mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-27 16:39:08 +00:00
7a79cebfba
connectivity interact with the net80211 stack. Historical background: originally wireless devices created an interface, just like Ethernet devices do. Name of an interface matched the name of the driver that created. Later, wlan(4) layer was introduced, and the wlanX interfaces become the actual interface, leaving original ones as "a parent interface" of wlanX. Kernelwise, the KPI between net80211 layer and a driver became a mix of methods that pass a pointer to struct ifnet as identifier and methods that pass pointer to struct ieee80211com. From user point of view, the parent interface just hangs on in the ifconfig list, and user can't do anything useful with it. Now, the struct ifnet goes away. The struct ieee80211com is the only KPI between a device driver and net80211. Details: - The struct ieee80211com is embedded into drivers softc. - Packets are sent via new ic_transmit method, which is very much like the previous if_transmit. - Bringing parent up/down is done via new ic_parent method, which notifies driver about any changes: number of wlan(4) interfaces, number of them in promisc or allmulti state. - Device specific ioctls (if any) are received on new ic_ioctl method. - Packets/errors accounting are done by the stack. In certain cases, when driver experiences errors and can not attribute them to any specific interface, driver updates ic_oerrors or ic_ierrors counters. Details on interface configuration with new world order: - A sequence of commands needed to bring up wireless DOESN"T change. - /etc/rc.conf parameters DON'T change. - List of devices that can be used to create wlan(4) interfaces is now provided by net.wlan.devices sysctl. Most drivers in this change were converted by me, except of wpi(4), that was done by Andriy Voskoboinyk. Big thanks to Kevin Lo for testing changes to at least 8 drivers. Thanks to pluknet@, Oliver Hartmann, Olivier Cochard, gjb@, mmoll@, op@ and lev@, who also participated in testing. Reviewed by: adrian Sponsored by: Netflix Sponsored by: Nginx, Inc.
876 lines
22 KiB
C
876 lines
22 KiB
C
/*-
|
|
* Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_tx_edma.h>
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
/*
|
|
* some general macros
|
|
*/
|
|
#define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1)
|
|
#define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1)
|
|
|
|
/*
|
|
* XXX doesn't belong here, and should be tunable
|
|
*/
|
|
#define ATH_TXSTATUS_RING_SIZE 512
|
|
|
|
MALLOC_DECLARE(M_ATHDEV);
|
|
|
|
static void ath_edma_tx_processq(struct ath_softc *sc, int dosched);
|
|
|
|
/*
|
|
* Push some frames into the TX FIFO if we have space.
|
|
*/
|
|
static void
|
|
ath_edma_tx_fifo_fill(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_buf *bf, *bf_last;
|
|
int i = 0;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: called\n",
|
|
__func__,
|
|
txq->axq_qnum);
|
|
|
|
TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
|
|
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH)
|
|
break;
|
|
|
|
/*
|
|
* We have space in the FIFO - so let's push a frame
|
|
* into it.
|
|
*/
|
|
|
|
/*
|
|
* Remove it from the normal list
|
|
*/
|
|
ATH_TXQ_REMOVE(txq, bf, bf_list);
|
|
|
|
/*
|
|
* XXX for now, we only dequeue a frame at a time, so
|
|
* that's only one buffer. Later on when we just
|
|
* push this staging _list_ into the queue, we'll
|
|
* set bf_last to the end pointer in the list.
|
|
*/
|
|
bf_last = bf;
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC,
|
|
"%s: Q%d: depth=%d; pushing %p->%p\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
bf,
|
|
bf_last);
|
|
|
|
/*
|
|
* Append it to the FIFO staging list
|
|
*/
|
|
ATH_TXQ_INSERT_TAIL(&txq->fifo, bf, bf_list);
|
|
|
|
/*
|
|
* Set fifo start / fifo end flags appropriately
|
|
*
|
|
*/
|
|
bf->bf_flags |= ATH_BUF_FIFOPTR;
|
|
bf_last->bf_flags |= ATH_BUF_FIFOEND;
|
|
|
|
/*
|
|
* Push _into_ the FIFO.
|
|
*/
|
|
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0);
|
|
#endif/* ATH_DEBUG */
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
txq->axq_fifo_depth++;
|
|
i++;
|
|
}
|
|
if (i > 0)
|
|
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Re-initialise the DMA FIFO with the current contents of
|
|
* said TXQ.
|
|
*
|
|
* This should only be called as part of the chip reset path, as it
|
|
* assumes the FIFO is currently empty.
