1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sys/pci/if_sis.c
Martin Blapp 14f19ee835 Add PCI revision number for 630A and 900B. Enable parity error detection
on 900B and 635(A).

Re-add the enhanced PHY access register method again for older chipsets,
they do not seem to work with all old chips.

Reviewed by:		phk
MFC after:		7 days
2003-01-28 10:55:38 +00:00

2367 lines
54 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
* available from http://www.sis.com.tw.
*
* This driver also supports the NatSemi DP83815. Datasheets are
* available from http://www.national.com.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The SiS 900 is a fairly simple chip. It uses bus master DMA with
* simple TX and RX descriptors of 3 longwords in size. The receiver
* has a single perfect filter entry for the station address and a
* 128-bit multicast hash table. The SiS 900 has a built-in MII-based
* transceiver while the 7016 requires an external transceiver chip.
* Both chips offer the standard bit-bang MII interface as well as
* an enchanced PHY interface which simplifies accessing MII registers.
*
* The only downside to this chipset is that RX descriptors must be
* longword aligned.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define SIS_USEIOSPACE
#include <pci/if_sisreg.h>
MODULE_DEPEND(sis, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct sis_type sis_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
{ 0, 0, NULL }
};
static int sis_probe (device_t);
static int sis_attach (device_t);
static int sis_detach (device_t);
static int sis_newbuf (struct sis_softc *,
struct sis_desc *, struct mbuf *);
static int sis_encap (struct sis_softc *,
struct mbuf *, u_int32_t *);
static void sis_rxeof (struct sis_softc *);
static void sis_rxeoc (struct sis_softc *);
static void sis_txeof (struct sis_softc *);
static void sis_intr (void *);
static void sis_tick (void *);
static void sis_start (struct ifnet *);
static int sis_ioctl (struct ifnet *, u_long, caddr_t);
static void sis_init (void *);
static void sis_stop (struct sis_softc *);
static void sis_watchdog (struct ifnet *);
static void sis_shutdown (device_t);
static int sis_ifmedia_upd (struct ifnet *);
static void sis_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static u_int16_t sis_reverse (u_int16_t);
static void sis_delay (struct sis_softc *);
static void sis_eeprom_idle (struct sis_softc *);
static void sis_eeprom_putbyte (struct sis_softc *, int);
static void sis_eeprom_getword (struct sis_softc *, int, u_int16_t *);
static void sis_read_eeprom (struct sis_softc *, caddr_t, int, int, int);
#ifdef __i386__
static void sis_read_cmos (struct sis_softc *, device_t, caddr_t,
int, int);
static void sis_read_mac (struct sis_softc *, device_t, caddr_t);
static device_t sis_find_bridge (device_t);
#endif
static void sis_mii_sync (struct sis_softc *);
static void sis_mii_send (struct sis_softc *, u_int32_t, int);
static int sis_mii_readreg (struct sis_softc *, struct sis_mii_frame *);
static int sis_mii_writereg (struct sis_softc *, struct sis_mii_frame *);
static int sis_miibus_readreg (device_t, int, int);
static int sis_miibus_writereg (device_t, int, int, int);
static void sis_miibus_statchg (device_t);
static void sis_setmulti_sis (struct sis_softc *);
static void sis_setmulti_ns (struct sis_softc *);
static u_int32_t sis_crc (struct sis_softc *, caddr_t);
static void sis_reset (struct sis_softc *);
static int sis_list_rx_init (struct sis_softc *);
static int sis_list_tx_init (struct sis_softc *);
static void sis_dma_map_desc_ptr (void *, bus_dma_segment_t *, int, int);
static void sis_dma_map_desc_next (void *, bus_dma_segment_t *, int, int);
static void sis_dma_map_ring (void *, bus_dma_segment_t *, int, int);
#ifdef SIS_USEIOSPACE
#define SIS_RES SYS_RES_IOPORT
#define SIS_RID SIS_PCI_LOIO
#else
#define SIS_RES SYS_RES_MEMORY
#define SIS_RID SIS_PCI_LOMEM
#endif
static device_method_t sis_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sis_probe),
DEVMETHOD(device_attach, sis_attach),
DEVMETHOD(device_detach, sis_detach),
DEVMETHOD(device_shutdown, sis_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sis_miibus_readreg),
DEVMETHOD(miibus_writereg, sis_miibus_writereg),
DEVMETHOD(miibus_statchg, sis_miibus_statchg),
{ 0, 0 }
};
static driver_t sis_driver = {
"sis",
sis_methods,
sizeof(struct sis_softc)
};
static devclass_t sis_devclass;
DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
#define SIS_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define SIS_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
static void
sis_dma_map_desc_next(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct sis_desc *r;
r = arg;
r->sis_next = segs->ds_addr;
return;
}
static void
sis_dma_map_desc_ptr(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct sis_desc *r;
r = arg;
r->sis_ptr = segs->ds_addr;
return;
}
static void
sis_dma_map_ring(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
u_int32_t *p;
p = arg;
*p = segs->ds_addr;
return;
}
/*
* Routine to reverse the bits in a word. Stolen almost
* verbatim from /usr/games/fortune.
