr, dw, de);
if (error) {
LIST_FOREACH(cp2, &gp->consumer, consumer) {
if (cp1 == cp2)
break;
g_access(cp2, -dr, -dw, -de);
}
break;
}
}
return (error);
}
/*
* Free the softc and its substructures.
*/
static void
g_ccd_freesc(struct ccd_s *sc)
{
struct ccdiinfo *ii;
g_free(sc->sc_cinfo);
if (sc->sc_itable != NULL) {
for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++)
if (ii->ii_index != NULL)
g_free(ii->ii_index);
g_free(sc->sc_itable);
}
g_free(sc);
}
static int
ccdinit(struct gctl_req *req, struct ccd_s *cs)
{
struct ccdcinfo *ci;
daddr_t size;
int ix;
daddr_t minsize;
int maxsecsize;
off_t mediasize;
u_int sectorsize;
cs->sc_size = 0;
maxsecsize = 0;
minsize = 0;
for (ix = 0; ix < cs->sc_ndisks; ix++) {
ci = &cs->sc_cinfo[ix];
mediasize = ci->ci_provider->mediasize;
sectorsize = ci->ci_provider->sectorsize;
if (sectorsize > maxsecsize)
maxsecsize = sectorsize;
size = mediasize / DEV_BSIZE - CCD_OFFSET;
/* Truncate to interleave boundary */
if (cs->sc_ileave > 1)
size -= size % cs->sc_ileave;
if (size == 0) {
gctl_error(req, "Component %s has effective size zero",
ci->ci_provider->name);
return(ENODEV);
}
if (minsize == 0 || size < minsize)
minsize = size;
ci->ci_size = size;
cs->sc_size += size;
}
/*
* Don't allow the interleave to be smaller than
* the biggest component sector.
*/
if ((cs->sc_ileave > 0) &&
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
gctl_error(req, "Interleave to small for sector size");
return(EINVAL);
}
/*
* If uniform interleave is desired set all sizes to that of
* the smallest component. This will guarentee that a single
* interleave table is generated.
*
* Lost space must be taken into account when calculating the
* overall size. Half the space is lost when CCDF_MIRROR is
* specified.
*/
if (cs->sc_flags & CCDF_UNIFORM) {
for (ix = 0; ix < cs->sc_ndisks; ix++) {
ci = &cs->sc_cinfo[ix];
ci->ci_size = minsize;
}
cs->sc_size = cs->sc_ndisks * minsize;
}
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Check to see if an even number of components
* have been specified. The interleave must also
* be non-zero in order for us to be able to
* guarentee the topology.
*/
if (cs->sc_ndisks % 2) {
gctl_error(req,
"Mirroring requires an even number of disks");
return(EINVAL);
}
if (cs->sc_ileave == 0) {
gctl_error(req,
"An interleave must be specified when mirroring");
return(EINVAL);
}
cs->sc_size = (cs->sc_ndisks/2) * minsize;
}
/*
* Construct the interleave table.
*/
ccdinterleave(cs);
/*
* Create pseudo-geometry based on 1MB cylinders. It's
* pretty close.
*/
cs->sc_secsize = maxsecsize;
return (0);
}
static void
ccdinterleave(struct ccd_s *cs)
{
struct ccdcinfo *ci, *smallci;
struct ccdiinfo *ii;
daddr_t bn, lbn;
int ix;
daddr_t size;
/*
* Allocate an interleave table. The worst case occurs when each
* of N disks is of a different size, resulting in N interleave
* tables.
*
* Chances are this is too big, but we don't care.
*/
size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo);
cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO);
/*
* Trivial case: no interleave (actually interleave of disk size).
* Each table entry represents a single component in its entirety.
*
* An interleave of 0 may not be used with a mirror setup.
*/
if (cs->sc_ileave == 0) {
bn = 0;
ii = cs->sc_itable;
for (ix = 0; ix < cs->sc_ndisks; ix++) {
/* Allocate space for ii_index. */
ii->ii_index = g_malloc(sizeof(int), M_WAITOK);
ii->ii_ndisk = 1;
ii->ii_startblk = bn;
ii->ii_startoff = 0;
ii->ii_index[0] = ix;
bn += cs->sc_cinfo[ix].ci_size;
ii++;
}
ii->ii_ndisk = 0;
return;
}
/*
* The following isn't fast or pretty; it doesn't have to be.
