mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-12 14:29:28 +00:00
2557 lines
73 KiB
C
2557 lines
73 KiB
C
/* Swing Modulo Scheduling implementation.
|
||
Copyright (C) 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "toplev.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "recog.h"
|
||
#include "sched-int.h"
|
||
#include "target.h"
|
||
#include "cfglayout.h"
|
||
#include "cfgloop.h"
|
||
#include "cfghooks.h"
|
||
#include "expr.h"
|
||
#include "params.h"
|
||
#include "gcov-io.h"
|
||
#include "df.h"
|
||
#include "ddg.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
|
||
/* This file contains the implementation of the Swing Modulo Scheduler,
|
||
described in the following references:
|
||
[1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
|
||
Lifetime--sensitive modulo scheduling in a production environment.
|
||
IEEE Trans. on Comps., 50(3), March 2001
|
||
[2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
|
||
Swing Modulo Scheduling: A Lifetime Sensitive Approach.
|
||
PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
|
||
|
||
The basic structure is:
|
||
1. Build a data-dependence graph (DDG) for each loop.
|
||
2. Use the DDG to order the insns of a loop (not in topological order
|
||
necessarily, but rather) trying to place each insn after all its
|
||
predecessors _or_ after all its successors.
|
||
3. Compute MII: a lower bound on the number of cycles to schedule the loop.
|
||
4. Use the ordering to perform list-scheduling of the loop:
|
||
1. Set II = MII. We will try to schedule the loop within II cycles.
|
||
2. Try to schedule the insns one by one according to the ordering.
|
||
For each insn compute an interval of cycles by considering already-
|
||
scheduled preds and succs (and associated latencies); try to place
|
||
the insn in the cycles of this window checking for potential
|
||
resource conflicts (using the DFA interface).
|
||
Note: this is different from the cycle-scheduling of schedule_insns;
|
||
here the insns are not scheduled monotonically top-down (nor bottom-
|
||
up).
|
||
3. If failed in scheduling all insns - bump II++ and try again, unless
|
||
II reaches an upper bound MaxII, in which case report failure.
|
||
5. If we succeeded in scheduling the loop within II cycles, we now
|
||
generate prolog and epilog, decrease the counter of the loop, and
|
||
perform modulo variable expansion for live ranges that span more than
|
||
II cycles (i.e. use register copies to prevent a def from overwriting
|
||
itself before reaching the use).
|
||
*/
|
||
|
||
|
||
/* This page defines partial-schedule structures and functions for
|
||
modulo scheduling. */
|
||
|
||
typedef struct partial_schedule *partial_schedule_ptr;
|
||
typedef struct ps_insn *ps_insn_ptr;
|
||
|
||
/* The minimum (absolute) cycle that a node of ps was scheduled in. */
|
||
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
|
||
|
||
/* The maximum (absolute) cycle that a node of ps was scheduled in. */
|
||
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
|
||
|
||
/* Perform signed modulo, always returning a non-negative value. */
|
||
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
|
||
|
||
/* The number of different iterations the nodes in ps span, assuming
|
||
the stage boundaries are placed efficiently. */
|
||
#define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
|
||
+ 1 + (ps)->ii - 1) / (ps)->ii)
|
||
|
||
/* A single instruction in the partial schedule. */
|
||
struct ps_insn
|
||
{
|
||
/* The corresponding DDG_NODE. */
|
||
ddg_node_ptr node;
|
||
|
||
/* The (absolute) cycle in which the PS instruction is scheduled.
|
||
Same as SCHED_TIME (node). */
|
||
int cycle;
|
||
|
||
/* The next/prev PS_INSN in the same row. */
|
||
ps_insn_ptr next_in_row,
|
||
prev_in_row;
|
||
|
||
/* The number of nodes in the same row that come after this node. */
|
||
int row_rest_count;
|
||
};
|
||
|
||
/* Holds the partial schedule as an array of II rows. Each entry of the
|
||
array points to a linked list of PS_INSNs, which represents the
|
||
instructions that are scheduled for that row. */
|
||
struct partial_schedule
|
||
{
|
||
int ii; /* Number of rows in the partial schedule. */
|
||
int history; /* Threshold for conflict checking using DFA. */
|
||
|
||
/* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
|
||
ps_insn_ptr *rows;
|
||
|
||
/* The earliest absolute cycle of an insn in the partial schedule. */
|
||
int min_cycle;
|
||
|
||
/* The latest absolute cycle of an insn in the partial schedule. */
|
||
int max_cycle;
|
||
|
||
ddg_ptr g; /* The DDG of the insns in the partial schedule. */
|
||
};
|
||
|
||
/* We use this to record all the register replacements we do in
|
||
the kernel so we can undo SMS if it is not profitable. */
|
||
struct undo_replace_buff_elem
|
||
{
|
||
rtx insn;
|
||
rtx orig_reg;
|
||
rtx new_reg;
|
||
struct undo_replace_buff_elem *next;
|
||
};
|
||
|
||
|
||
|
||
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
|
||
static void free_partial_schedule (partial_schedule_ptr);
|
||
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
|
||
void print_partial_schedule (partial_schedule_ptr, FILE *);
|
||
static int kernel_number_of_cycles (rtx first_insn, rtx last_insn);
|
||
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
|
||
ddg_node_ptr node, int cycle,
|
||
sbitmap must_precede,
|
||
sbitmap must_follow);
|
||
static void rotate_partial_schedule (partial_schedule_ptr, int);
|
||
void set_row_column_for_ps (partial_schedule_ptr);
|
||
static bool ps_unschedule_node (partial_schedule_ptr, ddg_node_ptr );
|
||
|
||
|
||
/* This page defines constants and structures for the modulo scheduling
|
||
driver. */
|
||
|
||
/* As in haifa-sched.c: */
|
||
/* issue_rate is the number of insns that can be scheduled in the same
|
||
machine cycle. It can be defined in the config/mach/mach.h file,
|
||
otherwise we set it to 1. */
|
||
|
||
static int issue_rate;
|
||
|
||
static int sms_order_nodes (ddg_ptr, int, int * result);
|
||
static void set_node_sched_params (ddg_ptr);
|
||
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
|
||
static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
|
||
static void generate_prolog_epilog (partial_schedule_ptr ,struct loop * loop, rtx);
|
||
static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
|
||
int from_stage, int to_stage,
|
||
int is_prolog);
|
||
|
||
#define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
|
||
#define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
|
||
#define SCHED_FIRST_REG_MOVE(x) \
|
||
(((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
|
||
#define SCHED_NREG_MOVES(x) \
|
||
(((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
|
||
#define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
|
||
#define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
|
||
#define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
|
||
|
||
/* The scheduling parameters held for each node. */
|
||
typedef struct node_sched_params
|
||
{
|
||
int asap; /* A lower-bound on the absolute scheduling cycle. */
|
||
int time; /* The absolute scheduling cycle (time >= asap). */
|
||
|
||
/* The following field (first_reg_move) is a pointer to the first
|
||
register-move instruction added to handle the modulo-variable-expansion
|
||
of the register defined by this node. This register-move copies the
|
||
original register defined by the node. */
|
||
rtx first_reg_move;
|
||
|
||
/* The number of register-move instructions added, immediately preceding
|
||
first_reg_move. */
|
||
int nreg_moves;
|
||
|
||
int row; /* Holds time % ii. */
|
||
int stage; /* Holds time / ii. */
|
||
|
||
/* The column of a node inside the ps. If nodes u, v are on the same row,
|
||
u will precede v if column (u) < column (v). */
|
||
int column;
|
||
} *node_sched_params_ptr;
|
||
|
||
|
||
/* The following three functions are copied from the current scheduler
|
||
code in order to use sched_analyze() for computing the dependencies.