*/
static u_int16_t
sis_reverse(n)
u_int16_t n;
{
n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
return(n);
}
static void
sis_delay(sc)
struct sis_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, SIS_CSR);
return;
}
static void
sis_eeprom_idle(sc)
struct sis_softc *sc;
{
register int i;
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
}
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CSEL);
sis_delay(sc);
CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
sis_eeprom_putbyte(sc, addr)
struct sis_softc *sc;
int addr;
{
register int d, i;
d = addr | SIS_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(SIS_EECTL_DIN);
} else {
SIO_CLR(SIS_EECTL_DIN);
}
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
sis_eeprom_getword(sc, addr, dest)
struct sis_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
/* Enter EEPROM access mode. */
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
/*
* Send address of word we want to read.
*/
sis_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
word |= i;
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
/* Turn off EEPROM access mode. */
sis_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
sis_read_eeprom(sc, dest, off, cnt, swap)
struct sis_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
sis_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
#ifdef __i386__
static device_t
sis_find_bridge(dev)
device_t dev;
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count = 0;
device_t *pci_children;
int pci_childcount = 0;
device_t *busp, *childp;
device_t child = NULL;
int i, j;
if ((pci_devclass = devclass_find("pci")) == NULL)
return(NULL);
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
pci_childcount = 0;
device_get_children(*busp, &pci_children, &pci_childcount);
for (j = 0, childp = pci_children;
j < pci_childcount; j++, childp++) {
if (pci_get_vendor(*childp) == SIS_VENDORID &&
pci_get_device(*childp) == 0x0008) {
child = *childp;
goto done;
}
}
}
done:
free(pci_devices, M_TEMP);
free(pci_children, M_TEMP);
return(child);
}
static void
sis_read_cmos(sc, dev, dest, off, cnt)
struct sis_softc *sc;
device_t dev;
caddr_t dest;
int off;
int cnt;
{
device_t bridge;
u_int8_t reg;
int i;
bus_space_tag_t btag;
bridge = sis_find_bridge(dev);
if (bridge == NULL)
return;
reg = pci_read_config(bridge, 0x48, 1);
pci_write_config(bridge, 0x48, reg|0x40, 1);
/* XXX */
btag = I386_BUS_SPACE_IO;
for (i = 0; i < cnt; i++) {
bus_space_write_1(btag, 0x0, 0x70, i + off);
*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
}
pci_write_config(bridge, 0x48, reg & ~0x40, 1);
return;
}
static void
sis_read_mac(sc, dev, dest)
struct sis_softc *sc;
device_t dev;
caddr_t dest;
{
u_int32_t filtsave, csrsave;
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
csrsave = CSR_READ_4(sc, SIS_CSR);
CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
CSR_WRITE_4(sc, SIS_CSR, 0);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
CSR_WRITE_4(sc, SIS_CSR, csrsave);
return;
}
#endif
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void sis_mii_sync(sc)
struct sis_softc *sc;
{
register int i;
SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
for (i = 0; i < 32; i++) {
SIO_SET(SIS_MII_CLK);
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void sis_mii_send(sc, bits, cnt)
struct sis_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(SIS_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(SIS_MII_DATA);
} else {
SIO_CLR(SIS_MII_DATA);
}
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int sis_mii_readreg(sc, frame)
struct sis_softc *sc;
struct sis_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = SIS_MII_STARTDELIM;
frame->mii_opcode = SIS_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Turn on data xmit.
*/
SIO_SET(SIS_MII_DIR);
sis_mii_sync(sc);
/*
* Send command/address info.