*/
size = 0;
bn = lbn = 0;
for (ii = cs->sc_itable; ; ii++) {
/*
* Allocate space for ii_index. We might allocate more then
* we use.
*/
ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks),
M_WAITOK);
/*
* Locate the smallest of the remaining components
*/
smallci = NULL;
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks];
ci++) {
if (ci->ci_size > size &&
(smallci == NULL ||
ci->ci_size < smallci->ci_size)) {
smallci = ci;
}
}
/*
* Nobody left, all done
*/
if (smallci == NULL) {
ii->ii_ndisk = 0;
g_free(ii->ii_index);
ii->ii_index = NULL;
break;
}
/*
* Record starting logical block using an sc_ileave blocksize.
*/
ii->ii_startblk = bn / cs->sc_ileave;
/*
* Record starting component block using an sc_ileave
* blocksize. This value is relative to the beginning of
* a component disk.
*/
ii->ii_startoff = lbn;
/*
* Determine how many disks take part in this interleave
* and record their indices.
*/
ix = 0;
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) {
if (ci->ci_size >= smallci->ci_size) {
ii->ii_index[ix++] = ci - cs->sc_cinfo;
}
}
ii->ii_ndisk = ix;
bn += ix * (smallci->ci_size - size);
lbn = smallci->ci_size / cs->sc_ileave;
size = smallci->ci_size;
}
}
static void
g_ccd_start(struct bio *bp)
{
long bcount, rcount;
struct bio *cbp[2];
caddr_t addr;
daddr_t bn;
int err;
struct ccd_s *cs;
cs = bp->bio_to->geom->softc;
/*
* Block all GETATTR requests, we wouldn't know which of our
* subdevices we should ship it off to.
* XXX: this may not be the right policy.
*/
if(bp->bio_cmd == BIO_GETATTR) {
g_io_deliver(bp, EINVAL);
return;
}
/*
* Translate the partition-relative block number to an absolute.
*/
bn = bp->bio_offset / cs->sc_secsize;
/*
* Allocate component buffers and fire off the requests
*/
addr = bp->bio_data;
for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) {
err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
if (err) {
bp->bio_completed += bcount;
if (bp->bio_error == 0)
bp->bio_error = err;
if (bp->bio_completed == bp->bio_length)
g_io_deliver(bp, bp->bio_error);
return;
}
rcount = cbp[0]->bio_length;
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Mirroring. Writes go to both disks, reads are
* taken from whichever disk seems most appropriate.
*
* We attempt to localize reads to the disk whos arm
* is nearest the read request. We ignore seeks due
* to writes when making this determination and we
* also try to avoid hogging.
*/
if (cbp[0]->bio_cmd != BIO_READ) {
g_io_request(cbp[0], cbp[0]->bio_from);
g_io_request(cbp[1], cbp[1]->bio_from);
} else {
int pick = cs->sc_pick;
daddr_t range = cs->sc_size / 16;
if (bn < cs->sc_blk[pick] - range ||
bn > cs->sc_blk[pick] + range
) {
cs->sc_pick = pick = 1 - pick;
}
cs->sc_blk[pick] = bn + btodb(rcount);
g_io_request(cbp[pick], cbp[pick]->bio_from);
}
} else {
/*
* Not mirroring
*/
g_io_request(cbp[0], cbp[0]->bio_from);
}
bn += btodb(rcount);
addr += rcount;
}
}
/*
* Build a component buffer header.
*/
static int
ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
{
struct ccdcinfo *ci, *ci2 = NULL;
struct bio *cbp;
daddr_t cbn, cboff;
off_t cbc;
/*
* Determine which component bn falls in.
*/
cbn = bn;
cboff = 0;
if (cs->sc_ileave == 0) {
/*
* Serially concatenated and neither a mirror nor a parity
* config. This is a special case.
*/
daddr_t sblk;
sblk = 0;
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
sblk += ci->ci_size;
cbn -= sblk;
} else {
struct ccdiinfo *ii;
int ccdisk, off;
/*
* Calculate cbn, the logical superblock (sc_ileave chunks),
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
* to cbn.
*/
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
/*
* Figure out which interleave table to use.
*/
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
if (ii->ii_startblk > cbn)
break;
}
ii--;
/*
* off is the logical superblock relative to the beginning
* of this interleave block.