|
||
They are used when initializing the sched_info structure. */
|
||
static const char *
|
||
sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
|
||
{
|
||
static char tmp[80];
|
||
|
||
sprintf (tmp, "i%4d", INSN_UID (insn));
|
||
return tmp;
|
||
}
|
||
|
||
static void
|
||
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
|
||
regset cond_exec ATTRIBUTE_UNUSED,
|
||
regset used ATTRIBUTE_UNUSED,
|
||
regset set ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
static struct sched_info sms_sched_info =
|
||
{
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
sms_print_insn,
|
||
NULL,
|
||
compute_jump_reg_dependencies,
|
||
NULL, NULL,
|
||
NULL, NULL,
|
||
0, 0, 0,
|
||
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
#ifdef ENABLE_CHECKING
|
||
NULL,
|
||
#endif
|
||
0
|
||
};
|
||
|
||
|
||
/* Return the register decremented and tested in INSN,
|
||
or zero if it is not a decrement-and-branch insn. */
|
||
|
||
static rtx
|
||
doloop_register_get (rtx insn ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef HAVE_doloop_end
|
||
rtx pattern, reg, condition;
|
||
|
||
if (! JUMP_P (insn))
|
||
return NULL_RTX;
|
||
|
||
pattern = PATTERN (insn);
|
||
condition = doloop_condition_get (pattern);
|
||
if (! condition)
|
||
return NULL_RTX;
|
||
|
||
if (REG_P (XEXP (condition, 0)))
|
||
reg = XEXP (condition, 0);
|
||
else if (GET_CODE (XEXP (condition, 0)) == PLUS
|
||
&& REG_P (XEXP (XEXP (condition, 0), 0)))
|
||
reg = XEXP (XEXP (condition, 0), 0);
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
return reg;
|
||
#else
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
|
||
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
|
||
that the number of iterations is a compile-time constant. If so,
|
||
return the rtx that sets COUNT_REG to a constant, and set COUNT to
|
||
this constant. Otherwise return 0. */
|
||
static rtx
|
||
const_iteration_count (rtx count_reg, basic_block pre_header,
|
||
HOST_WIDEST_INT * count)
|
||
{
|
||
rtx insn;
|
||
rtx head, tail;
|
||
|
||
if (! pre_header)
|
||
return NULL_RTX;
|
||
|
||
get_ebb_head_tail (pre_header, pre_header, &head, &tail);
|
||
|
||
for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
|
||
if (INSN_P (insn) && single_set (insn) &&
|
||
rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
|
||
{
|
||
rtx pat = single_set (insn);
|
||
|
||
if (GET_CODE (SET_SRC (pat)) == CONST_INT)
|
||
{
|
||
*count = INTVAL (SET_SRC (pat));
|
||
return insn;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* A very simple resource-based lower bound on the initiation interval.
|
||
??? Improve the accuracy of this bound by considering the
|
||
utilization of various units. */
|
||
static int
|
||
res_MII (ddg_ptr g)
|
||
{
|
||
return (g->num_nodes / issue_rate);
|
||
}
|
||
|
||
|
||
/* Points to the array that contains the sched data for each node. */
|
||
static node_sched_params_ptr node_sched_params;
|
||
|
||
/* Allocate sched_params for each node and initialize it. Assumes that
|
||
the aux field of each node contain the asap bound (computed earlier),
|
||
and copies it into the sched_params field. */
|
||
static void
|
||
set_node_sched_params (ddg_ptr g)
|
||
{
|
||
int i;
|
||
|
||
/* Allocate for each node in the DDG a place to hold the "sched_data". */
|
||
/* Initialize ASAP/ALAP/HIGHT to zero. */
|
||
node_sched_params = (node_sched_params_ptr)
|
||
xcalloc (g->num_nodes,
|
||
sizeof (struct node_sched_params));
|
||
|
||
/* Set the pointer of the general data of the node to point to the
|
||
appropriate sched_params structure. */
|
||
for (i = 0; i < g->num_nodes; i++)
|
||
{
|
||
/* Watch out for aliasing problems? */
|
||
node_sched_params[i].asap = g->nodes[i].aux.count;
|
||
g->nodes[i].aux.info = &node_sched_params[i];
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_node_sched_params (FILE * file, int num_nodes)
|
||
{
|
||
int i;
|
||
|
||
if (! file)
|
||
return;
|
||
for (i = 0; i < num_nodes; i++)
|
||
{
|
||
node_sched_params_ptr nsp = &node_sched_params[i];
|
||
rtx reg_move = nsp->first_reg_move;
|
||
int j;
|
||
|
||
fprintf (file, "Node %d:\n", i);
|
||
fprintf (file, " asap = %d:\n", nsp->asap);
|
||
fprintf (file, " time = %d:\n", nsp->time);
|
||
fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
|
||
for (j = 0; j < nsp->nreg_moves; j++)
|
||
{
|
||
fprintf (file, " reg_move = ");
|
||
print_rtl_single (file, reg_move);
|
||
reg_move = PREV_INSN (reg_move);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate an upper bound for II. SMS should not schedule the loop if it
|
||
requires more cycles than this bound. Currently set to the sum of the
|
||
longest latency edge for each node. Reset based on experiments. */
|
||
static int
|
||
calculate_maxii (ddg_ptr g)
|
||
{
|
||
int i;
|
||
int maxii = 0;
|
||
|
||
for (i = 0; i < g->num_nodes; i++)
|
||
{
|
||
ddg_node_ptr u = &g->nodes[i];
|
||
ddg_edge_ptr e;
|
||
int max_edge_latency = 0;
|
||
|
||
for (e = u->out; e; e = e->next_out)
|
||
max_edge_latency = MAX (max_edge_latency, e->latency);
|
||
|
||
maxii += max_edge_latency;
|
||
}
|
||
return maxii;
|
||
}
|
||
|
||
/*
|
||
Breaking intra-loop register anti-dependences:
|
||
Each intra-loop register anti-dependence implies a cross-iteration true
|
||
dependence of distance 1. Therefore, we can remove such false dependencies
|
||
and figure out if the partial schedule broke them by checking if (for a
|
||
true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
|
||
if so generate a register move. The number of such moves is equal to:
|
||
SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
|
||
nreg_moves = ----------------------------------- + 1 - { dependence.
|
||
ii { 1 if not.