*/
sis_mii_send(sc, frame->mii_stdelim, 2);
sis_mii_send(sc, frame->mii_opcode, 2);
sis_mii_send(sc, frame->mii_phyaddr, 5);
sis_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(SIS_MII_DIR);
/* Check for ack */
SIO_CLR(SIS_MII_CLK);
DELAY(1);
ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
SIO_SET(SIS_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(SIS_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(SIS_MII_CLK);
DELAY(1);
}
fail:
SIO_CLR(SIS_MII_CLK);
DELAY(1);
SIO_SET(SIS_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int sis_mii_writereg(sc, frame)
struct sis_softc *sc;
struct sis_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = SIS_MII_STARTDELIM;
frame->mii_opcode = SIS_MII_WRITEOP;
frame->mii_turnaround = SIS_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(SIS_MII_DIR);
sis_mii_sync(sc);
sis_mii_send(sc, frame->mii_stdelim, 2);
sis_mii_send(sc, frame->mii_opcode, 2);
sis_mii_send(sc, frame->mii_phyaddr, 5);
sis_mii_send(sc, frame->mii_regaddr, 5);
sis_mii_send(sc, frame->mii_turnaround, 2);
sis_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(SIS_MII_CLK);
DELAY(1);
SIO_CLR(SIS_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(SIS_MII_DIR);
splx(s);
return(0);
}
static int
sis_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sis_softc *sc;
struct sis_mii_frame frame;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return(0);
/*
* The NatSemi chip can take a while after
* a reset to come ready, during which the BMSR
* returns a value of 0. This is *never* supposed
* to happen: some of the BMSR bits are meant to
* be hardwired in the on position, and this can
* confuse the miibus code a bit during the probe
* and attach phase. So we make an effort to check
* for this condition and wait for it to clear.
*/
if (!CSR_READ_4(sc, NS_BMSR))
DELAY(1000);
return CSR_READ_4(sc, NS_BMCR + (reg * 4));
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i, val = 0;
if (phy != 0)
return(0);
CSR_WRITE_4(sc, SIS_PHYCTL,
(phy << 11) | (reg << 6) | SIS_PHYOP_READ);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT) {
printf("sis%d: PHY failed to come ready\n",
sc->sis_unit);
return(0);
}
val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
if (val == 0xFFFF)
return(0);
return(val);
} else {
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
sis_mii_readreg(sc, &frame);
return(frame.mii_data);
}
}
static int
sis_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct sis_softc *sc;
struct sis_mii_frame frame;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return(0);
CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
return(0);
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i;
if (phy != 0)
return(0);
CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
(reg << 6) | SIS_PHYOP_WRITE);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT)
printf("sis%d: PHY failed to come ready\n",
sc->sis_unit);
} else {
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
sis_mii_writereg(sc, &frame);
}
return(0);
}
static void
sis_miibus_statchg(dev)
device_t dev;
{
struct sis_softc *sc;
sc = device_get_softc(dev);
sis_init(sc);
return;
}
static u_int32_t
sis_crc(sc, addr)
struct sis_softc *sc;
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/*
* return the filter bit position
*
* The NatSemi chip has a 512-bit filter, which is
* different than the SiS, so we special-case it.
