mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-25 11:37:56 +00:00
2930 lines
77 KiB
C
2930 lines
77 KiB
C
/* Generate code from machine description to recognize rtl as insns.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
/* This program is used to produce insn-recog.c, which contains a
|
||
function called `recog' plus its subroutines. These functions
|
||
contain a decision tree that recognizes whether an rtx, the
|
||
argument given to recog, is a valid instruction.
|
||
|
||
recog returns -1 if the rtx is not valid. If the rtx is valid,
|
||
recog returns a nonnegative number which is the insn code number
|
||
for the pattern that matched. This is the same as the order in the
|
||
machine description of the entry that matched. This number can be
|
||
used as an index into various insn_* tables, such as insn_template,
|
||
insn_outfun, and insn_n_operands (found in insn-output.c).
|
||
|
||
The third argument to recog is an optional pointer to an int. If
|
||
present, recog will accept a pattern if it matches except for
|
||
missing CLOBBER expressions at the end. In that case, the value
|
||
pointed to by the optional pointer will be set to the number of
|
||
CLOBBERs that need to be added (it should be initialized to zero by
|
||
the caller). If it is set nonzero, the caller should allocate a
|
||
PARALLEL of the appropriate size, copy the initial entries, and
|
||
call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
|
||
|
||
This program also generates the function `split_insns', which
|
||
returns 0 if the rtl could not be split, or it returns the split
|
||
rtl as an INSN list.
|
||
|
||
This program also generates the function `peephole2_insns', which
|
||
returns 0 if the rtl could not be matched. If there was a match,
|
||
the new rtl is returned in an INSN list, and LAST_INSN will point
|
||
to the last recognized insn in the old sequence. */
|
||
|
||
#include "bconfig.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "errors.h"
|
||
#include "gensupport.h"
|
||
|
||
#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
|
||
printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
|
||
|
||
/* A listhead of decision trees. The alternatives to a node are kept
|
||
in a doubly-linked list so we can easily add nodes to the proper
|
||
place when merging. */
|
||
|
||
struct decision_head
|
||
{
|
||
struct decision *first;
|
||
struct decision *last;
|
||
};
|
||
|
||
/* A single test. The two accept types aren't tests per-se, but
|
||
their equality (or lack thereof) does affect tree merging so
|
||
it is convenient to keep them here. */
|
||
|
||
struct decision_test
|
||
{
|
||
/* A linked list through the tests attached to a node. */
|
||
struct decision_test *next;
|
||
|
||
/* These types are roughly in the order in which we'd like to test them. */
|
||
enum decision_type
|
||
{
|
||
DT_num_insns,
|
||
DT_mode, DT_code, DT_veclen,
|
||
DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
|
||
DT_const_int,
|
||
DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
|
||
DT_accept_op, DT_accept_insn
|
||
} type;
|
||
|
||
union
|
||
{
|
||
int num_insns; /* Number if insn in a define_peephole2. */
|
||
enum machine_mode mode; /* Machine mode of node. */
|
||
RTX_CODE code; /* Code to test. */
|
||
|
||
struct
|
||
{
|
||
const char *name; /* Predicate to call. */
|
||
const struct pred_data *data;
|
||
/* Optimization hints for this predicate. */
|
||
enum machine_mode mode; /* Machine mode for node. */
|
||
} pred;
|
||
|
||
const char *c_test; /* Additional test to perform. */
|
||
int veclen; /* Length of vector. */
|
||
int dup; /* Number of operand to compare against. */
|
||
HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
|
||
int opno; /* Operand number matched. */
|
||
|
||
struct {
|
||
int code_number; /* Insn number matched. */
|
||
int lineno; /* Line number of the insn. */
|
||
int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
|
||
} insn;
|
||
} u;
|
||
};
|
||
|
||
/* Data structure for decision tree for recognizing legitimate insns. */
|
||
|
||
struct decision
|
||
{
|
||
struct decision_head success; /* Nodes to test on success. */
|
||
struct decision *next; /* Node to test on failure. */
|
||
struct decision *prev; /* Node whose failure tests us. */
|
||
struct decision *afterward; /* Node to test on success,
|
||
but failure of successor nodes. */
|
||
|
||
const char *position; /* String denoting position in pattern. */
|
||
|
||
struct decision_test *tests; /* The tests for this node. */
|
||
|
||
int number; /* Node number, used for labels */
|
||
int subroutine_number; /* Number of subroutine this node starts */
|
||
int need_label; /* Label needs to be output. */
|
||
};
|
||
|
||
#define SUBROUTINE_THRESHOLD 100
|
||
|
||
static int next_subroutine_number;
|
||
|
||
/* We can write three types of subroutines: One for insn recognition,
|
||
one to split insns, and one for peephole-type optimizations. This
|
||
defines which type is being written. */
|
||
|
||
enum routine_type {
|
||
RECOG, SPLIT, PEEPHOLE2
|
||
};
|
||
|
||
#define IS_SPLIT(X) ((X) != RECOG)
|
||
|
||
/* Next available node number for tree nodes. */
|
||
|
||
static int next_number;
|
||
|
||
/* Next number to use as an insn_code. */
|
||
|
||
static int next_insn_code;
|
||
|
||
/* Record the highest depth we ever have so we know how many variables to
|
||
allocate in each subroutine we make. */
|
||
|
||
static int max_depth;
|
||
|
||
/* The line number of the start of the pattern currently being processed. */
|
||
static int pattern_lineno;
|
||
|
||
/* Count of errors. */
|
||
static int error_count;
|
||
|
||
/* Predicate handling.
|
||
|
||
We construct from the machine description a table mapping each
|
||
predicate to a list of the rtl codes it can possibly match. The
|
||
function 'maybe_both_true' uses it to deduce that there are no
|
||
expressions that can be matches by certain pairs of tree nodes.
|
||
Also, if a predicate can match only one code, we can hardwire that
|
||
code into the node testing the predicate.
|
||
|
||
Some predicates are flagged as special. validate_pattern will not
|
||
warn about modeless match_operand expressions if they have a
|
||
special predicate. Predicates that allow only constants are also
|
||
treated as special, for this purpose.
|
||
|
||
validate_pattern will warn about predicates that allow non-lvalues
|
||
when they appear in destination operands.
|
||
|
||
Calculating the set of rtx codes that can possibly be accepted by a
|
||
predicate expression EXP requires a three-state logic: any given
|
||
subexpression may definitively accept a code C (Y), definitively
|
||
reject a code C (N), or may have an indeterminate effect (I). N
|
||
and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
|
||
truth tables.
|
||
|
||
a b a&b a|b
|
||
Y Y Y Y
|
||
N Y N Y
|
||
N N N N
|
||
I Y I Y
|
||
I N N I
|
||
I I I I
|
||
|
||
We represent Y with 1, N with 0, I with 2. If any code is left in
|
||
an I state by the complete expression, we must assume that that
|
||
code can be accepted. */
|
||
|
||
#define N 0
|
||
#define Y 1
|
||
#define I 2
|
||
|
||
#define TRISTATE_AND(a,b) \
|
||
((a) == I ? ((b) == N ? N : I) : \
|
||
(b) == I ? ((a) == N ? N : I) : \
|
||
(a) && (b))
|
||
|
||
#define TRISTATE_OR(a,b) \
|
||
((a) == I ? ((b) == Y ? Y : I) : \
|
||
(b) == I ? ((a) == Y ? Y : I) : \
|
||
(a) || (b))
|
||
|
||
#define TRISTATE_NOT(a) \
|
||
((a) == I ? I : !(a))
|
||
|
||
/* 0 means no warning about that code yet, 1 means warned. */
|
||
static char did_you_mean_codes[NUM_RTX_CODE];
|
||
|
||
/* Recursively calculate the set of rtx codes accepted by the
|
||
predicate expression EXP, writing the result to CODES. */
|
||
static void
|
||
compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
|
||
{
|
||
char op0_codes[NUM_RTX_CODE];
|
||
char op1_codes[NUM_RTX_CODE];
|
||
char op2_codes[NUM_RTX_CODE];
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
compute_predicate_codes (XEXP (exp, 0), op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), op1_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
|
||
break;
|
||
|
||
case IOR:
|
||
compute_predicate_codes (XEXP (exp, 0), op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), op1_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
|
||
break;
|
||
case NOT:
|
||
compute_predicate_codes (XEXP (exp, 0), op0_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_NOT (op0_codes[i]);
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
/* a ? b : c accepts the same codes as (a & b) | (!a & c). */
|
||
compute_predicate_codes (XEXP (exp, 0), op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), op1_codes);
|
||
compute_predicate_codes (XEXP (exp, 2), op2_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
|
||
TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
|
||
op2_codes[i]));
|
||
break;
|
||
|
||
case MATCH_CODE:
|
||
/* MATCH_CODE allows a specified list of codes. However, if it
|
||
does not apply to the top level of the expression, it does not
|
||
constrain the set of codes for the top level. */
|
||
if (XSTR (exp, 1)[0] != '\0')
|
||
{
|
||
memset (codes, Y, NUM_RTX_CODE);
|
||
break;
|
||
}
|
||
|
||
memset (codes, N, NUM_RTX_CODE);
|
||
{
|
||
const char *next_code = XSTR (exp, 0);
|
||
const char *code;
|
||
|
||
if (*next_code == '\0')
|
||
{
|
||
message_with_line (pattern_lineno, "empty match_code expression");
|
||
error_count++;
|
||
break;
|
||
}
|
||
|
||
while ((code = scan_comma_elt (&next_code)) != 0)
|
||
{
|
||
size_t n = next_code - code;
|
||
int found_it = 0;
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (!strncmp (code, GET_RTX_NAME (i), n)