|
|
*/
|
|
static void
|
|
ath_edma_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_buf *bf;
|
|
int i = 0;
|
|
int fifostart = 1;
|
|
int old_fifo_depth;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: called\n",
|
|
__func__,
|
|
txq->axq_qnum);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/*
|
|
* Let's log if the tracked FIFO depth doesn't match
|
|
* what we actually push in.
|
|
*/
|
|
old_fifo_depth = txq->axq_fifo_depth;
|
|
txq->axq_fifo_depth = 0;
|
|
|
|
/*
|
|
* Walk the FIFO staging list, looking for "head" entries.
|
|
* Since we may have a partially completed list of frames,
|
|
* we push the first frame we see into the FIFO and re-mark
|
|
* it as the head entry. We then skip entries until we see
|
|
* FIFO end, at which point we get ready to push another
|
|
* entry into the FIFO.
|
|
*/
|
|
TAILQ_FOREACH(bf, &txq->fifo.axq_q, bf_list) {
|
|
/*
|
|
* If we're looking for FIFOEND and we haven't found
|
|
* it, skip.
|
|
*
|
|
* If we're looking for FIFOEND and we've found it,
|
|
* reset for another descriptor.
|
|
*/
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0);
|
|
#endif/* ATH_DEBUG */
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
if (fifostart == 0) {
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND)
|
|
fifostart = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Make sure we're not overflowing the FIFO! */
|
|
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: more frames in the queue; FIFO depth=%d?!\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth);
|
|
}
|
|
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: Q%d: depth=%d: pushing bf=%p; start=%d, end=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
bf,
|
|
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
|
|
!! (bf->bf_flags & ATH_BUF_FIFOEND));
|
|
#endif
|
|
|
|
/*
|
|
* Set this to be the first buffer in the FIFO
|
|
* list - even if it's also the last buffer in
|
|
* a FIFO list!
|
|
*/
|
|
bf->bf_flags |= ATH_BUF_FIFOPTR;
|
|
|
|
/* Push it into the FIFO and bump the FIFO count */
|
|
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_fifo_depth++;
|
|
|
|
/*
|
|
* If this isn't the last entry either, let's
|
|
* clear fifostart so we continue looking for
|
|
* said last entry.
|
|
*/
|
|
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
|
|
fifostart = 0;
|
|
i++;
|
|
}
|
|
|
|
/* Only bother starting the queue if there's something in it */
|
|
if (i > 0)
|
|
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: FIFO depth was %d, is %d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
old_fifo_depth,
|
|
txq->axq_fifo_depth);
|
|
|
|
/* And now, let's check! */
|
|
if (txq->axq_fifo_depth != old_fifo_depth) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: FIFO depth should be %d, is %d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
old_fifo_depth,
|
|
txq->axq_fifo_depth);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hand off this frame to a hardware queue.
|
|
*
|
|
* Things are a bit hairy in the EDMA world. The TX FIFO is only
|
|
* 8 entries deep, so we need to keep track of exactly what we've
|
|
* pushed into the FIFO and what's just sitting in the TX queue,
|
|
* waiting to go out.
|
|
*
|
|
* So this is split into two halves - frames get appended to the
|
|
* TXQ; then a scheduler is called to push some frames into the
|
|
* actual TX FIFO.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
|
|
/*
|
|
* XXX TODO: write a hard-coded check to ensure that
|
|
* the queue id in the TX descriptor matches txq->axq_qnum.
|
|
*/
|
|
|
|
/* Update aggr stats */
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth++;
|
|
|
|
/* Push and update frame stats */
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
|
|
/* For now, set the link pointer in the last descriptor
|
|
* to be NULL.
|
|
*
|
|
* Later on, when it comes time to handling multiple descriptors
|
|
* in one FIFO push, we can link descriptors together this way.
|
|
*/
|
|
|
|
/*
|
|
* Finally, call the FIFO schedule routine to schedule some
|
|
* frames to the FIFO.
|
|
*/
|
|
ath_edma_tx_fifo_fill(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Hand off this frame to a multicast software queue.
|
|
*
|
|
* The EDMA TX CABQ will get a list of chained frames, chained
|
|
* together using the next pointer. The single head of that
|
|
* particular queue is pushed to the hardware CABQ.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
/*
|
|
* XXX this is mostly duplicated in ath_tx_handoff_mcast().
|
|
*/
|
|
if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
|
|
struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
|
|
struct ieee80211_frame *wh;
|
|
|
|
/* mark previous frame */
|
|
wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
|
|
/* re-sync buffer to memory */
|
|
bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* link descriptor */
|
|
ath_hal_settxdesclink(sc->sc_ah,
|
|
bf_last->bf_lastds,
|
|
bf->bf_daddr);
|
|
}
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Handoff this frame to the hardware.