*/
if (sc->sis_type == SIS_TYPE_83815)
return (crc >> 23);
else if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
return (crc >> 24);
else
return (crc >> 25);
}
static void
sis_setmulti_ns(sc)
struct sis_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i, filtsave;
int bit, index;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
return;
}
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
/* first, zot all the existing hash bits */
for (i = 0; i < 32; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
index = h >> 3;
bit = h & 0x1F;
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
if (bit > 0xF)
bit -= 0x10;
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
return;
}
static void
sis_setmulti_sis(sc)
struct sis_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h, i, n, ctl;
u_int16_t hashes[16];
ifp = &sc->arpcom.ac_if;
/* hash table size */
if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
n = 16;
else
n = 8;
ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
if (ifp->if_flags & IFF_BROADCAST)
ctl |= SIS_RXFILTCTL_BROAD;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
ctl |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
for (i = 0; i < n; i++)
hashes[i] = ~0;
} else {
for (i = 0; i < n; i++)
hashes[i] = 0;
i = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_crc(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
hashes[h >> 4] |= 1 << (h & 0xf);
i++;
}
if (i > n) {
ctl |= SIS_RXFILTCTL_ALLMULTI;
for (i = 0; i < n; i++)
hashes[i] = ~0;
}
}
for (i = 0; i < n; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
}
static void
sis_reset(sc)
struct sis_softc *sc;
{
register int i;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
break;
}
if (i == SIS_TIMEOUT)
printf("sis%d: reset never completed\n", sc->sis_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NS_CLKRUN, 0);
}
return;
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sis_probe(dev)
device_t dev;
{
struct sis_type *t;
t = sis_devs;
while(t->sis_name != NULL) {
if ((pci_get_vendor(dev) == t->sis_vid) &&
(pci_get_device(dev) == t->sis_did)) {
device_set_desc(dev, t->sis_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sis_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct sis_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid, waittime = 0;
waittime = 0;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct sis_softc));
mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
if (pci_get_device(dev) == SIS_DEVICEID_900)
sc->sis_type = SIS_TYPE_900;
if (pci_get_device(dev) == SIS_DEVICEID_7016)
sc->sis_type = SIS_TYPE_7016;
if (pci_get_vendor(dev) == NS_VENDORID)
sc->sis_type = SIS_TYPE_83815;
sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
/* Reset the power state. */
printf("sis%d: chip is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_IOPORT);
pci_enable_io(dev, SYS_RES_MEMORY);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef SIS_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("sis%d: failed to enable I/O ports!\n", unit);
error = ENXIO;;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("sis%d: failed to enable memory mapping!\n", unit);
error = ENXIO;;
goto fail;
}
#endif
rid = SIS_RID;
sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->sis_res == NULL) {
printf("sis%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->sis_btag = rman_get_bustag(sc->sis_res);
sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
/* Allocate interrupt */
rid = 0;
sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sis_irq == NULL) {
printf("sis%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
sis_intr, sc, &sc->sis_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
printf("sis%d: couldn't set up irq\n", unit);
goto fail;
}
/* Reset the adapter. */
sis_reset(sc);
if (sc->sis_type == SIS_TYPE_900 &&
(sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)) {
SIO_SET(SIS_CFG_RND_CNT);
SIO_SET(SIS_CFG_PERR_DETECT);
}
/*
* Get station address from the EEPROM.
*/
switch (pci_get_vendor(dev)) {
case NS_VENDORID:
/*
* Reading the MAC address out of the EEPROM on
* the NatSemi chip takes a bit more work than
* you'd expect. The address spans 4 16-bit words,
* with the first word containing only a single bit.
* You have to shift everything over one bit to
* get it aligned properly. Also, the bits are
* stored backwards (the LSB is really the MSB,
* and so on) so you have to reverse them in order
* to get the MAC address into the form we want.
* Why? Who the hell knows.
*/
{
u_int16_t tmp[4];
sis_read_eeprom(sc, (caddr_t)&tmp,
NS_EE_NODEADDR, 4, 0);
/* Shift everything over one bit. */
tmp[3] = tmp[3] >> 1;
tmp[3] |= tmp[2] << 15;
tmp[2] = tmp[2] >> 1;
tmp[2] |= tmp[1] << 15;
tmp[1] = tmp[1] >> 1;
tmp[1] |= tmp[0] << 15;
/* Now reverse all the bits. */
tmp[3] = sis_reverse(tmp[3]);
tmp[2] = sis_reverse(tmp[2]);
tmp[1] = sis_reverse(tmp[1]);
bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
}
break;
case SIS_VENDORID:
default:
#ifdef __i386__
/*
* If this is a SiS 630E chipset with an embedded
* SiS 900 controller, we have to read the MAC address
* from the APC CMOS RAM. Our method for doing this
* is very ugly since we have to reach out and grab
* ahold of hardware for which we cannot properly
* allocate resources. This code is only compiled on
* the i386 architecture since the SiS 630E chipset
* is for x86 motherboards only. Note that there are
* a lot of magic numbers in this hack. These are
* taken from SiS's Linux driver. I'd like to replace
* them with proper symbolic definitions, but that
* requires some datasheets that I don't have access
* to at the moment.
*/
if (sc->sis_rev == SIS_REV_630S ||
sc->sis_rev == SIS_REV_630E ||
sc->sis_rev == SIS_REV_630EA1)
sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
else if (sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_630ET)
sis_read_mac(sc, dev, (caddr_t)&eaddr);
else if (sc->sis_rev == SIS_REV_96x) {
/* Allow to read EEPROM from LAN. It is shared
* between a 1394 controller and the NIC and each
* time we access it, we need to set SIS_EECMD_REQ.