|
||
&& GET_RTX_NAME (i)[n] == '\0')
|
||
{
|
||
codes[i] = Y;
|
||
found_it = 1;
|
||
break;
|
||
}
|
||
if (!found_it)
|
||
{
|
||
message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
|
||
(int) n, code);
|
||
error_count ++;
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (!strncasecmp (code, GET_RTX_NAME (i), n)
|
||
&& GET_RTX_NAME (i)[n] == '\0'
|
||
&& !did_you_mean_codes[i])
|
||
{
|
||
did_you_mean_codes[i] = 1;
|
||
message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
|
||
}
|
||
}
|
||
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MATCH_OPERAND:
|
||
/* MATCH_OPERAND disallows the set of codes that the named predicate
|
||
disallows, and is indeterminate for the codes that it does allow. */
|
||
{
|
||
struct pred_data *p = lookup_predicate (XSTR (exp, 1));
|
||
if (!p)
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"reference to unknown predicate '%s'",
|
||
XSTR (exp, 1));
|
||
error_count++;
|
||
break;
|
||
}
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = p->codes[i] ? I : N;
|
||
}
|
||
break;
|
||
|
||
|
||
case MATCH_TEST:
|
||
/* (match_test WHATEVER) is completely indeterminate. */
|
||
memset (codes, I, NUM_RTX_CODE);
|
||
break;
|
||
|
||
default:
|
||
message_with_line (pattern_lineno,
|
||
"'%s' cannot be used in a define_predicate expression",
|
||
GET_RTX_NAME (GET_CODE (exp)));
|
||
error_count++;
|
||
memset (codes, I, NUM_RTX_CODE);
|
||
break;
|
||
}
|
||
}
|
||
|
||
#undef TRISTATE_OR
|
||
#undef TRISTATE_AND
|
||
#undef TRISTATE_NOT
|
||
|
||
/* Process a define_predicate expression: compute the set of predicates
|
||
that can be matched, and record this as a known predicate. */
|
||
static void
|
||
process_define_predicate (rtx desc)
|
||
{
|
||
struct pred_data *pred = xcalloc (sizeof (struct pred_data), 1);
|
||
char codes[NUM_RTX_CODE];
|
||
bool seen_one = false;
|
||
int i;
|
||
|
||
pred->name = XSTR (desc, 0);
|
||
if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
|
||
pred->special = 1;
|
||
|
||
compute_predicate_codes (XEXP (desc, 1), codes);
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (codes[i] != N)
|
||
{
|
||
pred->codes[i] = true;
|
||
if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
|
||
pred->allows_non_const = true;
|
||
if (i != REG
|
||
&& i != SUBREG
|
||
&& i != MEM
|
||
&& i != CONCAT
|
||
&& i != PARALLEL
|
||
&& i != STRICT_LOW_PART)
|
||
pred->allows_non_lvalue = true;
|
||
|
||
if (seen_one)
|
||
pred->singleton = UNKNOWN;
|
||
else
|
||
{
|
||
pred->singleton = i;
|
||
seen_one = true;
|
||
}
|
||
}
|
||
add_predicate (pred);
|
||
}
|
||
#undef I
|
||
#undef N
|
||
#undef Y
|
||
|
||
|
||
static struct decision *new_decision
|
||
(const char *, struct decision_head *);
|
||
static struct decision_test *new_decision_test
|
||
(enum decision_type, struct decision_test ***);
|
||
static rtx find_operand
|
||
(rtx, int, rtx);
|
||
static rtx find_matching_operand
|
||
(rtx, int);
|
||
static void validate_pattern
|
||
(rtx, rtx, rtx, int);
|
||
static struct decision *add_to_sequence
|
||
(rtx, struct decision_head *, const char *, enum routine_type, int);
|
||
|
||
static int maybe_both_true_2
|
||
(struct decision_test *, struct decision_test *);
|
||
static int maybe_both_true_1
|
||
(struct decision_test *, struct decision_test *);
|
||
static int maybe_both_true
|
||
(struct decision *, struct decision *, int);
|
||
|
||
static int nodes_identical_1
|
||
(struct decision_test *, struct decision_test *);
|
||
static int nodes_identical
|
||
(struct decision *, struct decision *);
|
||
static void merge_accept_insn
|
||
(struct decision *, struct decision *);
|
||
static void merge_trees
|
||
(struct decision_head *, struct decision_head *);
|
||
|
||
static void factor_tests
|
||
(struct decision_head *);
|
||
static void simplify_tests
|
||
(struct decision_head *);
|
||
static int break_out_subroutines
|
||
(struct decision_head *, int);
|
||
static void find_afterward
|
||
(struct decision_head *, struct decision *);
|
||
|
||
static void change_state
|
||
(const char *, const char *, const char *);
|
||
static void print_code
|
||
(enum rtx_code);
|
||
static void write_afterward
|
||
(struct decision *, struct decision *, const char *);
|
||
static struct decision *write_switch
|
||
(struct decision *, int);
|
||
static void write_cond
|
||
(struct decision_test *, int, enum routine_type);
|
||
static void write_action
|
||
(struct decision *, struct decision_test *, int, int,
|
||
struct decision *, enum routine_type);
|
||
static int is_unconditional
|
||
(struct decision_test *, enum routine_type);
|
||
static int write_node
|
||
(struct decision *, int, enum routine_type);
|
||
static void write_tree_1
|
||
(struct decision_head *, int, enum routine_type);
|
||
static void write_tree
|
||
(struct decision_head *, const char *, enum routine_type, int);
|
||
static void write_subroutine
|
||
(struct decision_head *, enum routine_type);
|
||
static void write_subroutines
|
||
(struct decision_head *, enum routine_type);
|
||
static void write_header
|
||
(void);
|
||
|
||
static struct decision_head make_insn_sequence
|
||
(rtx, enum routine_type);
|
||
static void process_tree
|
||
(struct decision_head *, enum routine_type);
|
||
|
||
static void debug_decision_0
|
||
(struct decision *, int, int);
|
||
static void debug_decision_1
|
||
(struct decision *, int);
|
||
static void debug_decision_2
|
||
(struct decision_test *);
|
||
extern void debug_decision
|
||
(struct decision *);
|
||
extern void debug_decision_list
|
||
(struct decision *);
|
||
|
||
/* Create a new node in sequence after LAST. */
|
||
|
||
static struct decision *
|
||
new_decision (const char *position, struct decision_head *last)
|
||
{
|
||
struct decision *new = xcalloc (1, sizeof (struct decision));
|
||
|
||
new->success = *last;
|
||
new->position = xstrdup (position);
|
||
new->number = next_number++;
|
||
|
||
last->first = last->last = new;
|
||
return new;
|
||
}
|
||
|
||
/* Create a new test and link it in at PLACE. */
|
||
|
||
static struct decision_test *
|
||
new_decision_test (enum decision_type type, struct decision_test ***pplace)
|
||
{
|
||
struct decision_test **place = *pplace;
|
||
struct decision_test *test;
|
||
|
||
test = XNEW (struct decision_test);
|
||
test->next = *place;
|
||
test->type = type;
|
||
*place = test;
|
||
|
||
place = &test->next;
|
||
*pplace = place;
|
||
|
||
return test;
|
||
}
|
||
|
||
/* Search for and return operand N, stop when reaching node STOP. */
|
||
|
||
static rtx
|
||
find_operand (rtx pattern, int n, rtx stop)
|
||
{
|
||
const char *fmt;
|
||
RTX_CODE code;
|
||
int i, j, len;
|
||
rtx r;
|
||
|
||
if (pattern == stop)
|
||
return stop;
|
||
|
||
code = GET_CODE (pattern);
|
||
if ((code == MATCH_SCRATCH
|
||
|| code == MATCH_OPERAND
|
||
|| code == MATCH_OPERATOR
|
||
|| code == MATCH_PARALLEL)
|
||
&& XINT (pattern, 0) == n)
|
||
return pattern;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
|
||
return r;
|
||
break;
|
||
|
||
case 'V':
|
||
if (! XVEC (pattern, i))
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (pattern, i); j++)
|
||
if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
|
||
!= NULL_RTX)
|
||
return r;
|
||
break;
|
||
|
||
case 'i': case 'w': case '0': case 's':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Search for and return operand M, such that it has a matching
|
||
constraint for operand N. */
|
||
|
||
static rtx
|
||
find_matching_operand (rtx pattern, int n)
|
||
{
|
||
const char *fmt;
|
||
RTX_CODE code;
|
||
int i, j, len;
|
||
rtx r;
|
||
|
||
code = GET_CODE (pattern);
|
||
if (code == MATCH_OPERAND
|
||
&& (XSTR (pattern, 2)[0] == '0' + n
|
||
|| (XSTR (pattern, 2)[0] == '%'
|
||
&& XSTR (pattern, 2)[1] == '0' + n)))
|
||
return pattern;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
if ((r = find_matching_operand (XEXP (pattern, i), n)))
|
||
return r;
|
||
break;
|
||
|
||
case 'V':
|
||
if (! XVEC (pattern, i))
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (pattern, i); j++)
|
||
if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
|
||
return r;
|
||
break;
|
||
|
||
case 'i': case 'w': case '0': case 's':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Check for various errors in patterns. SET is nonnull for a destination,
|
||
and is the complete set pattern. SET_CODE is '=' for normal sets, and
|
||
'+' within a context that requires in-out constraints. */
|
||
|
||
static void
|
||
validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
|
||
{
|
||
const char *fmt;
|
||
RTX_CODE code;
|
||
size_t i, len;
|
||
int j;
|
||
|
||
code = GET_CODE (pattern);
|
||
switch (code)
|
||
{
|
||
case MATCH_SCRATCH:
|
||
return;
|
||
case MATCH_DUP:
|
||
case MATCH_OP_DUP:
|
||
case MATCH_PAR_DUP:
|
||
if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"operand %i duplicated before defined",
|
||
XINT (pattern, 0));
|
||
error_count++;
|
||
}
|
||
break;
|
||
case MATCH_OPERAND:
|
||
case MATCH_OPERATOR:
|
||
{
|
||
const char *pred_name = XSTR (pattern, 1);
|
||
const struct pred_data *pred;
|
||
const char *c_test;
|
||
|
||
if (GET_CODE (insn) == DEFINE_INSN)
|
||
c_test = XSTR (insn, 2);
|
||
else
|
||
c_test = XSTR (insn, 1);
|
||
|
||
if (pred_name[0] != 0)
|
||
{
|
||
pred = lookup_predicate (pred_name);
|
||
if (!pred)
|
||
message_with_line (pattern_lineno,
|
||
"warning: unknown predicate '%s'",
|
||
pred_name);
|
||
}
|
||
else
|
||
pred = 0;
|
||
|
||
if (code == MATCH_OPERAND)
|
||
{
|
||
const char constraints0 = XSTR (pattern, 2)[0];
|
||
|
||
/* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
|
||
don't use the MATCH_OPERAND constraint, only the predicate.