|
|
*
|
|
* For the multicast queue, this will treat it as a software queue
|
|
* and append it to the list, after updating the MORE_DATA flag
|
|
* in the previous frame. The cabq processing code will ensure
|
|
* that the queue contents gets transferred over.
|
|
*
|
|
* For the hardware queues, this will queue a frame to the queue
|
|
* like before, then populate the FIFO from that. Since the
|
|
* EDMA hardware has 8 FIFO slots per TXQ, this ensures that
|
|
* frames such as management frames don't get prematurely dropped.
|
|
*
|
|
* This does imply that a similar flush-hwq-to-fifoq method will
|
|
* need to be called from the processq function, before the
|
|
* per-node software scheduler is called.
|
|
*/
|
|
static void
|
|
ath_edma_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
DPRINTF(sc, ATH_DEBUG_XMIT_DESC,
|
|
"%s: called; bf=%p, txq=%p, qnum=%d\n",
|
|
__func__,
|
|
bf,
|
|
txq,
|
|
txq->axq_qnum);
|
|
|
|
if (txq->axq_qnum == ATH_TXQ_SWQ)
|
|
ath_edma_xmit_handoff_mcast(sc, txq, bf);
|
|
else
|
|
ath_edma_xmit_handoff_hw(sc, txq, bf);
|
|
}
|
|
|
|
static int
|
|
ath_edma_setup_txfifo(struct ath_softc *sc, int qnum)
|
|
{
|
|
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
|
|
|
|
te->m_fifo = malloc(sizeof(struct ath_buf *) * HAL_TXFIFO_DEPTH,
|
|
M_ATHDEV,
|
|
M_NOWAIT | M_ZERO);
|
|
if (te->m_fifo == NULL) {
|
|
device_printf(sc->sc_dev, "%s: malloc failed\n",
|
|
__func__);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Set initial "empty" state.
|
|
*/
|
|
te->m_fifo_head = te->m_fifo_tail = te->m_fifo_depth = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_free_txfifo(struct ath_softc *sc, int qnum)
|
|
{
|
|
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
|
|
|
|
/* XXX TODO: actually deref the ath_buf entries? */
|
|
free(te->m_fifo, M_ATHDEV);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_txsetup(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
error = ath_descdma_alloc_desc(sc, &sc->sc_txsdma,
|
|
NULL, "txcomp", sc->sc_tx_statuslen, ATH_TXSTATUS_RING_SIZE);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
ath_hal_setuptxstatusring(sc->sc_ah,
|
|
(void *) sc->sc_txsdma.dd_desc,
|
|
sc->sc_txsdma.dd_desc_paddr,
|
|
ATH_TXSTATUS_RING_SIZE);
|
|
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
ath_edma_setup_txfifo(sc, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_txteardown(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
ath_edma_free_txfifo(sc, i);
|
|
}
|
|
|
|
ath_descdma_cleanup(sc, &sc->sc_txsdma, NULL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Drain all TXQs, potentially after completing the existing completed
|
|
* frames.
|
|
*/
|
|
static void
|
|
ath_edma_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
|
|
|
|
(void) ath_stoptxdma(sc);
|
|
|
|
/*
|
|
* If reset type is noloss, the TX FIFO needs to be serviced
|
|
* and those frames need to be handled.
|
|
*
|
|
* Otherwise, just toss everything in each TX queue.
|
|
*/
|
|
if (reset_type == ATH_RESET_NOLOSS) {
|
|
ath_edma_tx_processq(sc, 0);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
/*
|
|
* Free the holding buffer; DMA is now
|
|
* stopped.
|
|
*/
|
|
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
|
|
/*
|
|
* Reset the link pointer to NULL; there's
|
|
* no frames to chain DMA to.
|
|
*/
|
|
sc->sc_txq[i].axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i]);
|
|
}
|
|
}
|
|
|
|
/* XXX dump out the TX completion FIFO contents */
|
|
|
|
/* XXX dump out the frames */
|
|
|
|
sc->sc_wd_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* TX completion tasklet.
|
|
*/
|
|
|
|
static void
|
|
ath_edma_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called, npending=%d\n",
|
|
__func__, npending);
|
|
#endif
|
|
ath_edma_tx_processq(sc, 1);
|
|
}
|
|
|
|
/*
|
|
* Process the TX status queue.