*/
SIO_SET(SIS_EECMD_REQ);
for (waittime = 0; waittime < SIS_TIMEOUT;
waittime++) {
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
DELAY(1);
}
/*
* Set SIS_EECTL_CLK to high, so a other master
* can operate on the i2c bus.
*/
SIO_SET(SIS_EECTL_CLK);
/* Refuse EEPROM access by LAN */
SIO_SET(SIS_EECMD_DONE);
} else
#endif
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
/*
* A SiS chip was detected. Inform the world.
*/
printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->sis_unit = unit;
callout_handle_init(&sc->sis_stat_ch);
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define SIS_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
&sc->sis_parent_tag);
/*
* Now allocate a tag for the DMA descriptor lists.
* All of our lists are allocated as a contiguous block
* of memory.
*/
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SIS_RX_LIST_SZ, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_ldata.sis_rx_tag);
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SIS_TX_LIST_SZ, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_ldata.sis_tx_tag);
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_tag);
/*
* Now allocate a chunk of DMA-able memory based on the
* tag we just created.
*/
error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
(void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
&sc->sis_ldata.sis_tx_dmamap);
if (error) {
printf("sis%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
(void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
&sc->sis_ldata.sis_rx_dmamap);
if (error) {
printf("sis%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
/*
* Obtain the physical addresses of the RX and TX
* rings which we'll need later in the init routine.
*/
bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
sizeof(struct sis_desc), sis_dma_map_ring,
&sc->sis_cdata.sis_tx_paddr, 0);
bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
sizeof(struct sis_desc), sis_dma_map_ring,
&sc->sis_cdata.sis_rx_paddr, 0);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "sis";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sis_ioctl;
ifp->if_output = ether_output;
ifp->if_start = sis_start;
ifp->if_watchdog = sis_watchdog;
ifp->if_init = sis_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->sis_miibus,
sis_ifmedia_upd, sis_ifmedia_sts)) {
printf("sis%d: MII without any PHY!\n", sc->sis_unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
callout_handle_init(&sc->sis_stat_ch);
return(0);
fail:
mtx_destroy(&sc->sis_mtx);
return(error);
}
static int
sis_detach(dev)
device_t dev;
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
sis_reset(sc);
sis_stop(sc);
ether_ifdetach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->sis_miibus);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap);
bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
bus_dma_tag_destroy(sc->sis_parent_tag);
SIS_UNLOCK(sc);
mtx_destroy(&sc->sis_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
sis_list_tx_init(sc)
struct sis_softc *sc;
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
int i, nexti;
cd = &sc->sis_cdata;
ld = &sc->sis_ldata;
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
ld->sis_tx_list[i].sis_nextdesc =
&ld->sis_tx_list[nexti];
bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap,
&ld->sis_tx_list[nexti], sizeof(struct sis_desc),
sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
ld->sis_tx_list[i].sis_mbuf = NULL;
ld->sis_tx_list[i].sis_ptr = 0;
ld->sis_tx_list[i].sis_ctl = 0;
}
cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
sis_list_rx_init(sc)
struct sis_softc *sc;
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
int i,nexti;
ld = &sc->sis_ldata;
cd = &sc->sis_cdata;
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
return(ENOBUFS);
nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
ld->sis_rx_list[i].sis_nextdesc =
&ld->sis_rx_list[nexti];
bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap,
&ld->sis_rx_list[nexti],
sizeof(struct sis_desc), sis_dma_map_desc_next,
&ld->sis_rx_list[i], 0);
}
bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
cd->sis_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sis_newbuf(sc, c, m)
struct sis_softc *sc;
struct sis_desc *c;
struct mbuf *m;
{
if (c == NULL)
return(EINVAL);
if (m == NULL) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return(ENOBUFS);
} else
m->m_data = m->m_ext.ext_buf;
c->sis_mbuf = m;
c->sis_ctl = SIS_RXLEN;
bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
bus_dmamap_load(sc->sis_tag, c->sis_map,
mtod(m, void *), MCLBYTES,
sis_dma_map_desc_ptr, c, 0);
bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
sis_rxeof(sc)
struct sis_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
struct sis_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->sis_cdata.sis_rx_prod;
while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif /* DEVICE_POLLING */
cur_rx = &sc->sis_ldata.sis_rx_list[i];
rxstat = cur_rx->sis_rxstat;
bus_dmamap_sync(sc->sis_tag,
cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
m = cur_rx->sis_mbuf;
cur_rx->sis_mbuf = NULL;
total_len = SIS_RXBYTES(cur_rx);
SIS_INC(i, SIS_RX_LIST_CNT);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
ifp->if_ierrors++;
if (rxstat & SIS_RXSTAT_COLL)
ifp->if_collisions++;
sis_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
#ifdef __i386__
/*
* On the x86 we do not have alignment problems, so try to
* allocate a new buffer for the receive ring, and pass up
* the one where the packet is already, saving the expensive
* copy done in m_devget().