|
||
This is confusing to folks doing new ports, so help them
|
||
not make the mistake. */
|
||
if (GET_CODE (insn) == DEFINE_EXPAND
|
||
|| GET_CODE (insn) == DEFINE_SPLIT
|
||
|| GET_CODE (insn) == DEFINE_PEEPHOLE2)
|
||
{
|
||
if (constraints0)
|
||
message_with_line (pattern_lineno,
|
||
"warning: constraints not supported in %s",
|
||
rtx_name[GET_CODE (insn)]);
|
||
}
|
||
|
||
/* A MATCH_OPERAND that is a SET should have an output reload. */
|
||
else if (set && constraints0)
|
||
{
|
||
if (set_code == '+')
|
||
{
|
||
if (constraints0 == '+')
|
||
;
|
||
/* If we've only got an output reload for this operand,
|
||
we'd better have a matching input operand. */
|
||
else if (constraints0 == '='
|
||
&& find_matching_operand (insn, XINT (pattern, 0)))
|
||
;
|
||
else
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"operand %d missing in-out reload",
|
||
XINT (pattern, 0));
|
||
error_count++;
|
||
}
|
||
}
|
||
else if (constraints0 != '=' && constraints0 != '+')
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"operand %d missing output reload",
|
||
XINT (pattern, 0));
|
||
error_count++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allowing non-lvalues in destinations -- particularly CONST_INT --
|
||
while not likely to occur at runtime, results in less efficient
|
||
code from insn-recog.c. */
|
||
if (set && pred && pred->allows_non_lvalue)
|
||
message_with_line (pattern_lineno,
|
||
"warning: destination operand %d "
|
||
"allows non-lvalue",
|
||
XINT (pattern, 0));
|
||
|
||
/* A modeless MATCH_OPERAND can be handy when we can check for
|
||
multiple modes in the c_test. In most other cases, it is a
|
||
mistake. Only DEFINE_INSN is eligible, since SPLIT and
|
||
PEEP2 can FAIL within the output pattern. Exclude special
|
||
predicates, which check the mode themselves. Also exclude
|
||
predicates that allow only constants. Exclude the SET_DEST
|
||
of a call instruction, as that is a common idiom. */
|
||
|
||
if (GET_MODE (pattern) == VOIDmode
|
||
&& code == MATCH_OPERAND
|
||
&& GET_CODE (insn) == DEFINE_INSN
|
||
&& pred
|
||
&& !pred->special
|
||
&& pred->allows_non_const
|
||
&& strstr (c_test, "operands") == NULL
|
||
&& ! (set
|
||
&& GET_CODE (set) == SET
|
||
&& GET_CODE (SET_SRC (set)) == CALL))
|
||
message_with_line (pattern_lineno,
|
||
"warning: operand %d missing mode?",
|
||
XINT (pattern, 0));
|
||
return;
|
||
}
|
||
|
||
case SET:
|
||
{
|
||
enum machine_mode dmode, smode;
|
||
rtx dest, src;
|
||
|
||
dest = SET_DEST (pattern);
|
||
src = SET_SRC (pattern);
|
||
|
||
/* STRICT_LOW_PART is a wrapper. Its argument is the real
|
||
destination, and it's mode should match the source. */
|
||
if (GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
/* Find the referent for a DUP. */
|
||
|
||
if (GET_CODE (dest) == MATCH_DUP
|
||
|| GET_CODE (dest) == MATCH_OP_DUP
|
||
|| GET_CODE (dest) == MATCH_PAR_DUP)
|
||
dest = find_operand (insn, XINT (dest, 0), NULL);
|
||
|
||
if (GET_CODE (src) == MATCH_DUP
|
||
|| GET_CODE (src) == MATCH_OP_DUP
|
||
|| GET_CODE (src) == MATCH_PAR_DUP)
|
||
src = find_operand (insn, XINT (src, 0), NULL);
|
||
|
||
dmode = GET_MODE (dest);
|
||
smode = GET_MODE (src);
|
||
|
||
/* The mode of an ADDRESS_OPERAND is the mode of the memory
|
||
reference, not the mode of the address. */
|
||
if (GET_CODE (src) == MATCH_OPERAND
|
||
&& ! strcmp (XSTR (src, 1), "address_operand"))
|
||
;
|
||
|
||
/* The operands of a SET must have the same mode unless one
|
||
is VOIDmode. */
|
||
else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"mode mismatch in set: %smode vs %smode",
|
||
GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
|
||
error_count++;
|
||
}
|
||
|
||
/* If only one of the operands is VOIDmode, and PC or CC0 is
|
||
not involved, it's probably a mistake. */
|
||
else if (dmode != smode
|
||
&& GET_CODE (dest) != PC
|
||
&& GET_CODE (dest) != CC0
|
||
&& GET_CODE (src) != PC
|
||
&& GET_CODE (src) != CC0
|
||
&& GET_CODE (src) != CONST_INT)
|
||
{
|
||
const char *which;
|
||
which = (dmode == VOIDmode ? "destination" : "source");
|
||
message_with_line (pattern_lineno,
|
||
"warning: %s missing a mode?", which);
|
||
}
|
||
|
||
if (dest != SET_DEST (pattern))
|
||
validate_pattern (dest, insn, pattern, '=');
|
||
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
|
||
validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
|
||
return;
|
||
}
|
||
|
||
case CLOBBER:
|
||
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
|
||
return;
|
||
|
||
case ZERO_EXTRACT:
|
||
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
|
||
validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
|
||
validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
|
||
return;
|
||
|
||
case STRICT_LOW_PART:
|
||
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
|
||
return;
|
||
|
||
case LABEL_REF:
|
||
if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
|
||
{
|
||
message_with_line (pattern_lineno,
|
||
"operand to label_ref %smode not VOIDmode",
|
||
GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
|
||
error_count++;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (pattern, i); j++)
|
||
validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
|
||
break;
|
||
|
||
case 'i': case 'w': case '0': case 's':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create a chain of nodes to verify that an rtl expression matches
|
||
PATTERN.
|
||
|
||
LAST is a pointer to the listhead in the previous node in the chain (or
|
||
in the calling function, for the first node).
|
||
|
||
POSITION is the string representing the current position in the insn.
|
||
|
||
INSN_TYPE is the type of insn for which we are emitting code.
|
||
|
||
A pointer to the final node in the chain is returned. */
|
||
|
||
static struct decision *
|
||
add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
|
||
enum routine_type insn_type, int top)
|
||
{
|
||
RTX_CODE code;
|
||
struct decision *this, *sub;
|
||
struct decision_test *test;
|
||
struct decision_test **place;
|
||
char *subpos;
|
||
size_t i;
|
||
const char *fmt;
|
||
int depth = strlen (position);
|
||
int len;
|
||
enum machine_mode mode;
|
||
|
||
if (depth > max_depth)
|
||
max_depth = depth;
|
||
|
||
subpos = xmalloc (depth + 2);
|
||
strcpy (subpos, position);
|
||
subpos[depth + 1] = 0;
|
||
|
||
sub = this = new_decision (position, last);
|
||
place = &this->tests;
|
||
|
||
restart:
|
||
mode = GET_MODE (pattern);
|
||
code = GET_CODE (pattern);
|
||
|
||
switch (code)
|
||
{
|
||
case PARALLEL:
|
||
/* Toplevel peephole pattern. */
|
||
if (insn_type == PEEPHOLE2 && top)
|
||
{
|
||
int num_insns;
|
||
|
||
/* Check we have sufficient insns. This avoids complications
|
||
because we then know peep2_next_insn never fails. */
|
||
num_insns = XVECLEN (pattern, 0);
|
||
if (num_insns > 1)
|
||
{
|
||
test = new_decision_test (DT_num_insns, &place);
|
||
test->u.num_insns = num_insns;
|
||
last = &sub->success;
|
||
}
|
||
else
|
||
{
|
||
/* We don't need the node we just created -- unlink it. */
|
||
last->first = last->last = NULL;
|
||
}
|
||
|
||
for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
|
||
{
|
||
/* Which insn we're looking at is represented by A-Z. We don't
|
||
ever use 'A', however; it is always implied. */
|
||
|
||
subpos[depth] = (i > 0 ? 'A' + i : 0);
|
||
sub = add_to_sequence (XVECEXP (pattern, 0, i),
|
||
last, subpos, insn_type, 0);
|
||
last = &sub->success;
|
||
}
|
||
goto ret;
|
||
}
|
||
|
||
/* Else nothing special. */
|
||
break;
|
||
|
||
case MATCH_PARALLEL:
|
||
/* The explicit patterns within a match_parallel enforce a minimum
|
||
length on the vector. The match_parallel predicate may allow
|
||
for more elements. We do need to check for this minimum here
|
||
or the code generated to match the internals may reference data
|
||
beyond the end of the vector. */
|
||
test = new_decision_test (DT_veclen_ge, &place);
|
||
test->u.veclen = XVECLEN (pattern, 2);
|
||
/* Fall through. */
|
||
|
||
case MATCH_OPERAND:
|
||
case MATCH_SCRATCH:
|
||
case MATCH_OPERATOR:
|
||
{
|
||
RTX_CODE was_code = code;
|
||
const char *pred_name;
|
||
bool allows_const_int = true;
|
||
|
||
if (code == MATCH_SCRATCH)
|
||
{
|
||
pred_name = "scratch_operand";
|
||
code = UNKNOWN;
|
||
}
|
||
else
|
||
{
|
||
pred_name = XSTR (pattern, 1);
|
||
if (code == MATCH_PARALLEL)
|
||
code = PARALLEL;
|
||
else
|
||
code = UNKNOWN;
|
||
}
|
||
|
||
if (pred_name[0] != 0)
|
||
{
|
||
const struct pred_data *pred;
|
||
|
||
test = new_decision_test (DT_pred, &place);
|
||
test->u.pred.name = pred_name;
|
||
test->u.pred.mode = mode;
|
||
|
||
/* See if we know about this predicate.
|
||
If we do, remember it for use below.
|
||
|
||
We can optimize the generated code a little if either
|
||
(a) the predicate only accepts one code, or (b) the
|
||
predicate does not allow CONST_INT, in which case it
|
||
can match only if the modes match. */
|
||
pred = lookup_predicate (pred_name);
|
||
if (pred)
|
||
{
|
||
test->u.pred.data = pred;
|
||
allows_const_int = pred->codes[CONST_INT];
|
||
if (was_code == MATCH_PARALLEL
|
||
&& pred->singleton != PARALLEL)
|
||
message_with_line (pattern_lineno,
|
||
"predicate '%s' used in match_parallel "
|
||
"does not allow only PARALLEL", pred->name);
|
||
else
|
||
code = pred->singleton;
|
||
}
|
||
else
|
||
message_with_line (pattern_lineno,
|
||
"warning: unknown predicate '%s' in '%s' expression",
|
||
pred_name, GET_RTX_NAME (was_code));
|
||
}
|
||
|
||
/* Can't enforce a mode if we allow const_int. */
|
||
if (allows_const_int)
|
||
mode = VOIDmode;
|
||
|
||
/* Accept the operand, i.e. record it in `operands'. */
|
||
test = new_decision_test (DT_accept_op, &place);
|
||
test->u.opno = XINT (pattern, 0);
|
||
|
||
if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
|
||
{
|
||
char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
|
||
for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
|
||
{
|
||
subpos[depth] = i + base;
|
||
sub = add_to_sequence (XVECEXP (pattern, 2, i),
|
||
&sub->success, subpos, insn_type, 0);
|
||
}
|
||
}
|
||
goto fini;
|
||
}
|
||
|
||
case MATCH_OP_DUP:
|
||
code = UNKNOWN;
|
||
|
||
test = new_decision_test (DT_dup, &place);
|
||
test->u.dup = XINT (pattern, 0);
|
||
|
||
test = new_decision_test (DT_accept_op, &place);
|
||
test->u.opno = XINT (pattern, 0);
|
||
|
||
for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
|
||
{
|
||
subpos[depth] = i + '0';
|
||
sub = add_to_sequence (XVECEXP (pattern, 1, i),
|
||
&sub->success, subpos, insn_type, 0);
|
||
}
|
||
goto fini;
|
||
|
||
case MATCH_DUP:
|
||
case MATCH_PAR_DUP:
|
||
code = UNKNOWN;
|
||
|
||
test = new_decision_test (DT_dup, &place);
|
||
test->u.dup = XINT (pattern, 0);
|
||
goto fini;
|
||
|
||
case ADDRESS:
|
||
pattern = XEXP (pattern, 0);
|
||
goto restart;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
|
||
/* Do tests against the current node first. */
|
||
for (i = 0; i < (size_t) len; i++)
|
||
{
|
||
if (fmt[i] == 'i')
|
||
{
|
||
gcc_assert (i < 2);
|
||
|
||
if (!i)
|
||
{
|
||
test = new_decision_test (DT_elt_zero_int, &place);
|
||
test->u.intval = XINT (pattern, i);
|
||
}
|
||
else
|
||
{
|
||
test = new_decision_test (DT_elt_one_int, &place);
|
||
test->u.intval = XINT (pattern, i);
|
||
}
|
||
}
|
||
else if (fmt[i] == 'w')
|
||
{
|
||
/* If this value actually fits in an int, we can use a switch
|
||
statement here, so indicate that. */
|
||
enum decision_type type
|
||
= ((int) XWINT (pattern, i) == XWINT (pattern, i))
|
||
? DT_elt_zero_wide_safe : DT_elt_zero_wide;
|
||
|
||
gcc_assert (!i);
|
||
|
||
test = new_decision_test (type, &place);
|
||
test->u.intval = XWINT (pattern, i);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
gcc_assert (!i);
|
||
|
||
test = new_decision_test (DT_veclen, &place);
|
||
test->u.veclen = XVECLEN (pattern, i);
|
||
}
|
||
}
|
||
|
||
/* Now test our sub-patterns. */
|
||
for (i = 0; i < (size_t) len; i++)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
subpos[depth] = '0' + i;
|
||
sub = add_to_sequence (XEXP (pattern, i), &sub->success,
|
||
subpos, insn_type, 0);
|
||
break;
|
||
|
||
case 'E':
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (pattern, i); j++)
|
||
{
|
||
subpos[depth] = 'a' + j;
|
||
sub = add_to_sequence (XVECEXP (pattern, i, j),
|
||
&sub->success, subpos, insn_type, 0);
|
||
}
|
||
break;
|
||
}
|
||
|
||
case 'i': case 'w':
|
||
/* Handled above. */
|
||
break;
|
||
case '0':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
fini:
|
||
/* Insert nodes testing mode and code, if they're still relevant,
|
||
before any of the nodes we may have added above. */
|
||
if (code != UNKNOWN)
|
||
{
|
||
place = &this->tests;
|
||
test = new_decision_test (DT_code, &place);
|
||
test->u.code = code;
|
||
}
|
||
|
||
if (mode != VOIDmode)
|
||
{
|
||
place = &this->tests;
|
||
test = new_decision_test (DT_mode, &place);
|
||
test->u.mode = mode;
|
||
}
|
||
|
||
/* If we didn't insert any tests or accept nodes, hork. */
|
||
gcc_assert (this->tests);
|
||
|
||
ret:
|
||
free (subpos);
|
||
return sub;
|
||
}
|
||
|
||
/* A subroutine of maybe_both_true; examines only one test.