|
||
*/
|
||
static struct undo_replace_buff_elem *
|
||
generate_reg_moves (partial_schedule_ptr ps)
|
||
{
|
||
ddg_ptr g = ps->g;
|
||
int ii = ps->ii;
|
||
int i;
|
||
struct undo_replace_buff_elem *reg_move_replaces = NULL;
|
||
|
||
for (i = 0; i < g->num_nodes; i++)
|
||
{
|
||
ddg_node_ptr u = &g->nodes[i];
|
||
ddg_edge_ptr e;
|
||
int nreg_moves = 0, i_reg_move;
|
||
sbitmap *uses_of_defs;
|
||
rtx last_reg_move;
|
||
rtx prev_reg, old_reg;
|
||
|
||
/* Compute the number of reg_moves needed for u, by looking at life
|
||
ranges started at u (excluding self-loops). */
|
||
for (e = u->out; e; e = e->next_out)
|
||
if (e->type == TRUE_DEP && e->dest != e->src)
|
||
{
|
||
int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
|
||
|
||
if (e->distance == 1)
|
||
nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
|
||
|
||
/* If dest precedes src in the schedule of the kernel, then dest
|
||
will read before src writes and we can save one reg_copy. */
|
||
if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
|
||
&& SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
|
||
nreg_moves4e--;
|
||
|
||
nreg_moves = MAX (nreg_moves, nreg_moves4e);
|
||
}
|
||
|
||
if (nreg_moves == 0)
|
||
continue;
|
||
|
||
/* Every use of the register defined by node may require a different
|
||
copy of this register, depending on the time the use is scheduled.
|
||
Set a bitmap vector, telling which nodes use each copy of this
|
||
register. */
|
||
uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
|
||
sbitmap_vector_zero (uses_of_defs, nreg_moves);
|
||
for (e = u->out; e; e = e->next_out)
|
||
if (e->type == TRUE_DEP && e->dest != e->src)
|
||
{
|
||
int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
|
||
|
||
if (e->distance == 1)
|
||
dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
|
||
|
||
if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
|
||
&& SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
|
||
dest_copy--;
|
||
|
||
if (dest_copy)
|
||
SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
|
||
}
|
||
|
||
/* Now generate the reg_moves, attaching relevant uses to them. */
|
||
SCHED_NREG_MOVES (u) = nreg_moves;
|
||
old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
|
||
last_reg_move = u->insn;
|
||
|
||
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
|
||
{
|
||
unsigned int i_use = 0;
|
||
rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
|
||
rtx reg_move = gen_move_insn (new_reg, prev_reg);
|
||
sbitmap_iterator sbi;
|
||
|
||
add_insn_before (reg_move, last_reg_move);
|
||
last_reg_move = reg_move;
|
||
|
||
if (!SCHED_FIRST_REG_MOVE (u))
|
||
SCHED_FIRST_REG_MOVE (u) = reg_move;
|
||
|
||
EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
|
||
{
|
||
struct undo_replace_buff_elem *rep;
|
||
|
||
rep = (struct undo_replace_buff_elem *)
|
||
xcalloc (1, sizeof (struct undo_replace_buff_elem));
|
||
rep->insn = g->nodes[i_use].insn;
|
||
rep->orig_reg = old_reg;
|
||
rep->new_reg = new_reg;
|
||
|
||
if (! reg_move_replaces)
|
||
reg_move_replaces = rep;
|
||
else
|
||
{
|
||
rep->next = reg_move_replaces;
|
||
reg_move_replaces = rep;
|
||
}
|
||
|
||
replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
|
||
}
|
||
|
||
prev_reg = new_reg;
|
||
}
|
||
sbitmap_vector_free (uses_of_defs);
|
||
}
|
||
return reg_move_replaces;
|
||
}
|
||
|
||
/* We call this when we want to undo the SMS schedule for a given loop.
|
||
One of the things that we do is to delete the register moves generated
|
||
for the sake of SMS; this function deletes the register move instructions
|
||
recorded in the undo buffer. */
|
||
static void
|
||
undo_generate_reg_moves (partial_schedule_ptr ps,
|
||
struct undo_replace_buff_elem *reg_move_replaces)
|
||
{
|
||
int i,j;
|
||
|
||
for (i = 0; i < ps->g->num_nodes; i++)
|
||
{
|
||
ddg_node_ptr u = &ps->g->nodes[i];
|
||
rtx prev;
|
||
rtx crr = SCHED_FIRST_REG_MOVE (u);
|
||
|
||
for (j = 0; j < SCHED_NREG_MOVES (u); j++)
|
||
{
|
||
prev = PREV_INSN (crr);
|
||
delete_insn (crr);
|
||
crr = prev;
|
||
}
|
||
SCHED_FIRST_REG_MOVE (u) = NULL_RTX;
|
||
}
|
||
|
||
while (reg_move_replaces)
|
||
{
|
||
struct undo_replace_buff_elem *rep = reg_move_replaces;
|
||
|
||
reg_move_replaces = reg_move_replaces->next;
|
||
replace_rtx (rep->insn, rep->new_reg, rep->orig_reg);
|
||
}
|
||
}
|
||
|
||
/* Free memory allocated for the undo buffer. */
|
||
static void
|
||
free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
|
||
{
|
||
|
||
while (reg_move_replaces)
|
||
{
|
||
struct undo_replace_buff_elem *rep = reg_move_replaces;
|
||
|
||
reg_move_replaces = reg_move_replaces->next;
|
||
free (rep);
|
||
}
|
||
}
|
||
|
||
/* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
|
||
of SCHED_ROW and SCHED_STAGE. */
|
||
static void
|
||
normalize_sched_times (partial_schedule_ptr ps)
|
||
{
|
||
int i;
|
||
ddg_ptr g = ps->g;
|
||
int amount = PS_MIN_CYCLE (ps);
|
||
int ii = ps->ii;
|
||
|
||
/* Don't include the closing branch assuming that it is the last node. */
|
||
for (i = 0; i < g->num_nodes - 1; i++)
|
||
{
|
||
ddg_node_ptr u = &g->nodes[i];
|
||
int normalized_time = SCHED_TIME (u) - amount;
|
||
|
||
gcc_assert (normalized_time >= 0);
|
||
|
||
SCHED_TIME (u) = normalized_time;
|
||
SCHED_ROW (u) = normalized_time % ii;
|
||
SCHED_STAGE (u) = normalized_time / ii;
|
||
}
|
||
}
|
||
|
||
/* Set SCHED_COLUMN of each node according to its position in PS. */
|
||
static void
|
||
set_columns_for_ps (partial_schedule_ptr ps)
|
||
{
|
||
int row;
|
||
|
||
for (row = 0; row < ps->ii; row++)
|
||
{
|
||
ps_insn_ptr cur_insn = ps->rows[row];
|
||
int column = 0;
|
||
|
||
for (; cur_insn; cur_insn = cur_insn->next_in_row)
|
||
SCHED_COLUMN (cur_insn->node) = column++;
|
||
}
|
||
}
|
||
|
||
/* Permute the insns according to their order in PS, from row 0 to
|
||
row ii-1, and position them right before LAST. This schedules
|
||
the insns of the loop kernel. */
|
||
static void
|
||
permute_partial_schedule (partial_schedule_ptr ps, rtx last)
|
||
{
|
||
int ii = ps->ii;
|
||