|
|
*/
|
|
static void
|
|
ath_edma_tx_processq(struct ath_softc *sc, int dosched)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
struct ath_tx_status ts;
|
|
struct ath_txq *txq;
|
|
struct ath_buf *bf;
|
|
struct ieee80211_node *ni;
|
|
int nacked = 0;
|
|
int idx;
|
|
|
|
#ifdef ATH_DEBUG
|
|
/* XXX */
|
|
uint32_t txstatus[32];
|
|
#endif
|
|
|
|
for (idx = 0; ; idx++) {
|
|
bzero(&ts, sizeof(ts));
|
|
|
|
ATH_TXSTATUS_LOCK(sc);
|
|
#ifdef ATH_DEBUG
|
|
ath_hal_gettxrawtxdesc(ah, txstatus);
|
|
#endif
|
|
status = ath_hal_txprocdesc(ah, NULL, (void *) &ts);
|
|
ATH_TXSTATUS_UNLOCK(sc);
|
|
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_TX_PROC)
|
|
if (ts.ts_queue_id != sc->sc_bhalq)
|
|
ath_printtxstatbuf(sc, NULL, txstatus, ts.ts_queue_id,
|
|
idx, (status == HAL_OK));
|
|
#endif
|
|
|
|
/*
|
|
* If there is an error with this descriptor, continue
|
|
* processing.
|
|
*
|
|
* XXX TBD: log some statistics?
|
|
*/
|
|
if (status == HAL_EIO) {
|
|
device_printf(sc->sc_dev, "%s: invalid TX status?\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
#if defined(ATH_DEBUG_ALQ) && defined(ATH_DEBUG)
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS))
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
|
|
sc->sc_tx_statuslen,
|
|
(char *) txstatus);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
/*
|
|
* At this point we have a valid status descriptor.
|
|
* The QID and descriptor ID (which currently isn't set)
|
|
* is part of the status.
|
|
*
|
|
* We then assume that the descriptor in question is the
|
|
* -head- of the given QID. Eventually we should verify
|
|
* this by using the descriptor ID.
|
|
*/
|
|
|
|
/*
|
|
* The beacon queue is not currently a "real" queue.
|
|
* Frames aren't pushed onto it and the lock isn't setup.
|
|
* So skip it for now; the beacon handling code will
|
|
* free and alloc more beacon buffers as appropriate.
|
|
*/
|
|
if (ts.ts_queue_id == sc->sc_bhalq)
|
|
continue;
|
|
|
|
txq = &sc->sc_txq[ts.ts_queue_id];
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
bf = ATH_TXQ_FIRST(&txq->fifo);
|
|
|
|
/*
|
|
* Work around the situation where I'm seeing notifications
|
|
* for Q1 when no frames are available. That needs to be
|
|
* debugged but not by crashing _here_.
|
|
*/
|
|
if (bf == NULL) {
|
|
device_printf(sc->sc_dev, "%s: Q%d: empty?\n",
|
|
__func__,
|
|
ts.ts_queue_id);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
continue;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d, bf=%p, start=%d, end=%d\n",
|
|
__func__,
|
|
ts.ts_queue_id, bf,
|
|
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
|
|
!! (bf->bf_flags & ATH_BUF_FIFOEND));
|
|
|
|
/* XXX TODO: actually output debugging info about this */
|
|
|
|
#if 0
|
|
/* XXX assert the buffer/descriptor matches the status descid */
|
|
if (ts.ts_desc_id != bf->bf_descid) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: mismatched descid (qid=%d, tsdescid=%d, "
|
|
"bfdescid=%d\n",
|
|
__func__,
|
|
ts.ts_queue_id,
|
|
ts.ts_desc_id,
|
|
bf->bf_descid);
|
|
}
|
|
#endif
|
|
|
|
/* This removes the buffer and decrements the queue depth */
|
|
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth--;
|
|
|
|
/*
|
|
* If this was the end of a FIFO set, decrement FIFO depth
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND)
|
|
txq->axq_fifo_depth--;
|
|
|
|
/*
|
|
* If this isn't the final buffer in a FIFO set, mark
|
|
* the buffer as busy so it goes onto the holding queue.
|
|
*/
|
|
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
|
|
bf->bf_flags |= ATH_BUF_BUSY;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: FIFO depth is now %d (%d)\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
txq->fifo.axq_depth);
|
|
|
|
/* XXX assert FIFO depth >= 0 */
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
/*
|
|
* Outside of the TX lock - if the buffer is end
|
|
* end buffer in this FIFO, we don't need a holding
|
|
* buffer any longer.