|
||
Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
|
||
|
||
static int
|
||
maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
|
||
{
|
||
if (d1->type == d2->type)
|
||
{
|
||
switch (d1->type)
|
||
{
|
||
case DT_num_insns:
|
||
if (d1->u.num_insns == d2->u.num_insns)
|
||
return 1;
|
||
else
|
||
return -1;
|
||
|
||
case DT_mode:
|
||
return d1->u.mode == d2->u.mode;
|
||
|
||
case DT_code:
|
||
return d1->u.code == d2->u.code;
|
||
|
||
case DT_veclen:
|
||
return d1->u.veclen == d2->u.veclen;
|
||
|
||
case DT_elt_zero_int:
|
||
case DT_elt_one_int:
|
||
case DT_elt_zero_wide:
|
||
case DT_elt_zero_wide_safe:
|
||
return d1->u.intval == d2->u.intval;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If either has a predicate that we know something about, set
|
||
things up so that D1 is the one that always has a known
|
||
predicate. Then see if they have any codes in common. */
|
||
|
||
if (d1->type == DT_pred || d2->type == DT_pred)
|
||
{
|
||
if (d2->type == DT_pred)
|
||
{
|
||
struct decision_test *tmp;
|
||
tmp = d1, d1 = d2, d2 = tmp;
|
||
}
|
||
|
||
/* If D2 tests a mode, see if it matches D1. */
|
||
if (d1->u.pred.mode != VOIDmode)
|
||
{
|
||
if (d2->type == DT_mode)
|
||
{
|
||
if (d1->u.pred.mode != d2->u.mode
|
||
/* The mode of an address_operand predicate is the
|
||
mode of the memory, not the operand. It can only
|
||
be used for testing the predicate, so we must
|
||
ignore it here. */
|
||
&& strcmp (d1->u.pred.name, "address_operand") != 0)
|
||
return 0;
|
||
}
|
||
/* Don't check two predicate modes here, because if both predicates
|
||
accept CONST_INT, then both can still be true even if the modes
|
||
are different. If they don't accept CONST_INT, there will be a
|
||
separate DT_mode that will make maybe_both_true_1 return 0. */
|
||
}
|
||
|
||
if (d1->u.pred.data)
|
||
{
|
||
/* If D2 tests a code, see if it is in the list of valid
|
||
codes for D1's predicate. */
|
||
if (d2->type == DT_code)
|
||
{
|
||
if (!d1->u.pred.data->codes[d2->u.code])
|
||
return 0;
|
||
}
|
||
|
||
/* Otherwise see if the predicates have any codes in common. */
|
||
else if (d2->type == DT_pred && d2->u.pred.data)
|
||
{
|
||
bool common = false;
|
||
enum rtx_code c;
|
||
|
||
for (c = 0; c < NUM_RTX_CODE; c++)
|
||
if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
|
||
{
|
||
common = true;
|
||
break;
|
||
}
|
||
|
||
if (!common)
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Tests vs veclen may be known when strict equality is involved. */
|
||
if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
|
||
return d1->u.veclen >= d2->u.veclen;
|
||
if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
|
||
return d2->u.veclen >= d1->u.veclen;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* A subroutine of maybe_both_true; examines all the tests for a given node.
|
||
Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
|
||
|
||
static int
|
||
maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
|
||
{
|
||
struct decision_test *t1, *t2;
|
||
|
||
/* A match_operand with no predicate can match anything. Recognize
|
||
this by the existence of a lone DT_accept_op test. */
|
||
if (d1->type == DT_accept_op || d2->type == DT_accept_op)
|
||
return 1;
|
||
|
||
/* Eliminate pairs of tests while they can exactly match. */
|
||
while (d1 && d2 && d1->type == d2->type)
|
||
{
|
||
if (maybe_both_true_2 (d1, d2) == 0)
|
||
return 0;
|
||
d1 = d1->next, d2 = d2->next;
|
||
}
|
||
|
||
/* After that, consider all pairs. */
|
||
for (t1 = d1; t1 ; t1 = t1->next)
|
||
for (t2 = d2; t2 ; t2 = t2->next)
|
||
if (maybe_both_true_2 (t1, t2) == 0)
|
||
return 0;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Return 0 if we can prove that there is no RTL that can match both
|
||
D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
|
||
can match both or just that we couldn't prove there wasn't such an RTL).
|
||
|
||
TOPLEVEL is nonzero if we are to only look at the top level and not
|
||
recursively descend. */
|
||
|
||
static int
|
||
maybe_both_true (struct decision *d1, struct decision *d2,
|
||
int toplevel)
|
||
{
|
||
struct decision *p1, *p2;
|
||
int cmp;
|
||
|
||
/* Don't compare strings on the different positions in insn. Doing so
|
||
is incorrect and results in false matches from constructs like
|
||
|
||
[(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
|
||
(subreg:HI (match_operand:SI "register_operand" "r") 0))]
|
||
vs
|
||
[(set (match_operand:HI "register_operand" "r")
|
||
(match_operand:HI "register_operand" "r"))]
|
||
|
||
If we are presented with such, we are recursing through the remainder
|
||
of a node's success nodes (from the loop at the end of this function).
|
||
Skip forward until we come to a position that matches.
|
||
|
||
Due to the way position strings are constructed, we know that iterating
|
||
forward from the lexically lower position (e.g. "00") will run into
|
||
the lexically higher position (e.g. "1") and not the other way around.
|
||
This saves a bit of effort. */
|
||
|
||
cmp = strcmp (d1->position, d2->position);
|
||
if (cmp != 0)
|
||
{
|
||
gcc_assert (!toplevel);
|
||
|
||
/* If the d2->position was lexically lower, swap. */
|
||
if (cmp > 0)
|
||
p1 = d1, d1 = d2, d2 = p1;
|
||
|
||
if (d1->success.first == 0)
|
||
return 1;
|
||
for (p1 = d1->success.first; p1; p1 = p1->next)
|
||
if (maybe_both_true (p1, d2, 0))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Test the current level. */
|
||
cmp = maybe_both_true_1 (d1->tests, d2->tests);
|
||
if (cmp >= 0)
|
||
return cmp;
|
||
|
||
/* We can't prove that D1 and D2 cannot both be true. If we are only
|
||
to check the top level, return 1. Otherwise, see if we can prove
|
||
that all choices in both successors are mutually exclusive. If
|
||
either does not have any successors, we can't prove they can't both
|
||
be true. */
|
||
|
||
if (toplevel || d1->success.first == 0 || d2->success.first == 0)
|
||
return 1;
|
||
|
||
for (p1 = d1->success.first; p1; p1 = p1->next)
|
||
for (p2 = d2->success.first; p2; p2 = p2->next)
|
||
if (maybe_both_true (p1, p2, 0))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* A subroutine of nodes_identical. Examine two tests for equivalence. */
|
||
|
||
static int
|
||
nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
|
||
{
|
||
switch (d1->type)
|
||
{
|
||
case DT_num_insns:
|
||
return d1->u.num_insns == d2->u.num_insns;
|
||
|
||
case DT_mode:
|
||
return d1->u.mode == d2->u.mode;
|
||
|
||
case DT_code:
|
||
return d1->u.code == d2->u.code;
|
||
|
||
case DT_pred:
|
||
return (d1->u.pred.mode == d2->u.pred.mode
|
||
&& strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
|
||
|
||
case DT_c_test:
|
||
return strcmp (d1->u.c_test, d2->u.c_test) == 0;
|
||
|
||
case DT_veclen:
|
||
case DT_veclen_ge:
|
||
return d1->u.veclen == d2->u.veclen;
|
||
|
||
case DT_dup:
|
||
return d1->u.dup == d2->u.dup;
|
||
|
||
case DT_elt_zero_int:
|
||
case DT_elt_one_int:
|
||
case DT_elt_zero_wide:
|
||
case DT_elt_zero_wide_safe:
|
||
return d1->u.intval == d2->u.intval;
|
||
|
||
case DT_accept_op:
|
||
return d1->u.opno == d2->u.opno;
|
||
|
||
case DT_accept_insn:
|
||
/* Differences will be handled in merge_accept_insn. */
|
||
return 1;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* True iff the two nodes are identical (on one level only). Due
|
||
to the way these lists are constructed, we shouldn't have to
|
||
consider different orderings on the tests. */
|
||
|
||
static int
|
||
nodes_identical (struct decision *d1, struct decision *d2)
|
||
{
|
||
struct decision_test *t1, *t2;
|
||
|
||
for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
|
||
{
|
||
if (t1->type != t2->type)
|
||
return 0;
|
||
if (! nodes_identical_1 (t1, t2))
|
||
return 0;
|
||
}
|
||
|
||
/* For success, they should now both be null. */
|
||
if (t1 != t2)
|
||
return 0;
|
||
|
||
/* Check that their subnodes are at the same position, as any one set
|
||
of sibling decisions must be at the same position. Allowing this
|
||
requires complications to find_afterward and when change_state is
|
||
invoked. */
|
||
if (d1->success.first
|
||
&& d2->success.first
|
||
&& strcmp (d1->success.first->position, d2->success.first->position))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A subroutine of merge_trees; given two nodes that have been declared
|
||
identical, cope with two insn accept states. If they differ in the
|
||
number of clobbers, then the conflict was created by make_insn_sequence
|
||
and we can drop the with-clobbers version on the floor. If both
|
||
nodes have no additional clobbers, we have found an ambiguity in the
|
||
source machine description. */
|
||
|
||
static void
|
||
merge_accept_insn (struct decision *oldd, struct decision *addd)
|
||
{
|
||
struct decision_test *old, *add;
|
||
|
||
for (old = oldd->tests; old; old = old->next)
|
||
if (old->type == DT_accept_insn)
|
||
break;
|
||
if (old == NULL)
|
||
return;
|
||
|
||
for (add = addd->tests; add; add = add->next)
|
||
if (add->type == DT_accept_insn)
|
||
break;
|
||
if (add == NULL)
|
||
return;
|
||
|
||
/* If one node is for a normal insn and the second is for the base
|
||
insn with clobbers stripped off, the second node should be ignored. */
|
||
|
||
if (old->u.insn.num_clobbers_to_add == 0
|
||
&& add->u.insn.num_clobbers_to_add > 0)
|
||
{
|
||
/* Nothing to do here. */
|
||
}
|
||
else if (old->u.insn.num_clobbers_to_add > 0
|
||
&& add->u.insn.num_clobbers_to_add == 0)
|
||
{
|
||
/* In this case, replace OLD with ADD. */
|
||
old->u.insn = add->u.insn;
|
||
}
|
||
else
|
||
{
|
||
message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
|
||
get_insn_name (add->u.insn.code_number),
|
||
get_insn_name (old->u.insn.code_number));
|
||
message_with_line (old->u.insn.lineno, "previous definition of `%s'",
|
||
get_insn_name (old->u.insn.code_number));
|
||
error_count++;
|
||
}
|
||
}
|
||
|
||
/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
|
||
|
||
static void
|
||
merge_trees (struct decision_head *oldh, struct decision_head *addh)
|
||
{
|
||
struct decision *next, *add;
|
||
|
||
if (addh->first == 0)
|
||
return;
|
||
if (oldh->first == 0)
|
||
{
|
||
*oldh = *addh;
|
||
return;
|
||
}
|
||
|
||
/* Trying to merge bits at different positions isn't possible. */
|
||
gcc_assert (!strcmp (oldh->first->position, addh->first->position));
|
||
|
||
for (add = addh->first; add ; add = next)
|
||
{
|
||
struct decision *old, *insert_before = NULL;
|
||
|
||
next = add->next;
|
||
|
||
/* The semantics of pattern matching state that the tests are
|
||
done in the order given in the MD file so that if an insn
|
||
matches two patterns, the first one will be used. However,
|
||
in practice, most, if not all, patterns are unambiguous so
|
||
that their order is independent. In that case, we can merge
|
||
identical tests and group all similar modes and codes together.