* If we are on an architecture with alignment problems, or
* if the allocation fails, then use m_devget and leave the
* existing buffer in the receive ring.
*/
if (sis_newbuf(sc, cur_rx, NULL) == 0)
m->m_pkthdr.len = m->m_len = total_len;
else
#endif
{
struct mbuf *m0;
m0 = m_devget(mtod(m, char *), total_len,
ETHER_ALIGN, ifp, NULL);
sis_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
(*ifp->if_input)(ifp, m);
}
sc->sis_cdata.sis_rx_prod = i;
return;
}
static void
sis_rxeoc(sc)
struct sis_softc *sc;
{
sis_rxeof(sc);
sis_init(sc);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
sis_txeof(sc)
struct sis_softc *sc;
{
struct ifnet *ifp;
u_int32_t idx;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
if (SIS_OWNDESC(cur_tx))
break;
if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
continue;
if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
ifp->if_oerrors++;
if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
ifp->if_collisions++;
if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=
(cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
ifp->if_opackets++;
if (cur_tx->sis_mbuf != NULL) {
m_freem(cur_tx->sis_mbuf);
cur_tx->sis_mbuf = NULL;
bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
}
}
if (idx != sc->sis_cdata.sis_tx_cons) {
/* we freed up some buffers */
sc->sis_cdata.sis_tx_cons = idx;
ifp->if_flags &= ~IFF_OACTIVE;
}
ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
return;
}
static void
sis_tick(xsc)
void *xsc;
{
struct sis_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = xsc;
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->sis_miibus);
mii_tick(mii);
if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->sis_link++;
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
}
sc->sis_stat_ch = timeout(sis_tick, sc, hz);
SIS_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
static poll_handler_t sis_poll;
static void
sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sis_softc *sc = ifp->if_softc;
SIS_LOCK(sc);
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_4(sc, SIS_IER, 1);
goto done;
}
/*
* On the sis, reading the status register also clears it.
* So before returning to intr mode we must make sure that all
* possible pending sources of interrupts have been served.
* In practice this means run to completion the *eof routines,
* and then call the interrupt routine
*/
sc->rxcycles = count;
sis_rxeof(sc);
sis_txeof(sc);
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
u_int32_t status;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
sis_rxeoc(sc);
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
sis_reset(sc);
sis_init(sc);
}
}
done:
SIS_UNLOCK(sc);
return;
}
#endif /* DEVICE_POLLING */
static void
sis_intr(arg)
void *arg;
{
struct sis_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
SIS_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done;
if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_4(sc, SIS_IER, 0);
goto done;
}
#endif /* DEVICE_POLLING */
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
sis_stop(sc);
goto done;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
for (;;) {
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if ((status & SIS_INTRS) == 0)
break;
if (status &
(SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
sis_txeof(sc);
if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
sis_rxeof(sc);
if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
sis_rxeoc(sc);
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
sis_reset(sc);
sis_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
done:
SIS_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
sis_encap(sc, m_head, txidx)
struct sis_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct sis_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if ((SIS_TX_LIST_CNT -
(sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc->sis_ldata.sis_tx_list[frag];
f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
bus_dmamap_load(sc->sis_tag, f->sis_map,
mtod(m, void *), m->m_len,
sis_dma_map_desc_ptr, f, 0);
bus_dmamap_sync(sc->sis_tag,
f->sis_map, BUS_DMASYNC_PREREAD);
if (cnt != 0)
f->sis_ctl |= SIS_CMDSTS_OWN;
cur = frag;
SIS_INC(frag, SIS_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
sc->sis_cdata.sis_tx_cnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
sis_start(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc = ifp->if_softc;
SIS_LOCK(sc);
if (!sc->sis_link) {
SIS_UNLOCK(sc);
return;
}
idx = sc->sis_cdata.sis_tx_prod;
if (ifp->if_flags & IFF_OACTIVE) {
SIS_UNLOCK(sc);
return;
}
while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sis_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
/* Transmit */
sc->sis_cdata.sis_tx_prod = idx;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
SIS_UNLOCK(sc);
return;
}
static void
sis_init(xsc)
void *xsc;
{
struct sis_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
SIS_LOCK(sc);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sis_stop(sc);
mii = device_get_softc(sc->sis_miibus);
/* Set MAC address */
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
} else {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
}
/* Init circular RX list. */
if (sis_list_rx_init(sc) == ENOBUFS) {
printf("sis%d: initialization failed: no "
"memory for rx buffers\n", sc->sis_unit);
sis_stop(sc);
SIS_UNLOCK(sc);
return;
}
/*
* Init tx descriptors.