*/
off = cbn - ii->ii_startblk;
/*
* We must calculate which disk component to use (ccdisk),
* and recalculate cbn to be the superblock relative to
* the beginning of the component. This is typically done by
* adding 'off' and ii->ii_startoff together. However, 'off'
* must typically be divided by the number of components in
* this interleave array to be properly convert it from a
* CCD-relative logical superblock number to a
* component-relative superblock number.
*/
if (ii->ii_ndisk == 1) {
/*
* When we have just one disk, it can't be a mirror
* or a parity config.
*/
ccdisk = ii->ii_index[0];
cbn = ii->ii_startoff + off;
} else {
if (cs->sc_flags & CCDF_MIRROR) {
/*
* We have forced a uniform mapping, resulting
* in a single interleave array. We double
* up on the first half of the available
* components and our mirror is in the second
* half. This only works with a single
* interleave array because doubling up
* doubles the number of sectors, so there
* cannot be another interleave array because
* the next interleave array's calculations
* would be off.
*/
int ndisk2 = ii->ii_ndisk / 2;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
} else {
ccdisk = ii->ii_index[off % ii->ii_ndisk];
cbn = ii->ii_startoff + off / ii->ii_ndisk;
}
}
ci = &cs->sc_cinfo[ccdisk];
/*
* Convert cbn from a superblock to a normal block so it
* can be used to calculate (along with cboff) the normal
* block index into this particular disk.
*/
cbn *= cs->sc_ileave;
}
/*
* Fill in the component buf structure.
*/
cbp = g_clone_bio(bp);
if (cbp == NULL)
return (ENOMEM);
cbp->bio_done = g_std_done;
cbp->bio_offset = dbtob(cbn + cboff + CCD_OFFSET);
cbp->bio_data = addr;
if (cs->sc_ileave == 0)
cbc = dbtob((off_t)(ci->ci_size - cbn));
else
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
cbp->bio_length = (cbc < bcount) ? cbc : bcount;
cbp->bio_from = ci->ci_consumer;
cb[0] = cbp;
if (cs->sc_flags & CCDF_MIRROR) {
cbp = g_clone_bio(bp);
if (cbp == NULL)
return (ENOMEM);
cbp->bio_done = cb[0]->bio_done = ccdiodone;
cbp->bio_offset = cb[0]->bio_offset;
cbp->bio_data = cb[0]->bio_data;
cbp->bio_length = cb[0]->bio_length;
cbp->bio_from = ci2->ci_consumer;
cbp->bio_caller1 = cb[0];
cb[0]->bio_caller1 = cbp;
cb[1] = cbp;
}
return (0);
}
/*
* Called only for mirrored operations.
*/
static void
ccdiodone(struct bio *cbp)
{
struct bio *mbp, *pbp;
mbp = cbp->bio_caller1;
pbp = cbp->bio_parent;
if (pbp->bio_cmd == BIO_READ) {
if (cbp->bio_error == 0) {
/* We will not be needing the partner bio */
if (mbp != NULL) {
pbp->bio_inbed++;
g_destroy_bio(mbp);
}
g_std_done(cbp);
return;
}
if (mbp != NULL) {
/* Try partner the bio instead */
mbp->bio_caller1 = NULL;
pbp->bio_inbed++;
g_destroy_bio(cbp);
g_io_request(mbp, mbp->bio_from);
/*
* XXX: If this comes back OK, we should actually
* try to write the good data on the failed mirror
*/
return;
}
g_std_done(cbp);
return;
}
if (mbp != NULL) {
mbp->bio_caller1 = NULL;
pbp->bio_inbed++;
if (cbp->bio_error != 0 && pbp->bio_error == 0)
pbp->bio_error = cbp->bio_error;
g_destroy_bio(cbp);
return;
}
g_std_done(cbp);
}
static void
g_ccd_create(struct gctl_req *req, struct g_class *mp)
{
int *unit, *ileave, *nprovider;
struct g_geom *gp;
struct g_consumer *cp;
struct g_provider *pp;
struct ccd_s *sc;
struct sbuf *sb;
char buf[20];
int i, error;
g_topology_assert();
unit = gctl_get_paraml(req, "unit", sizeof (*unit));
ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave));
nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider));
/* Check for duplicate unit */
LIST_FOREACH(gp, &mp->geom, geom) {
sc = gp->softc;
if (sc != NULL && sc->sc_unit == *unit) {
gctl_error(req, "Unit %d already configured", *unit);
return;
}
}
if (*nprovider <= 0) {
gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider);