|
||
|
||
Scan starting from the end of OLDH until we reach a point
|
||
where we reach the head of the list or where we pass a
|
||
pattern that could also be true if NEW is true. If we find
|
||
an identical pattern, we can merge them. Also, record the
|
||
last node that tests the same code and mode and the last one
|
||
that tests just the same mode.
|
||
|
||
If we have no match, place NEW after the closest match we found. */
|
||
|
||
for (old = oldh->last; old; old = old->prev)
|
||
{
|
||
if (nodes_identical (old, add))
|
||
{
|
||
merge_accept_insn (old, add);
|
||
merge_trees (&old->success, &add->success);
|
||
goto merged_nodes;
|
||
}
|
||
|
||
if (maybe_both_true (old, add, 0))
|
||
break;
|
||
|
||
/* Insert the nodes in DT test type order, which is roughly
|
||
how expensive/important the test is. Given that the tests
|
||
are also ordered within the list, examining the first is
|
||
sufficient. */
|
||
if ((int) add->tests->type < (int) old->tests->type)
|
||
insert_before = old;
|
||
}
|
||
|
||
if (insert_before == NULL)
|
||
{
|
||
add->next = NULL;
|
||
add->prev = oldh->last;
|
||
oldh->last->next = add;
|
||
oldh->last = add;
|
||
}
|
||
else
|
||
{
|
||
if ((add->prev = insert_before->prev) != NULL)
|
||
add->prev->next = add;
|
||
else
|
||
oldh->first = add;
|
||
add->next = insert_before;
|
||
insert_before->prev = add;
|
||
}
|
||
|
||
merged_nodes:;
|
||
}
|
||
}
|
||
|
||
/* Walk the tree looking for sub-nodes that perform common tests.
|
||
Factor out the common test into a new node. This enables us
|
||
(depending on the test type) to emit switch statements later. */
|
||
|
||
static void
|
||
factor_tests (struct decision_head *head)
|
||
{
|
||
struct decision *first, *next;
|
||
|
||
for (first = head->first; first && first->next; first = next)
|
||
{
|
||
enum decision_type type;
|
||
struct decision *new, *old_last;
|
||
|
||
type = first->tests->type;
|
||
next = first->next;
|
||
|
||
/* Want at least two compatible sequential nodes. */
|
||
if (next->tests->type != type)
|
||
continue;
|
||
|
||
/* Don't want all node types, just those we can turn into
|
||
switch statements. */
|
||
if (type != DT_mode
|
||
&& type != DT_code
|
||
&& type != DT_veclen
|
||
&& type != DT_elt_zero_int
|
||
&& type != DT_elt_one_int
|
||
&& type != DT_elt_zero_wide_safe)
|
||
continue;
|
||
|
||
/* If we'd been performing more than one test, create a new node
|
||
below our first test. */
|
||
if (first->tests->next != NULL)
|
||
{
|
||
new = new_decision (first->position, &first->success);
|
||
new->tests = first->tests->next;
|
||
first->tests->next = NULL;
|
||
}
|
||
|
||
/* Crop the node tree off after our first test. */
|
||
first->next = NULL;
|
||
old_last = head->last;
|
||
head->last = first;
|
||
|
||
/* For each compatible test, adjust to perform only one test in
|
||
the top level node, then merge the node back into the tree. */
|
||
do
|
||
{
|
||
struct decision_head h;
|
||
|
||
if (next->tests->next != NULL)
|
||
{
|
||
new = new_decision (next->position, &next->success);
|
||
new->tests = next->tests->next;
|
||
next->tests->next = NULL;
|
||
}
|
||
new = next;
|
||
next = next->next;
|
||
new->next = NULL;
|
||
h.first = h.last = new;
|
||
|
||
merge_trees (head, &h);
|
||
}
|
||
while (next && next->tests->type == type);
|
||
|
||
/* After we run out of compatible tests, graft the remaining nodes
|
||
back onto the tree. */
|
||
if (next)
|
||
{
|
||
next->prev = head->last;
|
||
head->last->next = next;
|
||
head->last = old_last;
|
||
}
|
||
}
|
||
|
||
/* Recurse. */
|
||
for (first = head->first; first; first = first->next)
|
||
factor_tests (&first->success);
|
||
}
|
||
|
||
/* After factoring, try to simplify the tests on any one node.
|
||
Tests that are useful for switch statements are recognizable
|
||
by having only a single test on a node -- we'll be manipulating
|
||
nodes with multiple tests:
|
||
|
||
If we have mode tests or code tests that are redundant with
|
||
predicates, remove them. */
|
||
|
||
static void
|
||
simplify_tests (struct decision_head *head)
|
||
{
|
||
struct decision *tree;
|
||
|
||
for (tree = head->first; tree; tree = tree->next)
|
||
{
|
||
struct decision_test *a, *b;
|
||
|
||
a = tree->tests;
|
||
b = a->next;
|
||
if (b == NULL)
|
||
continue;
|
||
|
||
/* Find a predicate node. */
|
||
while (b && b->type != DT_pred)
|
||
b = b->next;
|
||
if (b)
|
||
{
|
||
/* Due to how these tests are constructed, we don't even need
|
||
to check that the mode and code are compatible -- they were
|
||
generated from the predicate in the first place. */
|
||
while (a->type == DT_mode || a->type == DT_code)
|
||
a = a->next;
|
||
tree->tests = a;
|
||
}
|
||
}
|
||
|
||
/* Recurse. */
|
||
for (tree = head->first; tree; tree = tree->next)
|
||
simplify_tests (&tree->success);
|
||
}
|
||
|
||
/* Count the number of subnodes of HEAD. If the number is high enough,
|
||
make the first node in HEAD start a separate subroutine in the C code
|
||
that is generated. */
|
||
|
||
static int
|
||
break_out_subroutines (struct decision_head *head, int initial)
|
||
{
|
||
int size = 0;
|
||
struct decision *sub;
|
||
|
||
for (sub = head->first; sub; sub = sub->next)
|
||
size += 1 + break_out_subroutines (&sub->success, 0);
|
||
|
||
if (size > SUBROUTINE_THRESHOLD && ! initial)
|
||
{
|
||
head->first->subroutine_number = ++next_subroutine_number;
|
||
size = 1;
|
||
}
|
||
return size;
|
||
}
|
||
|
||
/* For each node p, find the next alternative that might be true
|
||
when p is true. */
|
||
|
||
static void
|
||
find_afterward (struct decision_head *head, struct decision *real_afterward)
|
||
{
|
||
struct decision *p, *q, *afterward;
|
||
|
||
/* We can't propagate alternatives across subroutine boundaries.
|
||
This is not incorrect, merely a minor optimization loss. */
|
||
|
||
p = head->first;
|
||
afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
|
||
|
||
for ( ; p ; p = p->next)
|
||
{
|
||
/* Find the next node that might be true if this one fails. */
|
||
for (q = p->next; q ; q = q->next)
|
||
if (maybe_both_true (p, q, 1))
|
||
break;
|
||
|
||
/* If we reached the end of the list without finding one,
|
||
use the incoming afterward position. */
|
||
if (!q)
|
||
q = afterward;
|
||
p->afterward = q;
|
||
if (q)
|
||
q->need_label = 1;
|
||
}
|
||
|
||
/* Recurse. */
|
||
for (p = head->first; p ; p = p->next)
|
||
if (p->success.first)
|
||
find_afterward (&p->success, p->afterward);
|
||
|
||
/* When we are generating a subroutine, record the real afterward
|
||
position in the first node where write_tree can find it, and we
|
||
can do the right thing at the subroutine call site. */
|
||
p = head->first;
|
||
if (p->subroutine_number > 0)
|
||
p->afterward = real_afterward;
|
||
}
|
||
|
||
/* Assuming that the state of argument is denoted by OLDPOS, take whatever
|
||
actions are necessary to move to NEWPOS. If we fail to move to the
|
||
new state, branch to node AFTERWARD if nonzero, otherwise return.