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND) {
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_txq_freeholdingbuf(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* First we need to make sure ts_rate is valid.
|
|
*
|
|
* Pre-EDMA chips pass the whole TX descriptor to
|
|
* the proctxdesc function which will then fill out
|
|
* ts_rate based on the ts_finaltsi (final TX index)
|
|
* in the TX descriptor. However the TX completion
|
|
* FIFO doesn't have this information. So here we
|
|
* do a separate HAL call to populate that information.
|
|
*
|
|
* The same problem exists with ts_longretry.
|
|
* The FreeBSD HAL corrects ts_longretry in the HAL layer;
|
|
* the AR9380 HAL currently doesn't. So until the HAL
|
|
* is imported and this can be added, we correct for it
|
|
* here.
|
|
*/
|
|
/* XXX TODO */
|
|
/* XXX faked for now. Ew. */
|
|
if (ts.ts_finaltsi < 4) {
|
|
ts.ts_rate =
|
|
bf->bf_state.bfs_rc[ts.ts_finaltsi].ratecode;
|
|
switch (ts.ts_finaltsi) {
|
|
case 3: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[2].tries;
|
|
case 2: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[1].tries;
|
|
case 1: ts.ts_longretry +=
|
|
bf->bf_state.bfs_rc[0].tries;
|
|
}
|
|
} else {
|
|
device_printf(sc->sc_dev, "%s: finaltsi=%d\n",
|
|
__func__,
|
|
ts.ts_finaltsi);
|
|
ts.ts_rate = bf->bf_state.bfs_rc[0].ratecode;
|
|
}
|
|
|
|
/*
|
|
* XXX This is terrible.
|
|
*
|
|
* Right now, some code uses the TX status that is
|
|
* passed in here, but the completion handlers in the
|
|
* software TX path also use bf_status.ds_txstat.
|
|
* Ew. That should all go away.
|
|
*
|
|
* XXX It's also possible the rate control completion
|
|
* routine is called twice.
|
|
*/
|
|
memcpy(&bf->bf_status, &ts, sizeof(ts));
|
|
|
|
ni = bf->bf_node;
|
|
|
|
/* Update RSSI */
|
|
/* XXX duplicate from ath_tx_processq */
|
|
if (ni != NULL && ts.ts_status == 0 &&
|
|
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
|
|
nacked++;
|
|
sc->sc_stats.ast_tx_rssi = ts.ts_rssi;
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
|
|
ts.ts_rssi);
|
|
}
|
|
|
|
/* Handle frame completion and rate control update */
|
|
ath_tx_process_buf_completion(sc, txq, &ts, bf);
|
|
|
|
/* bf is invalid at this point */
|
|
|
|
/*
|
|
* Now that there's space in the FIFO, let's push some
|
|
* more frames into it.
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
if (dosched)
|
|
ath_edma_tx_fifo_fill(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
sc->sc_wd_timer = 0;
|
|
|
|
/* Kick software scheduler */
|
|
/*
|
|
* XXX It's inefficient to do this if the FIFO queue is full,
|
|
* but there's no easy way right now to only populate
|
|
* the txq task for _one_ TXQ. This should be fixed.
|
|
*/
|
|
if (dosched)
|
|
ath_tx_swq_kick(sc);
|
|
}
|
|
|
|
static void
|
|
ath_edma_attach_comp_func(struct ath_softc *sc)
|
|
{
|
|
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_edma_tx_proc, sc);
|
|
}
|
|
|
|
void
|
|
ath_xmit_setup_edma(struct ath_softc *sc)
|
|
{
|
|
|
|
/* Fetch EDMA field and buffer sizes */
|
|
(void) ath_hal_gettxdesclen(sc->sc_ah, &sc->sc_tx_desclen);
|
|
(void) ath_hal_gettxstatuslen(sc->sc_ah, &sc->sc_tx_statuslen);
|
|
(void) ath_hal_getntxmaps(sc->sc_ah, &sc->sc_tx_nmaps);
|
|
|
|
if (bootverbose) {
|
|
device_printf(sc->sc_dev, "TX descriptor length: %d\n",
|
|
sc->sc_tx_desclen);
|
|
device_printf(sc->sc_dev, "TX status length: %d\n",
|
|
sc->sc_tx_statuslen);
|
|
device_printf(sc->sc_dev, "TX buffers per descriptor: %d\n",
|
|
sc->sc_tx_nmaps);
|
|
}
|
|
|
|
sc->sc_tx.xmit_setup = ath_edma_dma_txsetup;
|
|
sc->sc_tx.xmit_teardown = ath_edma_dma_txteardown;
|
|
sc->sc_tx.xmit_attach_comp_func = ath_edma_attach_comp_func;
|
|
|
|
sc->sc_tx.xmit_dma_restart = ath_edma_dma_restart;
|
|
sc->sc_tx.xmit_handoff = ath_edma_xmit_handoff;
|
|
sc->sc_tx.xmit_drain = ath_edma_tx_drain;
|
|
}
|