int row;
|
||
ps_insn_ptr ps_ij;
|
||
|
||
for (row = 0; row < ii ; row++)
|
||
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
||
if (PREV_INSN (last) != ps_ij->node->insn)
|
||
reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
|
||
PREV_INSN (last));
|
||
}
|
||
|
||
/* As part of undoing SMS we return to the original ordering of the
|
||
instructions inside the loop kernel. Given the partial schedule PS, this
|
||
function returns the ordering of the instruction according to their CUID
|
||
in the DDG (PS->G), which is the original order of the instruction before
|
||
performing SMS. */
|
||
static void
|
||
undo_permute_partial_schedule (partial_schedule_ptr ps, rtx last)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0 ; i < ps->g->num_nodes; i++)
|
||
if (last == ps->g->nodes[i].insn
|
||
|| last == ps->g->nodes[i].first_note)
|
||
break;
|
||
else if (PREV_INSN (last) != ps->g->nodes[i].insn)
|
||
reorder_insns_nobb (ps->g->nodes[i].first_note, ps->g->nodes[i].insn,
|
||
PREV_INSN (last));
|
||
}
|
||
|
||
/* Used to generate the prologue & epilogue. Duplicate the subset of
|
||
nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
|
||
of both), together with a prefix/suffix of their reg_moves. */
|
||
static void
|
||
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
|
||
int to_stage, int for_prolog)
|
||
{
|
||
int row;
|
||
ps_insn_ptr ps_ij;
|
||
|
||
for (row = 0; row < ps->ii; row++)
|
||
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
||
{
|
||
ddg_node_ptr u_node = ps_ij->node;
|
||
int j, i_reg_moves;
|
||
rtx reg_move = NULL_RTX;
|
||
|
||
if (for_prolog)
|
||
{
|
||
/* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
|
||
number of reg_moves starting with the second occurrence of
|
||
u_node, which is generated if its SCHED_STAGE <= to_stage. */
|
||
i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
|
||
i_reg_moves = MAX (i_reg_moves, 0);
|
||
i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
|
||
|
||
/* The reg_moves start from the *first* reg_move backwards. */
|
||
if (i_reg_moves)
|
||
{
|
||
reg_move = SCHED_FIRST_REG_MOVE (u_node);
|
||
for (j = 1; j < i_reg_moves; j++)
|
||
reg_move = PREV_INSN (reg_move);
|
||
}
|
||
}
|
||
else /* It's for the epilog. */
|
||
{
|
||
/* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
|
||
starting to decrease one stage after u_node no longer occurs;
|
||
that is, generate all reg_moves until
|
||
SCHED_STAGE (u_node) == from_stage - 1. */
|
||
i_reg_moves = SCHED_NREG_MOVES (u_node)
|
||
- (from_stage - SCHED_STAGE (u_node) - 1);
|
||
i_reg_moves = MAX (i_reg_moves, 0);
|
||
i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
|
||
|
||
/* The reg_moves start from the *last* reg_move forwards. */
|
||
if (i_reg_moves)
|
||
{
|
||
reg_move = SCHED_FIRST_REG_MOVE (u_node);
|
||
for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
|
||
reg_move = PREV_INSN (reg_move);
|
||
}
|
||
}
|
||
|
||
for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
|
||
emit_insn (copy_rtx (PATTERN (reg_move)));
|
||
if (SCHED_STAGE (u_node) >= from_stage
|
||
&& SCHED_STAGE (u_node) <= to_stage)
|
||
duplicate_insn_chain (u_node->first_note, u_node->insn);
|
||
}
|
||
}
|
||
|
||
|
||
/* Generate the instructions (including reg_moves) for prolog & epilog. */
|
||
static void
|
||
generate_prolog_epilog (partial_schedule_ptr ps, struct loop * loop, rtx count_reg)
|
||
{
|
||
int i;
|
||
int last_stage = PS_STAGE_COUNT (ps) - 1;
|
||
edge e;
|
||
|
||
/* Generate the prolog, inserting its insns on the loop-entry edge. */
|
||
start_sequence ();
|
||
|
||
if (count_reg)
|
||
/* Generate a subtract instruction at the beginning of the prolog to
|
||
adjust the loop count by STAGE_COUNT. */
|
||
emit_insn (gen_sub2_insn (count_reg, GEN_INT (last_stage)));
|
||
|
||
for (i = 0; i < last_stage; i++)
|
||
duplicate_insns_of_cycles (ps, 0, i, 1);
|
||
|
||
/* Put the prolog , on the one and only entry edge. */
|
||
e = loop_preheader_edge (loop);
|
||
loop_split_edge_with(e , get_insns());
|
||
|
||
end_sequence ();
|
||
|
||
/* Generate the epilog, inserting its insns on the loop-exit edge. */
|
||
start_sequence ();
|
||
|
||
for (i = 0; i < last_stage; i++)
|
||
duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
|
||
|
||
/* Put the epilogue on the one and only one exit edge. */
|
||
gcc_assert (loop->single_exit);
|
||
e = loop->single_exit;
|
||
loop_split_edge_with(e , get_insns());
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Return the line note insn preceding INSN, for debugging. Taken from
|
||
emit-rtl.c. */
|
||
static rtx
|
||
find_line_note (rtx insn)
|
||
{
|
||
for (; insn; insn = PREV_INSN (insn))
|
||
if (NOTE_P (insn)
|
||
&& NOTE_LINE_NUMBER (insn) >= 0)
|
||
break;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return true if all the BBs of the loop are empty except the
|
||
loop header. */
|
||
static bool
|
||
loop_single_full_bb_p (struct loop *loop)
|
||
{
|
||
unsigned i;
|
||
basic_block *bbs = get_loop_body (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes ; i++)
|
||
{
|
||
rtx head, tail;
|
||
bool empty_bb = true;
|
||
|
||
if (bbs[i] == loop->header)
|
||
continue;
|
||
|
||
/* Make sure that basic blocks other than the header
|
||
have only notes labels or jumps. */
|
||
get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
|
||
for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
|
||
{
|
||
if (NOTE_P (head) || LABEL_P (head)
|
||
|| (INSN_P (head) && JUMP_P (head)))
|
||
continue;
|
||
empty_bb = false;
|
||
break;
|
||
}
|
||
|
||
if (! empty_bb)
|
||
{
|
||
free (bbs);
|
||
return false;
|
||
}
|
||
}
|
||
free (bbs);
|
||
return true;
|
||
}
|
||
|
||
/* A simple loop from SMS point of view; it is a loop that is composed of
|
||
either a single basic block or two BBs - a header and a latch. */
|
||
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
|
||
&& (EDGE_COUNT (loop->latch->preds) == 1) \
|
||
&& (EDGE_COUNT (loop->latch->succs) == 1))
|
||
|
||
/* Return true if the loop is in its canonical form and false if not.