*/
sis_list_tx_init(sc);
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
if (sc->sis_type == SIS_TYPE_83815) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
}
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
} else {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
}
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
} else {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
}
/*
* Load the multicast filter.
*/
if (sc->sis_type == SIS_TYPE_83815)
sis_setmulti_ns(sc);
else
sis_setmulti_sis(sc);
/* Turn the receive filter on */
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
* the PCI bus. When this bit is set, the Max DMA Burst Size
* for TX/RX DMA should be no larger than 16 double words.
*/
if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
} else {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
}
/* Accept Long Packets for VLAN support */
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
/* Set TX configuration */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
} else {
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
}
/* Set full/half duplex mode. */
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SIS_SETBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
} else {
SIS_CLRBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
}
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
#ifdef DEVICE_POLLING
/*
* ... only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if (ifp->if_flags & IFF_POLLING)
CSR_WRITE_4(sc, SIS_IER, 0);
else
#endif /* DEVICE_POLLING */
CSR_WRITE_4(sc, SIS_IER, 1);
/* Enable receiver and transmitter. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
#ifdef notdef
mii_mediachg(mii);
#endif
/*
* Page 75 of the DP83815 manual recommends the
* following register settings "for optimum
* performance." Note however that at least three
* of the registers are listed as "reserved" in
* the register map, so who knows what they do.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sis_stat_ch = timeout(sis_tick, sc, hz);
SIS_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
sis_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sis_miibus);
sc->sis_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
sis_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sis_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
sis_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sis_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
sis_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
sis_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SIS_LOCK(sc);
if (sc->sis_type == SIS_TYPE_83815)
sis_setmulti_ns(sc);
else
sis_setmulti_sis(sc);
SIS_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sis_miibus);
SIS_LOCK(sc);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
SIS_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return(error);
}
static void
sis_watchdog(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
sc = ifp->if_softc;
SIS_LOCK(sc);
ifp->if_oerrors++;
printf("sis%d: watchdog timeout\n", sc->sis_unit);
sis_stop(sc);
sis_reset(sc);
sis_init(sc);
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
SIS_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
sis_stop(sc)
struct sis_softc *sc;
{
register int i;
struct ifnet *ifp;
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(sis_tick, sc, sc->sis_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif
CSR_WRITE_4(sc, SIS_IER, 0);
CSR_WRITE_4(sc, SIS_IMR, 0);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
sc->sis_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
bus_dmamap_unload(sc->sis_tag,
sc->sis_ldata.sis_rx_list[i].sis_map);
bus_dmamap_destroy(sc->sis_tag,
sc->sis_ldata.sis_rx_list[i].sis_map);
m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
}
}
bzero(sc->sis_ldata.sis_rx_list,
sizeof(sc->sis_ldata.sis_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
bus_dmamap_unload(sc->sis_tag,
sc->sis_ldata.sis_tx_list[i].sis_map);
bus_dmamap_destroy(sc->sis_tag,
sc->sis_ldata.sis_tx_list[i].sis_map);
m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
}
}
bzero(sc->sis_ldata.sis_tx_list,
sizeof(sc->sis_ldata.sis_tx_list));
SIS_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
sis_shutdown(dev)
device_t dev;
{
struct sis_softc *sc;
sc = device_get_softc(dev);
SIS_LOCK(sc);
sis_reset(sc);
sis_stop(sc);
SIS_UNLOCK(sc);
return;
}