|
||
|
||
Failure to move to the new state can only occur if we are trying to
|
||
match multiple insns and we try to step past the end of the stream. */
|
||
|
||
static void
|
||
change_state (const char *oldpos, const char *newpos, const char *indent)
|
||
{
|
||
int odepth = strlen (oldpos);
|
||
int ndepth = strlen (newpos);
|
||
int depth;
|
||
int old_has_insn, new_has_insn;
|
||
|
||
/* Pop up as many levels as necessary. */
|
||
for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
|
||
continue;
|
||
|
||
/* Hunt for the last [A-Z] in both strings. */
|
||
for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
|
||
if (ISUPPER (oldpos[old_has_insn]))
|
||
break;
|
||
for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
|
||
if (ISUPPER (newpos[new_has_insn]))
|
||
break;
|
||
|
||
/* Go down to desired level. */
|
||
while (depth < ndepth)
|
||
{
|
||
/* It's a different insn from the first one. */
|
||
if (ISUPPER (newpos[depth]))
|
||
{
|
||
printf ("%stem = peep2_next_insn (%d);\n",
|
||
indent, newpos[depth] - 'A');
|
||
printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
|
||
}
|
||
else if (ISLOWER (newpos[depth]))
|
||
printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
|
||
indent, depth + 1, depth, newpos[depth] - 'a');
|
||
else
|
||
printf ("%sx%d = XEXP (x%d, %c);\n",
|
||
indent, depth + 1, depth, newpos[depth]);
|
||
++depth;
|
||
}
|
||
}
|
||
|
||
/* Print the enumerator constant for CODE -- the upcase version of
|
||
the name. */
|
||
|
||
static void
|
||
print_code (enum rtx_code code)
|
||
{
|
||
const char *p;
|
||
for (p = GET_RTX_NAME (code); *p; p++)
|
||
putchar (TOUPPER (*p));
|
||
}
|
||
|
||
/* Emit code to cross an afterward link -- change state and branch. */
|
||
|
||
static void
|
||
write_afterward (struct decision *start, struct decision *afterward,
|
||
const char *indent)
|
||
{
|
||
if (!afterward || start->subroutine_number > 0)
|
||
printf("%sgoto ret0;\n", indent);
|
||
else
|
||
{
|
||
change_state (start->position, afterward->position, indent);
|
||
printf ("%sgoto L%d;\n", indent, afterward->number);
|
||
}
|
||
}
|
||
|
||
/* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
|
||
special care to avoid "decimal constant is so large that it is unsigned"
|
||
warnings in the resulting code. */
|
||
|
||
static void
|
||
print_host_wide_int (HOST_WIDE_INT val)
|
||
{
|
||
HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
|
||
if (val == min)
|
||
printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
|
||
else
|
||
printf (HOST_WIDE_INT_PRINT_DEC_C, val);
|
||
}
|
||
|
||
/* Emit a switch statement, if possible, for an initial sequence of
|
||
nodes at START. Return the first node yet untested. */
|
||
|
||
static struct decision *
|
||
write_switch (struct decision *start, int depth)
|
||
{
|
||
struct decision *p = start;
|
||
enum decision_type type = p->tests->type;
|
||
struct decision *needs_label = NULL;
|
||
|
||
/* If we have two or more nodes in sequence that test the same one
|
||
thing, we may be able to use a switch statement. */
|
||
|
||
if (!p->next
|
||
|| p->tests->next
|
||
|| p->next->tests->type != type
|
||
|| p->next->tests->next
|
||
|| nodes_identical_1 (p->tests, p->next->tests))
|
||
return p;
|
||
|
||
/* DT_code is special in that we can do interesting things with
|
||
known predicates at the same time. */
|
||
if (type == DT_code)
|
||
{
|
||
char codemap[NUM_RTX_CODE];
|
||
struct decision *ret;
|
||
RTX_CODE code;
|
||
|
||
memset (codemap, 0, sizeof(codemap));
|
||
|
||
printf (" switch (GET_CODE (x%d))\n {\n", depth);
|
||
code = p->tests->u.code;
|
||
do
|
||
{
|
||
if (p != start && p->need_label && needs_label == NULL)
|
||
needs_label = p;
|
||
|
||
printf (" case ");
|
||
print_code (code);
|
||
printf (":\n goto L%d;\n", p->success.first->number);
|
||
p->success.first->need_label = 1;
|
||
|
||
codemap[code] = 1;
|
||
p = p->next;
|
||
}
|
||
while (p
|
||
&& ! p->tests->next
|
||
&& p->tests->type == DT_code
|
||
&& ! codemap[code = p->tests->u.code]);
|
||
|
||
/* If P is testing a predicate that we know about and we haven't
|
||
seen any of the codes that are valid for the predicate, we can
|
||
write a series of "case" statement, one for each possible code.
|
||
Since we are already in a switch, these redundant tests are very
|
||
cheap and will reduce the number of predicates called. */
|
||
|
||
/* Note that while we write out cases for these predicates here,
|
||
we don't actually write the test here, as it gets kinda messy.
|
||
It is trivial to leave this to later by telling our caller that
|
||
we only processed the CODE tests. */
|
||
if (needs_label != NULL)
|
||
ret = needs_label;
|
||
else
|
||
ret = p;
|
||
|
||
while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
|
||
{
|
||
const struct pred_data *data = p->tests->u.pred.data;
|
||
RTX_CODE c;
|
||
for (c = 0; c < NUM_RTX_CODE; c++)
|
||
if (codemap[c] && data->codes[c])
|
||
goto pred_done;
|
||
|
||
for (c = 0; c < NUM_RTX_CODE; c++)
|
||
if (data->codes[c])
|
||
{
|
||
fputs (" case ", stdout);
|
||
print_code (c);
|
||
fputs (":\n", stdout);
|
||
codemap[c] = 1;
|
||
}
|
||
|
||
printf (" goto L%d;\n", p->number);
|
||
p->need_label = 1;
|
||
p = p->next;
|
||
}
|
||
|
||
pred_done:
|
||
/* Make the default case skip the predicates we managed to match. */
|
||
|
||
printf (" default:\n");
|
||
if (p != ret)
|
||
{
|
||
if (p)
|
||
{
|
||
printf (" goto L%d;\n", p->number);
|
||
p->need_label = 1;
|
||
}
|
||
else
|
||
write_afterward (start, start->afterward, " ");
|
||
}
|
||
else
|
||
printf (" break;\n");
|
||
printf (" }\n");
|
||
|
||
return ret;
|
||
}
|
||
else if (type == DT_mode
|
||
|| type == DT_veclen
|
||
|| type == DT_elt_zero_int
|
||
|| type == DT_elt_one_int
|
||
|| type == DT_elt_zero_wide_safe)
|
||
{
|
||
const char *indent = "";
|
||
|
||
/* We cast switch parameter to integer, so we must ensure that the value
|
||
fits. */
|
||
if (type == DT_elt_zero_wide_safe)
|
||
{
|
||
indent = " ";
|
||
printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
|
||
}
|
||
printf ("%s switch (", indent);
|
||
switch (type)
|
||
{
|
||
case DT_mode:
|
||
printf ("GET_MODE (x%d)", depth);
|
||
break;
|
||
case DT_veclen:
|
||
printf ("XVECLEN (x%d, 0)", depth);
|
||
break;
|
||
case DT_elt_zero_int:
|
||
printf ("XINT (x%d, 0)", depth);
|
||
break;
|
||
case DT_elt_one_int:
|
||
printf ("XINT (x%d, 1)", depth);
|
||
break;
|
||
case DT_elt_zero_wide_safe:
|
||
/* Convert result of XWINT to int for portability since some C
|
||
compilers won't do it and some will. */
|
||
printf ("(int) XWINT (x%d, 0)", depth);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
printf (")\n%s {\n", indent);
|
||
|
||
do
|
||
{
|
||
/* Merge trees will not unify identical nodes if their
|
||
sub-nodes are at different levels. Thus we must check
|
||
for duplicate cases. */
|
||
struct decision *q;
|
||
for (q = start; q != p; q = q->next)
|
||
if (nodes_identical_1 (p->tests, q->tests))
|
||
goto case_done;
|
||
|
||
if (p != start && p->need_label && needs_label == NULL)
|
||
needs_label = p;
|
||
|
||
printf ("%s case ", indent);
|
||
switch (type)
|
||
{
|
||
case DT_mode:
|
||
printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
|
||
break;
|
||
case DT_veclen:
|
||
printf ("%d", p->tests->u.veclen);
|
||
break;
|
||
case DT_elt_zero_int:
|
||
case DT_elt_one_int:
|
||
case DT_elt_zero_wide:
|
||
case DT_elt_zero_wide_safe:
|
||
print_host_wide_int (p->tests->u.intval);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
printf (":\n%s goto L%d;\n", indent, p->success.first->number);
|
||
p->success.first->need_label = 1;
|
||
|
||
p = p->next;
|
||
}
|
||
while (p && p->tests->type == type && !p->tests->next);
|
||
|
||
case_done:
|
||
printf ("%s default:\n%s break;\n%s }\n",
|
||
indent, indent, indent);
|
||
|
||
return needs_label != NULL ? needs_label : p;
|
||
}
|
||
else
|
||
{
|
||
/* None of the other tests are amenable. */
|
||
return p;
|
||
}
|
||
}
|
||
|
||
/* Emit code for one test. */
|
||
|
||
static void
|
||
write_cond (struct decision_test *p, int depth,
|
||
enum routine_type subroutine_type)
|
||
{
|
||
switch (p->type)
|
||
{
|
||
case DT_num_insns:
|
||
printf ("peep2_current_count >= %d", p->u.num_insns);
|
||
break;
|
||
|
||
case DT_mode:
|
||
printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
|
||
break;
|
||
|
||
case DT_code:
|
||
printf ("GET_CODE (x%d) == ", depth);
|
||
print_code (p->u.code);
|
||
break;
|
||
|
||
case DT_veclen:
|
||
printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
|
||
break;
|
||
|
||
case DT_elt_zero_int:
|
||
printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
|
||
break;
|
||
|
||
case DT_elt_one_int:
|
||
printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
|
||
break;
|
||
|
||
case DT_elt_zero_wide:
|
||
case DT_elt_zero_wide_safe:
|
||
printf ("XWINT (x%d, 0) == ", depth);
|
||
print_host_wide_int (p->u.intval);
|
||
break;
|
||
|
||
case DT_const_int:
|
||
printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
|
||
depth, (int) p->u.intval);
|
||
break;
|
||
|
||
case DT_veclen_ge:
|
||
printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
|
||
break;
|
||
|
||
case DT_dup:
|
||
printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
|
||
break;
|
||
|
||
case DT_pred:
|
||
printf ("%s (x%d, %smode)", p->u.pred.name, depth,
|
||
GET_MODE_NAME (p->u.pred.mode));
|
||
break;
|
||
|
||
case DT_c_test:
|
||
print_c_condition (p->u.c_test);
|
||
break;
|
||
|
||
case DT_accept_insn:
|
||
gcc_assert (subroutine_type == RECOG);
|
||
gcc_assert (p->u.insn.num_clobbers_to_add);
|
||
printf ("pnum_clobbers != NULL");
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Emit code for one action. The previous tests have succeeded;
|
||
TEST is the last of the chain. In the normal case we simply
|
||
perform a state change. For the `accept' tests we must do more work. */
|
||
|
||
static void
|
||
write_action (struct decision *p, struct decision_test *test,
|
||
int depth, int uncond, struct decision *success,
|
||
enum routine_type subroutine_type)
|
||
{
|
||
const char *indent;
|
||
int want_close = 0;
|
||
|
||
if (uncond)
|
||
indent = " ";
|
||
else if (test->type == DT_accept_op || test->type == DT_accept_insn)
|
||
{
|
||
fputs (" {\n", stdout);
|
||
indent = " ";
|
||
want_close = 1;
|
||
}
|
||
else
|
||
indent = " ";
|
||
|
||
if (test->type == DT_accept_op)
|
||
{
|
||
printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
|
||
|
||
/* Only allow DT_accept_insn to follow. */
|
||
if (test->next)
|
||
{
|
||
test = test->next;
|
||
gcc_assert (test->type == DT_accept_insn);
|
||
}
|
||
}
|
||
|
||
/* Sanity check that we're now at the end of the list of tests. */
|
||
gcc_assert (!test->next);
|
||
|
||
if (test->type == DT_accept_insn)
|
||
{
|
||
switch (subroutine_type)
|
||
{
|
||
case RECOG:
|
||
if (test->u.insn.num_clobbers_to_add != 0)
|
||
printf ("%s*pnum_clobbers = %d;\n",
|
||
indent, test->u.insn.num_clobbers_to_add);
|
||
printf ("%sreturn %d; /* %s */\n", indent,
|
||
test->u.insn.code_number,
|
||
get_insn_name (test->u.insn.code_number));
|
||
break;
|
||
|
||
case SPLIT:
|
||
printf ("%sreturn gen_split_%d (insn, operands);\n",
|
||
indent, test->u.insn.code_number);
|
||
break;
|
||
|
||
case PEEPHOLE2:
|
||
{
|
||
int match_len = 0, i;
|
||
|
||
for (i = strlen (p->position) - 1; i >= 0; --i)
|
||
if (ISUPPER (p->position[i]))
|
||
{
|
||
match_len = p->position[i] - 'A';
|
||
break;
|
||
}
|
||
printf ("%s*_pmatch_len = %d;\n", indent, match_len);
|
||
printf ("%stem = gen_peephole2_%d (insn, operands);\n",
|
||
indent, test->u.insn.code_number);
|
||
printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
printf("%sgoto L%d;\n", indent, success->number);
|
||
success->need_label = 1;
|
||
}
|
||
|
||
if (want_close)
|
||
fputs (" }\n", stdout);
|
||
}
|
||
|
||
/* Return 1 if the test is always true and has no fallthru path. Return -1
|
||
if the test does have a fallthru path, but requires that the condition be
|
||
terminated. Otherwise return 0 for a normal test. */
|
||
/* ??? is_unconditional is a stupid name for a tri-state function. */
|
||
|
||
static int
|
||
is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
|
||
{
|
||
if (t->type == DT_accept_op)
|
||
return 1;
|
||
|
||
if (t->type == DT_accept_insn)
|
||
{
|
||
switch (subroutine_type)
|
||
{
|
||
case RECOG:
|
||
return (t->u.insn.num_clobbers_to_add == 0);
|
||
case SPLIT:
|
||
return 1;
|
||
case PEEPHOLE2:
|
||
return -1;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit code for one node -- the conditional and the accompanying action.