|
||
i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
|
||
static bool
|
||
loop_canon_p (struct loop *loop)
|
||
{
|
||
|
||
if (loop->inner || ! loop->outer)
|
||
return false;
|
||
|
||
if (!loop->single_exit)
|
||
{
|
||
if (dump_file)
|
||
{
|
||
rtx line_note = find_line_note (BB_END (loop->header));
|
||
|
||
fprintf (dump_file, "SMS loop many exits ");
|
||
if (line_note)
|
||
{
|
||
expanded_location xloc;
|
||
NOTE_EXPANDED_LOCATION (xloc, line_note);
|
||
fprintf (dump_file, " %s %d (file, line)\n",
|
||
xloc.file, xloc.line);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
rtx line_note = find_line_note (BB_END (loop->header));
|
||
|
||
fprintf (dump_file, "SMS loop many BBs. ");
|
||
if (line_note)
|
||
{
|
||
expanded_location xloc;
|
||
NOTE_EXPANDED_LOCATION (xloc, line_note);
|
||
fprintf (dump_file, " %s %d (file, line)\n",
|
||
xloc.file, xloc.line);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If there are more than one entry for the loop,
|
||
make it one by splitting the first entry edge and
|
||
redirecting the others to the new BB. */
|
||
static void
|
||
canon_loop (struct loop *loop)
|
||
{
|
||
edge e;
|
||
edge_iterator i;
|
||
|
||
/* Avoid annoying special cases of edges going to exit
|
||
block. */
|
||
FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
|
||
if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
|
||
loop_split_edge_with (e, NULL_RTX);
|
||
|
||
if (loop->latch == loop->header
|
||
|| EDGE_COUNT (loop->latch->succs) > 1)
|
||
{
|
||
FOR_EACH_EDGE (e, i, loop->header->preds)
|
||
if (e->src == loop->latch)
|
||
break;
|
||
loop_split_edge_with (e, NULL_RTX);
|
||
}
|
||
}
|
||
|
||
/* Main entry point, perform SMS scheduling on the loops of the function
|
||
that consist of single basic blocks. */
|
||
static void
|
||
sms_schedule (void)
|
||
{
|
||
static int passes = 0;
|
||
rtx insn;
|
||
ddg_ptr *g_arr, g;
|
||
int * node_order;
|
||
int maxii;
|
||
unsigned i,num_loops;
|
||
partial_schedule_ptr ps;
|
||
struct df *df;
|
||
struct loops *loops;
|
||
basic_block bb = NULL;
|
||
/* vars to the versioning only if needed*/
|
||
struct loop * nloop;
|
||
basic_block condition_bb = NULL;
|
||
edge latch_edge;
|
||
gcov_type trip_count = 0;
|
||
|
||
loops = loop_optimizer_init (LOOPS_HAVE_PREHEADERS
|
||
| LOOPS_HAVE_MARKED_SINGLE_EXITS);
|
||
if (!loops)
|
||
return; /* There is no loops to schedule. */
|
||
|
||
/* Initialize issue_rate. */
|
||
if (targetm.sched.issue_rate)
|
||
{
|
||
int temp = reload_completed;
|
||
|
||
reload_completed = 1;
|
||
issue_rate = targetm.sched.issue_rate ();
|
||
reload_completed = temp;
|
||
}
|
||
else
|
||
issue_rate = 1;
|
||
|
||
/* Initialize the scheduler. */
|
||
current_sched_info = &sms_sched_info;
|
||
sched_init ();
|
||
|
||
/* Init Data Flow analysis, to be used in interloop dep calculation. */
|
||
df = df_init (DF_HARD_REGS | DF_EQUIV_NOTES | DF_SUBREGS);
|
||
df_rd_add_problem (df, 0);
|
||
df_ru_add_problem (df, 0);
|
||
df_chain_add_problem (df, DF_DU_CHAIN | DF_UD_CHAIN);
|
||
df_analyze (df);
|
||
|
||
if (dump_file)
|
||
df_dump (df, dump_file);
|
||
|
||
/* Allocate memory to hold the DDG array one entry for each loop.
|
||
We use loop->num as index into this array. */
|
||
g_arr = XCNEWVEC (ddg_ptr, loops->num);
|
||
|
||
|
||
/* Build DDGs for all the relevant loops and hold them in G_ARR
|
||
indexed by the loop index. */
|
||
for (i = 0; i < loops->num; i++)
|
||
{
|
||
rtx head, tail;
|
||
rtx count_reg;
|
||
struct loop *loop = loops->parray[i];
|
||
|
||
/* For debugging. */
|
||
if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "SMS reached MAX_PASSES... \n");
|
||
|
||
break;
|
||
}
|
||
|
||
if (! loop_canon_p (loop))
|
||
continue;
|
||
|
||
if (! loop_single_full_bb_p (loop))
|
||
continue;
|
||
|
||
bb = loop->header;
|
||
|
||
get_ebb_head_tail (bb, bb, &head, &tail);
|
||
latch_edge = loop_latch_edge (loop);
|
||
gcc_assert (loop->single_exit);
|
||
if (loop->single_exit->count)
|
||
trip_count = latch_edge->count / loop->single_exit->count;
|
||
|
||
/* Perfrom SMS only on loops that their average count is above threshold. */
|
||
|
||
if ( latch_edge->count
|
||
&& (latch_edge->count < loop->single_exit->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
rtx line_note = find_line_note (tail);
|
||
|
||
if (line_note)
|
||
{
|
||
expanded_location xloc;
|
||
NOTE_EXPANDED_LOCATION (xloc, line_note);
|
||
fprintf (dump_file, "SMS bb %s %d (file, line)\n",
|
||
xloc.file, xloc.line);
|
||
}
|
||
fprintf (dump_file, "SMS single-bb-loop\n");
|
||
if (profile_info && flag_branch_probabilities)
|
||
{
|
||
fprintf (dump_file, "SMS loop-count ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) bb->count);
|
||
fprintf (dump_file, "\n");
|
||
fprintf (dump_file, "SMS trip-count ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) trip_count);
|
||
fprintf (dump_file, "\n");
|
||
fprintf (dump_file, "SMS profile-sum-max ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) profile_info->sum_max);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* Make sure this is a doloop. */
|
||
if ( !(count_reg = doloop_register_get (tail)))
|
||
continue;
|
||
|
||
/* Don't handle BBs with calls or barriers, or !single_set insns. */
|
||
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
|
||
if (CALL_P (insn)
|
||
|| BARRIER_P (insn)
|
||
|| (INSN_P (insn) && !JUMP_P (insn)
|
||
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
|
||
break;
|
||
|
||
if (insn != NEXT_INSN (tail))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
if (CALL_P (insn))
|
||
fprintf (dump_file, "SMS loop-with-call\n");
|
||
else if (BARRIER_P (insn))
|
||
fprintf (dump_file, "SMS loop-with-barrier\n");
|
||
else
|
||
fprintf (dump_file, "SMS loop-with-not-single-set\n");
|
||
print_rtl_single (dump_file, insn);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
if (! (g = create_ddg (bb, df, 0)))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "SMS doloop\n");
|
||
continue;
|
||
}
|
||
|
||
g_arr[i] = g;
|
||
}
|
||
|
||
/* Release Data Flow analysis data structures. */
|
||
df_finish (df);
|
||
df = NULL;
|
||
|
||
/* We don't want to perform SMS on new loops - created by versioning. */
|
||
num_loops = loops->num;
|
||
/* Go over the built DDGs and perfrom SMS for each one of them. */
|
||
for (i = 0; i < num_loops; i++)
|
||
{
|
||
rtx head, tail;
|
||
rtx count_reg, count_init;
|
||
int mii, rec_mii;
|
||
unsigned stage_count = 0;
|