return;
}
/* Check all providers are valid */
for (i = 0; i < *nprovider; i++) {
sprintf(buf, "provider%d", i);
pp = gctl_get_provider(req, buf);
if (pp == NULL)
return;
}
gp = g_new_geomf(mp, "ccd%d", *unit);
gp->start = g_ccd_start;
gp->orphan = g_ccd_orphan;
gp->access = g_ccd_access;
sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO);
gp->softc = sc;
sc->sc_ndisks = *nprovider;
/* Allocate space for the component info. */
sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo),
M_WAITOK | M_ZERO);
/* Create consumers and attach to all providers */
for (i = 0; i < *nprovider; i++) {
sprintf(buf, "provider%d", i);
pp = gctl_get_provider(req, buf);
cp = g_new_consumer(gp);
error = g_attach(cp, pp);
KASSERT(error == 0, ("attach to %s failed", pp->name));
sc->sc_cinfo[i].ci_consumer = cp;
sc->sc_cinfo[i].ci_provider = pp;
}
sc->sc_unit = *unit;
sc->sc_ileave = *ileave;
if (gctl_get_param(req, "uniform", NULL))
sc->sc_flags |= CCDF_UNIFORM;
if (gctl_get_param(req, "mirror", NULL))
sc->sc_flags |= CCDF_MIRROR;
if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) {
printf("%s: disabling mirror, interleave is 0\n", gp->name);
sc->sc_flags &= ~(CCDF_MIRROR);
}
if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) {
printf("%s: mirror/parity forces uniform flag\n", gp->name);
sc->sc_flags |= CCDF_UNIFORM;
}
error = ccdinit(req, sc);
if (error != 0) {
g_ccd_freesc(sc);
gp->softc = NULL;
g_wither_geom(gp, ENXIO);
return;
}
pp = g_new_providerf(gp, "%s", gp->name);
pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize;
pp->sectorsize = sc->sc_secsize;
g_error_provider(pp, 0);
sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider);
for (i = 0; i < *nprovider; i++) {
sbuf_printf(sb, "%s%s",
i == 0 ? "(" : ", ",
sc->sc_cinfo[i].ci_provider->name);
}
sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE);
if (sc->sc_ileave != 0)
sbuf_printf(sb, "interleaved at %d blocks\n",
sc->sc_ileave);
else
sbuf_printf(sb, "concatenated\n");
sbuf_finish(sb);
gctl_set_param(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
}
static int
g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp)
{
struct g_provider *pp;
struct ccd_s *sc;
g_topology_assert();
sc = gp->softc;
pp = LIST_FIRST(&gp->provider);
if (sc == NULL || pp == NULL)
return (EBUSY);
if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) {
gctl_error(req, "%s is open(r%dw%de%d)", gp->name,
pp->acr, pp->acw, pp->ace);
return (EBUSY);
}
g_ccd_freesc(sc);
gp->softc = NULL;
g_wither_geom(gp, ENXIO);
return (0);
}
static void
g_ccd_list(struct gctl_req *req, struct g_class *mp)
{
struct sbuf *sb;
struct ccd_s *cs;
struct g_geom *gp;
int i, unit, *up;
up = gctl_get_paraml(req, "unit", sizeof (int));
unit = *up;
sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
LIST_FOREACH(gp, &mp->geom, geom) {
cs = gp->softc;
if (cs == NULL || (unit >= 0 && unit != cs->sc_unit))
continue;
sbuf_printf(sb, "ccd%d\t\t%d\t%d\t",
cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK);
for (i = 0; i < cs->sc_ndisks; ++i) {
sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ",
cs->sc_cinfo[i].ci_provider->name);
}
sbuf_printf(sb, "\n");
}
sbuf_finish(sb);
gctl_set_param(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
}
static void
g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb)
{
struct g_geom *gp;
g_topology_assert();
if (!strcmp(verb, "create geom")) {
g_ccd_create(req, mp);
} else if (!strcmp(verb, "destroy geom")) {
gp = gctl_get_geom(req, mp, "geom");
if (gp != NULL)
g_ccd_destroy_geom(req, mp, gp);
} else if (!strcmp(verb, "list")) {
g_ccd_list(req, mp);
} else {
gctl_error(req, "unknown verb");
}
}
static struct g_class g_ccd_class = {
.name = "CCD",
.ctlreq = g_ccd_config,
.destroy_geom = g_ccd_destroy_geom,
};
DECLARE_GEOM_CLASS(g_ccd_class, g_ccd);