|
||
Return true if there is no fallthru path. */
|
||
|
||
static int
|
||
write_node (struct decision *p, int depth,
|
||
enum routine_type subroutine_type)
|
||
{
|
||
struct decision_test *test, *last_test;
|
||
int uncond;
|
||
|
||
/* Scan the tests and simplify comparisons against small
|
||
constants. */
|
||
for (test = p->tests; test; test = test->next)
|
||
{
|
||
if (test->type == DT_code
|
||
&& test->u.code == CONST_INT
|
||
&& test->next
|
||
&& test->next->type == DT_elt_zero_wide_safe
|
||
&& -MAX_SAVED_CONST_INT <= test->next->u.intval
|
||
&& test->next->u.intval <= MAX_SAVED_CONST_INT)
|
||
{
|
||
test->type = DT_const_int;
|
||
test->u.intval = test->next->u.intval;
|
||
test->next = test->next->next;
|
||
}
|
||
}
|
||
|
||
last_test = test = p->tests;
|
||
uncond = is_unconditional (test, subroutine_type);
|
||
if (uncond == 0)
|
||
{
|
||
printf (" if (");
|
||
write_cond (test, depth, subroutine_type);
|
||
|
||
while ((test = test->next) != NULL)
|
||
{
|
||
last_test = test;
|
||
if (is_unconditional (test, subroutine_type))
|
||
break;
|
||
|
||
printf ("\n && ");
|
||
write_cond (test, depth, subroutine_type);
|
||
}
|
||
|
||
printf (")\n");
|
||
}
|
||
|
||
write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
|
||
|
||
return uncond > 0;
|
||
}
|
||
|
||
/* Emit code for all of the sibling nodes of HEAD. */
|
||
|
||
static void
|
||
write_tree_1 (struct decision_head *head, int depth,
|
||
enum routine_type subroutine_type)
|
||
{
|
||
struct decision *p, *next;
|
||
int uncond = 0;
|
||
|
||
for (p = head->first; p ; p = next)
|
||
{
|
||
/* The label for the first element was printed in write_tree. */
|
||
if (p != head->first && p->need_label)
|
||
OUTPUT_LABEL (" ", p->number);
|
||
|
||
/* Attempt to write a switch statement for a whole sequence. */
|
||
next = write_switch (p, depth);
|
||
if (p != next)
|
||
uncond = 0;
|
||
else
|
||
{
|
||
/* Failed -- fall back and write one node. */
|
||
uncond = write_node (p, depth, subroutine_type);
|
||
next = p->next;
|
||
}
|
||
}
|
||
|
||
/* Finished with this chain. Close a fallthru path by branching
|
||
to the afterward node. */
|
||
if (! uncond)
|
||
write_afterward (head->last, head->last->afterward, " ");
|
||
}
|
||
|
||
/* Write out the decision tree starting at HEAD. PREVPOS is the
|
||
position at the node that branched to this node. */
|
||
|
||
static void
|
||
write_tree (struct decision_head *head, const char *prevpos,
|
||
enum routine_type type, int initial)
|
||
{
|
||
struct decision *p = head->first;
|
||
|
||
putchar ('\n');
|
||
if (p->need_label)
|
||
OUTPUT_LABEL (" ", p->number);
|
||
|
||
if (! initial && p->subroutine_number > 0)
|
||
{
|
||
static const char * const name_prefix[] = {
|
||
"recog", "split", "peephole2"
|
||
};
|
||
|
||
static const char * const call_suffix[] = {
|
||
", pnum_clobbers", "", ", _pmatch_len"
|
||
};
|
||
|
||
/* This node has been broken out into a separate subroutine.
|
||
Call it, test the result, and branch accordingly. */
|
||
|
||
if (p->afterward)
|
||
{
|
||
printf (" tem = %s_%d (x0, insn%s);\n",
|
||
name_prefix[type], p->subroutine_number, call_suffix[type]);
|
||
if (IS_SPLIT (type))
|
||
printf (" if (tem != 0)\n return tem;\n");
|
||
else
|
||
printf (" if (tem >= 0)\n return tem;\n");
|
||
|
||
change_state (p->position, p->afterward->position, " ");
|
||
printf (" goto L%d;\n", p->afterward->number);
|
||
}
|
||
else
|
||
{
|
||
printf (" return %s_%d (x0, insn%s);\n",
|
||
name_prefix[type], p->subroutine_number, call_suffix[type]);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int depth = strlen (p->position);
|
||
|
||
change_state (prevpos, p->position, " ");
|
||
write_tree_1 (head, depth, type);
|
||
|
||
for (p = head->first; p; p = p->next)
|
||
if (p->success.first)
|
||
write_tree (&p->success, p->position, type, 0);
|
||
}
|
||
}
|
||
|
||
/* Write out a subroutine of type TYPE to do comparisons starting at
|
||
node TREE. */
|
||
|
||
static void
|
||
write_subroutine (struct decision_head *head, enum routine_type type)
|
||
{
|
||
int subfunction = head->first ? head->first->subroutine_number : 0;
|
||
const char *s_or_e;
|
||
char extension[32];
|
||
int i;
|
||
|
||
s_or_e = subfunction ? "static " : "";
|
||
|
||
if (subfunction)
|
||
sprintf (extension, "_%d", subfunction);
|
||
else if (type == RECOG)
|
||
extension[0] = '\0';
|
||
else
|
||
strcpy (extension, "_insns");
|
||
|
||
switch (type)
|
||
{
|
||
case RECOG:
|
||
printf ("%sint\n\
|
||
recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
|
||
break;
|
||
case SPLIT:
|
||
printf ("%srtx\n\
|
||
split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
|
||
s_or_e, extension);
|
||
break;
|
||
case PEEPHOLE2:
|
||
printf ("%srtx\n\
|
||
peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
|
||
s_or_e, extension);
|
||
break;
|
||
}
|
||
|
||
printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
|
||
for (i = 1; i <= max_depth; i++)
|
||
printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
|
||
|
||
printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
|
||
|
||
if (!subfunction)
|
||
printf (" recog_data.insn = NULL_RTX;\n");
|
||
|
||
if (head->first)
|
||
write_tree (head, "", type, 1);
|
||
else
|
||
printf (" goto ret0;\n");
|
||
|
||
printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
|
||
}
|
||
|
||
/* In break_out_subroutines, we discovered the boundaries for the
|
||
subroutines, but did not write them out. Do so now. */
|
||
|
||
static void
|
||
write_subroutines (struct decision_head *head, enum routine_type type)
|
||
{
|
||
struct decision *p;
|
||
|
||
for (p = head->first; p ; p = p->next)
|
||
if (p->success.first)
|
||
write_subroutines (&p->success, type);
|
||
|
||
if (head->first->subroutine_number > 0)
|
||
write_subroutine (head, type);
|
||
}
|
||
|
||
/* Begin the output file. */
|
||
|
||
static void
|
||
write_header (void)
|
||
{
|
||
puts ("\
|
||
/* Generated automatically by the program `genrecog' from the target\n\
|
||
machine description file. */\n\
|
||
\n\
|
||
#include \"config.h\"\n\
|
||
#include \"system.h\"\n\
|
||
#include \"coretypes.h\"\n\
|
||
#include \"tm.h\"\n\
|
||
#include \"rtl.h\"\n\
|
||
#include \"tm_p.h\"\n\
|
||
#include \"function.h\"\n\
|
||
#include \"insn-config.h\"\n\
|
||
#include \"recog.h\"\n\
|
||
#include \"real.h\"\n\
|
||
#include \"output.h\"\n\
|
||
#include \"flags.h\"\n\
|
||
#include \"hard-reg-set.h\"\n\
|
||
#include \"resource.h\"\n\
|
||
#include \"toplev.h\"\n\
|
||
#include \"reload.h\"\n\
|
||
#include \"tm-constrs.h\"\n\
|
||
\n");
|
||
|
||
puts ("\n\
|
||
/* `recog' contains a decision tree that recognizes whether the rtx\n\
|
||
X0 is a valid instruction.\n\
|
||
\n\
|
||
recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
|
||
returns a nonnegative number which is the insn code number for the\n\
|
||
pattern that matched. This is the same as the order in the machine\n\
|
||
description of the entry that matched. This number can be used as an\n\
|
||
index into `insn_data' and other tables.\n");
|
||
puts ("\
|
||
The third argument to recog is an optional pointer to an int. If\n\
|
||
present, recog will accept a pattern if it matches except for missing\n\
|
||
CLOBBER expressions at the end. In that case, the value pointed to by\n\
|
||
the optional pointer will be set to the number of CLOBBERs that need\n\
|
||
to be added (it should be initialized to zero by the caller). If it");
|
||
puts ("\
|
||
is set nonzero, the caller should allocate a PARALLEL of the\n\
|
||
appropriate size, copy the initial entries, and call add_clobbers\n\
|
||
(found in insn-emit.c) to fill in the CLOBBERs.\n\
|
||
");
|
||
|
||
puts ("\n\
|
||
The function split_insns returns 0 if the rtl could not\n\
|
||
be split or the split rtl as an INSN list if it can be.\n\
|
||
\n\
|
||
The function peephole2_insns returns 0 if the rtl could not\n\
|
||
be matched. If there was a match, the new rtl is returned in an INSN list,\n\
|
||
and LAST_INSN will point to the last recognized insn in the old sequence.\n\
|
||
*/\n\n");
|
||
}
|
||
|
||
|
||
/* Construct and return a sequence of decisions
|
||
that will recognize INSN.