||
HOST_WIDEST_INT loop_count = 0;
|
||
struct loop *loop = loops->parray[i];
|
||
|
||
if (! (g = g_arr[i]))
|
||
continue;
|
||
|
||
if (dump_file)
|
||
print_ddg (dump_file, g);
|
||
|
||
get_ebb_head_tail (loop->header, loop->header, &head, &tail);
|
||
|
||
latch_edge = loop_latch_edge (loop);
|
||
gcc_assert (loop->single_exit);
|
||
if (loop->single_exit->count)
|
||
trip_count = latch_edge->count / loop->single_exit->count;
|
||
|
||
if (dump_file)
|
||
{
|
||
rtx line_note = find_line_note (tail);
|
||
|
||
if (line_note)
|
||
{
|
||
expanded_location xloc;
|
||
NOTE_EXPANDED_LOCATION (xloc, line_note);
|
||
fprintf (dump_file, "SMS bb %s %d (file, line)\n",
|
||
xloc.file, xloc.line);
|
||
}
|
||
fprintf (dump_file, "SMS single-bb-loop\n");
|
||
if (profile_info && flag_branch_probabilities)
|
||
{
|
||
fprintf (dump_file, "SMS loop-count ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) bb->count);
|
||
fprintf (dump_file, "\n");
|
||
fprintf (dump_file, "SMS profile-sum-max ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) profile_info->sum_max);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
fprintf (dump_file, "SMS doloop\n");
|
||
fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
|
||
fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
|
||
fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
|
||
}
|
||
|
||
|
||
/* In case of th loop have doloop register it gets special
|
||
handling. */
|
||
count_init = NULL_RTX;
|
||
if ((count_reg = doloop_register_get (tail)))
|
||
{
|
||
basic_block pre_header;
|
||
|
||
pre_header = loop_preheader_edge (loop)->src;
|
||
count_init = const_iteration_count (count_reg, pre_header,
|
||
&loop_count);
|
||
}
|
||
gcc_assert (count_reg);
|
||
|
||
if (dump_file && count_init)
|
||
{
|
||
fprintf (dump_file, "SMS const-doloop ");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
loop_count);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
node_order = XNEWVEC (int, g->num_nodes);
|
||
|
||
mii = 1; /* Need to pass some estimate of mii. */
|
||
rec_mii = sms_order_nodes (g, mii, node_order);
|
||
mii = MAX (res_MII (g), rec_mii);
|
||
maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
|
||
rec_mii, mii, maxii);
|
||
|
||
/* After sms_order_nodes and before sms_schedule_by_order, to copy over
|
||
ASAP. */
|
||
set_node_sched_params (g);
|
||
|
||
ps = sms_schedule_by_order (g, mii, maxii, node_order);
|
||
|
||
if (ps)
|
||
stage_count = PS_STAGE_COUNT (ps);
|
||
|
||
/* Stage count of 1 means that there is no interleaving between
|
||
iterations, let the scheduling passes do the job. */
|
||
if (stage_count < 1
|
||
|| (count_init && (loop_count <= stage_count))
|
||
|| (flag_branch_probabilities && (trip_count <= stage_count)))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "SMS failed... \n");
|
||
fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
|
||
fprintf (dump_file, ", trip-count=");
|
||
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
int orig_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
|
||
int new_cycles;
|
||
struct undo_replace_buff_elem *reg_move_replaces;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"SMS succeeded %d %d (with ii, sc)\n", ps->ii,
|
||
stage_count);
|
||
print_partial_schedule (ps, dump_file);
|
||
fprintf (dump_file,
|
||
"SMS Branch (%d) will later be scheduled at cycle %d.\n",
|
||
g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
|
||
}
|
||
|
||
/* Set the stage boundaries. If the DDG is built with closing_branch_deps,
|
||
the closing_branch was scheduled and should appear in the last (ii-1)
|
||
row. Otherwise, we are free to schedule the branch, and we let nodes
|
||
that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
|
||
row; this should reduce stage_count to minimum. */
|
||
normalize_sched_times (ps);
|
||
rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
|
||
set_columns_for_ps (ps);
|
||
|
||
/* Generate the kernel just to be able to measure its cycles. */
|
||
permute_partial_schedule (ps, g->closing_branch->first_note);
|
||
reg_move_replaces = generate_reg_moves (ps);
|
||
|
||
/* Get the number of cycles the new kernel expect to execute in. */
|
||
new_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
|
||
|
||
/* Get back to the original loop so we can do loop versioning. */
|
||
undo_permute_partial_schedule (ps, g->closing_branch->first_note);
|
||
if (reg_move_replaces)
|
||
undo_generate_reg_moves (ps, reg_move_replaces);
|
||
|
||
if ( new_cycles >= orig_cycles)
|
||
{
|
||
/* SMS is not profitable so undo the permutation and reg move generation
|
||
and return the kernel to its original state. */
|
||
if (dump_file)
|
||
fprintf (dump_file, "Undoing SMS because it is not profitable.\n");
|
||
|
||
}
|
||
else
|
||
{
|
||
canon_loop (loop);
|
||
|
||
/* case the BCT count is not known , Do loop-versioning */
|
||
if (count_reg && ! count_init)
|
||
{
|
||
rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
|
||
GEN_INT(stage_count));
|
||
|
||
nloop = loop_version (loops, loop, comp_rtx, &condition_bb,
|
||
true);
|
||
}
|
||
|
||
/* Set new iteration count of loop kernel. */
|
||
if (count_reg && count_init)
|
||
SET_SRC (single_set (count_init)) = GEN_INT (loop_count
|
||
- stage_count + 1);
|
||
|
||
/* Now apply the scheduled kernel to the RTL of the loop. */
|
||
permute_partial_schedule (ps, g->closing_branch->first_note);
|
||
|
||
/* Mark this loop as software pipelined so the later
|
||
scheduling passes doesn't touch it. */
|
||
if (! flag_resched_modulo_sched)
|
||
g->bb->flags |= BB_DISABLE_SCHEDULE;
|
||
/* The life-info is not valid any more. */
|
||
g->bb->flags |= BB_DIRTY;
|
||
|
||
reg_move_replaces = generate_reg_moves (ps);
|
||
if (dump_file)
|
||
print_node_sched_params (dump_file, g->num_nodes);
|
||
/* Generate prolog and epilog. */
|
||
if (count_reg && !count_init)
|
||
generate_prolog_epilog (ps, loop, count_reg);
|
||
else
|
||
generate_prolog_epilog (ps, loop, NULL_RTX);
|
||
}
|
||
free_undo_replace_buff (reg_move_replaces);
|
||
}
|
||
|
||
free_partial_schedule (ps);
|
||
free (node_sched_params);
|
||
free (node_order);
|
||
free_ddg (g);
|
||
}
|
||
|
||
free (g_arr);
|
||
|
||
/* Release scheduler data, needed until now because of DFA. */
|
||
sched_finish ();
|
||
loop_optimizer_finalize (loops);
|
||
}
|
||
|
||
/* The SMS scheduling algorithm itself
|
||
-----------------------------------
|
||
Input: 'O' an ordered list of insns of a loop.
|
||
Output: A scheduling of the loop - kernel, prolog, and epilogue.
|
||
|
||
'Q' is the empty Set
|
||
'PS' is the partial schedule; it holds the currently scheduled nodes with
|
||
their cycle/slot.
|
||
'PSP' previously scheduled predecessors.
|
||
'PSS' previously scheduled successors.
|
||
't(u)' the cycle where u is scheduled.
|
||
'l(u)' is the latency of u.
|
||
'd(v,u)' is the dependence distance from v to u.
|
||
'ASAP(u)' the earliest time at which u could be scheduled as computed in
|
||
the node ordering phase.
|
||
'check_hardware_resources_conflicts(u, PS, c)'
|
||
run a trace around cycle/slot through DFA model
|
||
to check resource conflicts involving instruction u
|
||
at cycle c given the partial schedule PS.
|
||
'add_to_partial_schedule_at_time(u, PS, c)'
|
||
Add the node/instruction u to the partial schedule
|
||
PS at time c.
|
||
'calculate_register_pressure(PS)'
|
||
Given a schedule of instructions, calculate the register
|
||
pressure it implies. One implementation could be the
|
||
maximum number of overlapping live ranges.
|
||
'maxRP' The maximum allowed register pressure, it is usually derived from the number
|
||
registers available in the hardware.
|
||
|
||
1. II = MII.
|
||
2. PS = empty list
|
||
3. for each node u in O in pre-computed order
|
||
4. if (PSP(u) != Q && PSS(u) == Q) then
|
||
5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
||
6. start = Early_start; end = Early_start + II - 1; step = 1
|
||
11. else if (PSP(u) == Q && PSS(u) != Q) then
|
||
12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
||
13. start = Late_start; end = Late_start - II + 1; step = -1
|
||
14. else if (PSP(u) != Q && PSS(u) != Q) then
|
||
15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
||
16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
||
17. start = Early_start;
|
||
18. end = min(Early_start + II - 1 , Late_start);
|
||
19. step = 1
|
||
20. else "if (PSP(u) == Q && PSS(u) == Q)"
|
||
21. start = ASAP(u); end = start + II - 1; step = 1
|
||
22. endif
|
||
|
||
23. success = false
|
||
24. for (c = start ; c != end ; c += step)
|
||
25. if check_hardware_resources_conflicts(u, PS, c) then
|
||
26. add_to_partial_schedule_at_time(u, PS, c)
|
||
27. success = true
|
||
28. break
|
||
29. endif
|
||
30. endfor
|
||
31. if (success == false) then
|
||
32. II = II + 1
|
||
33. if (II > maxII) then
|
||
34. finish - failed to schedule
|
||
35. endif
|
||
36. goto 2.
|
||
37. endif
|
||
38. endfor
|
||
39. if (calculate_register_pressure(PS) > maxRP) then
|
||
40. goto 32.
|
||
41. endif
|
||
42. compute epilogue & prologue
|
||
43. finish - succeeded to schedule
|
||
*/
|
||
|
||
/* A limit on the number of cycles that resource conflicts can span. ??? Should
|
||
be provided by DFA, and be dependent on the type of insn scheduled. Currently
|
||
set to 0 to save compile time. */
|
||
#define DFA_HISTORY SMS_DFA_HISTORY
|
||
|
||
/* Given the partial schedule PS, this function calculates and returns the
|
||
cycles in which we can schedule the node with the given index I.
|
||
NOTE: Here we do the backtracking in SMS, in some special cases. We have
|
||
noticed that there are several cases in which we fail to SMS the loop
|
||
because the sched window of a node is empty due to tight data-deps. In
|
||
such cases we want to unschedule some of the predecessors/successors
|
||
until we get non-empty scheduling window. It returns -1 if the
|
||
scheduling window is empty and zero otherwise. */
|
||
|
||
static int
|
||
get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
|
||
sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
|
||
{
|
||
int start, step, end;
|
||
ddg_edge_ptr e;
|
||
int u = nodes_order [i];
|
||
ddg_node_ptr u_node = &ps->g->nodes[u];
|
||
sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
|
||
sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
|
||
sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
|
||
sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
|
||
int psp_not_empty;
|
||
int pss_not_empty;
|
||
|
||
/* 1. compute sched window for u (start, end, step). */
|
||
sbitmap_zero (psp);
|
||
sbitmap_zero (pss);
|
||
psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
|
||
pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
|
||
|
||
if (psp_not_empty && !pss_not_empty)
|
||
{
|
||
int early_start = INT_MIN;
|
||
|
||
end = INT_MAX;
|
||
for (e = u_node->in; e != 0; e = e->next_in)
|
||
{
|
||
ddg_node_ptr v_node = e->src;
|
||
if (TEST_BIT (sched_nodes, v_node->cuid))
|
||
{
|
||
int node_st = SCHED_TIME (v_node)
|
||
+ e->latency - (e->distance * ii);
|
||
|
||
early_start = MAX (early_start, node_st);
|
||
|
||
if (e->data_type == MEM_DEP)
|
||
end = MIN (end, SCHED_TIME (v_node) + ii - 1);
|
||
}
|
||
}
|
||
start = early_start;
|
||
end = MIN (end, early_start + ii);
|
||
step = 1;
|
||
}
|
||
|
||
else if (!psp_not_empty && pss_not_empty)
|
||
{
|
||
int late_start = INT_MAX;
|
||
|
||
end = INT_MIN;
|
||
for (e = u_node->out; e != 0; e = e->next_out)
|
||
{
|
||
ddg_node_ptr v_node = e->dest;
|
||
if (TEST_BIT (sched_nodes, v_node->cuid))
|
||
{
|
||
late_start = MIN (late_start,
|
||
SCHED_TIME (v_node) - e->latency
|
||
+ (e->distance * ii));
|
||
if (e->data_type == MEM_DEP)
|
||
end = MAX (end, SCHED_TIME (v_node) - ii + 1);
|
||
}
|
||
}
|
||
start = late_start;
|
||
end = MAX (end, late_start - ii);