|
||
|
||
TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
|
||
|
||
static struct decision_head
|
||
make_insn_sequence (rtx insn, enum routine_type type)
|
||
{
|
||
rtx x;
|
||
const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
|
||
int truth = maybe_eval_c_test (c_test);
|
||
struct decision *last;
|
||
struct decision_test *test, **place;
|
||
struct decision_head head;
|
||
char c_test_pos[2];
|
||
|
||
/* We should never see an insn whose C test is false at compile time. */
|
||
gcc_assert (truth);
|
||
|
||
c_test_pos[0] = '\0';
|
||
if (type == PEEPHOLE2)
|
||
{
|
||
int i, j;
|
||
|
||
/* peephole2 gets special treatment:
|
||
- X always gets an outer parallel even if it's only one entry
|
||
- we remove all traces of outer-level match_scratch and match_dup
|
||
expressions here. */
|
||
x = rtx_alloc (PARALLEL);
|
||
PUT_MODE (x, VOIDmode);
|
||
XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
|
||
for (i = j = 0; i < XVECLEN (insn, 0); i++)
|
||
{
|
||
rtx tmp = XVECEXP (insn, 0, i);
|
||
if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
|
||
{
|
||
XVECEXP (x, 0, j) = tmp;
|
||
j++;
|
||
}
|
||
}
|
||
XVECLEN (x, 0) = j;
|
||
|
||
c_test_pos[0] = 'A' + j - 1;
|
||
c_test_pos[1] = '\0';
|
||
}
|
||
else if (XVECLEN (insn, type == RECOG) == 1)
|
||
x = XVECEXP (insn, type == RECOG, 0);
|
||
else
|
||
{
|
||
x = rtx_alloc (PARALLEL);
|
||
XVEC (x, 0) = XVEC (insn, type == RECOG);
|
||
PUT_MODE (x, VOIDmode);
|
||
}
|
||
|
||
validate_pattern (x, insn, NULL_RTX, 0);
|
||
|
||
memset(&head, 0, sizeof(head));
|
||
last = add_to_sequence (x, &head, "", type, 1);
|
||
|
||
/* Find the end of the test chain on the last node. */
|
||
for (test = last->tests; test->next; test = test->next)
|
||
continue;
|
||
place = &test->next;
|
||
|
||
/* Skip the C test if it's known to be true at compile time. */
|
||
if (truth == -1)
|
||
{
|
||
/* Need a new node if we have another test to add. */
|
||
if (test->type == DT_accept_op)
|
||
{
|
||
last = new_decision (c_test_pos, &last->success);
|
||
place = &last->tests;
|
||
}
|
||
test = new_decision_test (DT_c_test, &place);
|
||
test->u.c_test = c_test;
|
||
}
|
||
|
||
test = new_decision_test (DT_accept_insn, &place);
|
||
test->u.insn.code_number = next_insn_code;
|
||
test->u.insn.lineno = pattern_lineno;
|
||
test->u.insn.num_clobbers_to_add = 0;
|
||
|
||
switch (type)
|
||
{
|
||
case RECOG:
|
||
/* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
|
||
with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
|
||
If so, set up to recognize the pattern without these CLOBBERs. */
|
||
|
||
if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
/* Find the last non-clobber in the parallel. */
|
||
for (i = XVECLEN (x, 0); i > 0; i--)
|
||
{
|
||
rtx y = XVECEXP (x, 0, i - 1);
|
||
if (GET_CODE (y) != CLOBBER
|
||
|| (!REG_P (XEXP (y, 0))
|
||
&& GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
|
||
break;
|
||
}
|
||
|
||
if (i != XVECLEN (x, 0))
|
||
{
|
||
rtx new;
|
||
struct decision_head clobber_head;
|
||
|
||
/* Build a similar insn without the clobbers. */
|
||
if (i == 1)
|
||
new = XVECEXP (x, 0, 0);
|
||
else
|
||
{
|
||
int j;
|
||
|
||
new = rtx_alloc (PARALLEL);
|
||
XVEC (new, 0) = rtvec_alloc (i);
|
||
for (j = i - 1; j >= 0; j--)
|
||
XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
|
||
}
|
||
|
||
/* Recognize it. */
|
||
memset (&clobber_head, 0, sizeof(clobber_head));
|
||
last = add_to_sequence (new, &clobber_head, "", type, 1);
|
||
|
||
/* Find the end of the test chain on the last node. */
|
||
for (test = last->tests; test->next; test = test->next)
|
||
continue;
|
||
|
||
/* We definitely have a new test to add -- create a new
|
||
node if needed. */
|
||
place = &test->next;
|
||
if (test->type == DT_accept_op)
|
||
{
|
||
last = new_decision ("", &last->success);
|
||
place = &last->tests;
|
||
}
|
||
|
||
/* Skip the C test if it's known to be true at compile
|
||
time. */
|
||
if (truth == -1)
|
||
{
|
||
test = new_decision_test (DT_c_test, &place);
|
||
test->u.c_test = c_test;
|
||
}
|
||
|
||
test = new_decision_test (DT_accept_insn, &place);
|
||
test->u.insn.code_number = next_insn_code;
|
||
test->u.insn.lineno = pattern_lineno;
|
||
test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
|
||
|
||
merge_trees (&head, &clobber_head);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SPLIT:
|
||
/* Define the subroutine we will call below and emit in genemit. */
|
||
printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
|
||
break;
|
||
|
||
case PEEPHOLE2:
|
||
/* Define the subroutine we will call below and emit in genemit. */
|
||
printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
|
||
next_insn_code);
|
||
break;
|
||
}
|
||
|
||
return head;
|
||
}
|
||
|
||
static void
|
||
process_tree (struct decision_head *head, enum routine_type subroutine_type)
|
||
{
|
||
if (head->first == NULL)
|
||
{
|
||
/* We can elide peephole2_insns, but not recog or split_insns. */
|
||
if (subroutine_type == PEEPHOLE2)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
factor_tests (head);
|
||
|
||
next_subroutine_number = 0;
|
||
break_out_subroutines (head, 1);
|
||
find_afterward (head, NULL);
|
||
|
||
/* We run this after find_afterward, because find_afterward needs
|
||
the redundant DT_mode tests on predicates to determine whether
|
||
two tests can both be true or not. */
|
||
simplify_tests(head);
|
||
|
||
write_subroutines (head, subroutine_type);
|
||
}
|
||
|
||
write_subroutine (head, subroutine_type);
|
||
}
|
||
|
||
extern int main (int, char **);
|
||
|
||
int
|
||
main (int argc, char **argv)
|
||
{
|
||
rtx desc;
|
||
struct decision_head recog_tree, split_tree, peephole2_tree, h;
|
||
|
||
progname = "genrecog";
|
||
|
||
memset (&recog_tree, 0, sizeof recog_tree);
|
||
memset (&split_tree, 0, sizeof split_tree);
|
||
memset (&peephole2_tree, 0, sizeof peephole2_tree);
|
||
|
||
if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
|
||
return (FATAL_EXIT_CODE);
|
||
|
||
next_insn_code = 0;
|
||
|
||
write_header ();
|
||
|
||
/* Read the machine description. */
|
||
|
||
while (1)
|
||
{
|
||
desc = read_md_rtx (&pattern_lineno, &next_insn_code);
|
||
if (desc == NULL)
|
||
break;
|
||
|
||
switch (GET_CODE (desc))
|
||
{
|
||
case DEFINE_PREDICATE:
|
||
case DEFINE_SPECIAL_PREDICATE:
|
||
process_define_predicate (desc);
|
||
break;
|
||
|
||
case DEFINE_INSN:
|
||
h = make_insn_sequence (desc, RECOG);
|
||
merge_trees (&recog_tree, &h);
|
||
break;
|
||
|
||
case DEFINE_SPLIT:
|
||
h = make_insn_sequence (desc, SPLIT);
|
||
merge_trees (&split_tree, &h);
|
||
break;
|
||
|
||
case DEFINE_PEEPHOLE2:
|
||
h = make_insn_sequence (desc, PEEPHOLE2);
|
||
merge_trees (&peephole2_tree, &h);
|
||
|
||
default:
|
||
/* do nothing */;
|
||
}
|
||
}
|
||
|
||
if (error_count || have_error)
|
||
return FATAL_EXIT_CODE;
|
||
|
||
puts ("\n\n");
|
||
|
||
process_tree (&recog_tree, RECOG);
|
||
process_tree (&split_tree, SPLIT);
|
||
process_tree (&peephole2_tree, PEEPHOLE2);
|
||
|
||
fflush (stdout);
|
||
return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
|
||
}
|
||
|
||
static void
|
||
debug_decision_2 (struct decision_test *test)
|
||
{
|
||
switch (test->type)
|
||
{
|
||
case DT_num_insns:
|
||
fprintf (stderr, "num_insns=%d", test->u.num_insns);
|
||
break;
|
||
case DT_mode:
|
||
fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
|
||
break;
|
||
case DT_code:
|
||
fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
|
||
break;
|
||
case DT_veclen:
|
||
fprintf (stderr, "veclen=%d", test->u.veclen);
|
||
break;
|
||
case DT_elt_zero_int:
|
||
fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
|
||
break;
|
||
case DT_elt_one_int:
|
||
fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
|
||
break;
|
||
case DT_elt_zero_wide:
|
||
fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
|
||
break;
|
||
case DT_elt_zero_wide_safe:
|
||
fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
|
||
break;
|
||
case DT_veclen_ge:
|
||
fprintf (stderr, "veclen>=%d", test->u.veclen);
|
||
break;
|
||
case DT_dup:
|
||
fprintf (stderr, "dup=%d", test->u.dup);
|
||
break;
|
||
case DT_pred:
|
||
fprintf (stderr, "pred=(%s,%s)",
|
||
test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
|
||
break;
|
||
case DT_c_test:
|
||
{
|
||
char sub[16+4];
|
||
strncpy (sub, test->u.c_test, sizeof(sub));
|
||
memcpy (sub+16, "...", 4);
|
||
fprintf (stderr, "c_test=\"%s\"", sub);
|
||
}
|
||
break;
|
||
case DT_accept_op:
|
||
fprintf (stderr, "A_op=%d", test->u.opno);
|
||
break;
|
||
case DT_accept_insn:
|
||
fprintf (stderr, "A_insn=(%d,%d)",
|
||
test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
static void
|
||
debug_decision_1 (struct decision *d, int indent)
|
||
{
|
||
int i;
|
||
struct decision_test *test;
|
||
|
||
if (d == NULL)
|
||
{
|
||
for (i = 0; i < indent; ++i)
|
||
putc (' ', stderr);
|
||
fputs ("(nil)\n", stderr);
|
||
return;
|
||
}
|
||
|
||
for (i = 0; i < indent; ++i)
|
||
putc (' ', stderr);
|
||
|
||
putc ('{', stderr);
|
||
test = d->tests;
|
||
if (test)
|
||
{
|
||
debug_decision_2 (test);
|
||
while ((test = test->next) != NULL)
|
||
{
|
||
fputs (" + ", stderr);
|
||
debug_decision_2 (test);
|
||
}
|
||
}
|
||
fprintf (stderr, "} %d n %d a %d\n", d->number,
|
||
(d->next ? d->next->number : -1),
|
||
(d->afterward ? d->afterward->number : -1));
|
||
}
|
||
|
||
static void
|
||
debug_decision_0 (struct decision *d, int indent, int maxdepth)
|
||
{
|
||
struct decision *n;
|
||
int i;
|
||
|
||
if (maxdepth < 0)
|
||
return;
|
||
if (d == NULL)
|
||
{
|
||
for (i = 0; i < indent; ++i)
|
||
putc (' ', stderr);
|
||
fputs ("(nil)\n", stderr);
|
||
return;
|
||
}
|
||
|
||
debug_decision_1 (d, indent);
|
||
for (n = d->success.first; n ; n = n->next)
|
||
debug_decision_0 (n, indent + 2, maxdepth - 1);
|
||
}
|
||
|
||
void
|
||
debug_decision (struct decision *d)
|
||
{
|
||
debug_decision_0 (d, 0, 1000000);
|
||
}
|
||
|
||
void
|
||
debug_decision_list (struct decision *d)
|
||
{
|
||
while (d)
|
||
{
|
||
debug_decision_0 (d, 0, 0);
|
||
d = d->next;
|
||
}
|
||
}
|