|
||
step = -1;
|
||
}
|
||
|
||
else if (psp_not_empty && pss_not_empty)
|
||
{
|
||
int early_start = INT_MIN;
|
||
int late_start = INT_MAX;
|
||
|
||
start = INT_MIN;
|
||
end = INT_MAX;
|
||
for (e = u_node->in; e != 0; e = e->next_in)
|
||
{
|
||
ddg_node_ptr v_node = e->src;
|
||
|
||
if (TEST_BIT (sched_nodes, v_node->cuid))
|
||
{
|
||
early_start = MAX (early_start,
|
||
SCHED_TIME (v_node) + e->latency
|
||
- (e->distance * ii));
|
||
if (e->data_type == MEM_DEP)
|
||
end = MIN (end, SCHED_TIME (v_node) + ii - 1);
|
||
}
|
||
}
|
||
for (e = u_node->out; e != 0; e = e->next_out)
|
||
{
|
||
ddg_node_ptr v_node = e->dest;
|
||
|
||
if (TEST_BIT (sched_nodes, v_node->cuid))
|
||
{
|
||
late_start = MIN (late_start,
|
||
SCHED_TIME (v_node) - e->latency
|
||
+ (e->distance * ii));
|
||
if (e->data_type == MEM_DEP)
|
||
start = MAX (start, SCHED_TIME (v_node) - ii + 1);
|
||
}
|
||
}
|
||
start = MAX (start, early_start);
|
||
end = MIN (end, MIN (early_start + ii, late_start + 1));
|
||
step = 1;
|
||
}
|
||
else /* psp is empty && pss is empty. */
|
||
{
|
||
start = SCHED_ASAP (u_node);
|
||
end = start + ii;
|
||
step = 1;
|
||
}
|
||
|
||
*start_p = start;
|
||
*step_p = step;
|
||
*end_p = end;
|
||
sbitmap_free (psp);
|
||
sbitmap_free (pss);
|
||
|
||
if ((start >= end && step == 1) || (start <= end && step == -1))
|
||
return -1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* This function implements the scheduling algorithm for SMS according to the
|
||
above algorithm. */
|
||
static partial_schedule_ptr
|
||
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
|
||
{
|
||
int ii = mii;
|
||
int i, c, success;
|
||
int try_again_with_larger_ii = true;
|
||
int num_nodes = g->num_nodes;
|
||
ddg_edge_ptr e;
|
||
int start, end, step; /* Place together into one struct? */
|
||
sbitmap sched_nodes = sbitmap_alloc (num_nodes);
|
||
sbitmap must_precede = sbitmap_alloc (num_nodes);
|
||
sbitmap must_follow = sbitmap_alloc (num_nodes);
|
||
sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
|
||
|
||
partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
|
||
|
||
sbitmap_ones (tobe_scheduled);
|
||
sbitmap_zero (sched_nodes);
|
||
|
||
while ((! sbitmap_equal (tobe_scheduled, sched_nodes)
|
||
|| try_again_with_larger_ii ) && ii < maxii)
|
||
{
|
||
int j;
|
||
bool unscheduled_nodes = false;
|
||
|
||
if (dump_file)
|
||
fprintf(dump_file, "Starting with ii=%d\n", ii);
|
||
if (try_again_with_larger_ii)
|
||
{
|
||
try_again_with_larger_ii = false;
|
||
sbitmap_zero (sched_nodes);
|
||
}
|
||
|
||
for (i = 0; i < num_nodes; i++)
|
||
{
|
||
int u = nodes_order[i];
|
||
ddg_node_ptr u_node = &ps->g->nodes[u];
|
||
rtx insn = u_node->insn;
|
||
|
||
if (!INSN_P (insn))
|
||
{
|
||
RESET_BIT (tobe_scheduled, u);
|
||
continue;
|
||
}
|
||
|
||
if (JUMP_P (insn)) /* Closing branch handled later. */
|
||
{
|
||
RESET_BIT (tobe_scheduled, u);
|
||
continue;
|
||
}
|
||
|
||
if (TEST_BIT (sched_nodes, u))
|
||
continue;
|
||
|
||
/* Try to get non-empty scheduling window. */
|
||
j = i;
|
||
while (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start, &step, &end) < 0
|
||
&& j > 0)
|
||
{
|
||
unscheduled_nodes = true;
|
||
if (TEST_BIT (NODE_PREDECESSORS (u_node), nodes_order[j - 1])
|
||
|| TEST_BIT (NODE_SUCCESSORS (u_node), nodes_order[j - 1]))
|
||
{
|
||
ps_unschedule_node (ps, &ps->g->nodes[nodes_order[j - 1]]);
|
||
RESET_BIT (sched_nodes, nodes_order [j - 1]);
|
||
}
|
||
j--;
|
||
}
|
||
if (j < 0)
|
||
{
|
||
/* ??? Try backtracking instead of immediately ii++? */
|
||
ii++;
|
||
try_again_with_larger_ii = true;
|
||
reset_partial_schedule (ps, ii);
|
||
break;
|
||
}
|
||
/* 2. Try scheduling u in window. */
|
||
if (dump_file)
|
||
fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
|
||
u, start, end, step);
|
||
|
||
/* use must_follow & must_precede bitmaps to determine order
|
||
of nodes within the cycle. */
|
||
sbitmap_zero (must_precede);
|
||
sbitmap_zero (must_follow);
|
||
for (e = u_node->in; e != 0; e = e->next_in)
|
||
if (TEST_BIT (sched_nodes, e->src->cuid)
|
||
&& e->latency == (ii * e->distance)
|
||
&& start == SCHED_TIME (e->src))
|
||
SET_BIT (must_precede, e->src->cuid);
|
||
|
||
for (e = u_node->out; e != 0; e = e->next_out)
|
||
if (TEST_BIT (sched_nodes, e->dest->cuid)
|
||
&& e->latency == (ii * e->distance)
|
||
&& end == SCHED_TIME (e->dest))
|
||
SET_BIT (must_follow, e->dest->cuid);
|
||
|
||
success = 0;
|
||
if ((step > 0 && start < end) || (step < 0 && start > end))
|
||
for (c = start; c != end; c += step)
|
||
{
|
||
ps_insn_ptr psi;
|
||
|
||
psi = ps_add_node_check_conflicts (ps, u_node, c,
|
||
must_precede,
|
||
must_follow);
|
||
|
||
if (psi)
|
||
{
|
||
SCHED_TIME (u_node) = c;
|
||
SET_BIT (sched_nodes, u);
|
||
success = 1;
|
||
if (dump_file)
|
||
fprintf(dump_file, "Schedule in %d\n", c);
|
||
break;
|
||
}
|
||
}
|
||
if (!success)
|
||
{
|
||
/* ??? Try backtracking instead of immediately ii++? */
|
||
ii++;
|
||
try_again_with_larger_ii = true;
|
||
reset_partial_schedule (ps, ii);
|
||
break;
|
||
}
|
||
if (unscheduled_nodes)
|
||
break;
|
||
|
||
/* ??? If (success), check register pressure estimates. */
|
||
} /* Continue with next node. */
|
||
} /* While try_again_with_larger_ii. */
|
||
|
||
sbitmap_free (sched_nodes);
|
||
sbitmap_free (must_precede);
|
||
sbitmap_free (must_follow);
|
||
sbitmap_free (tobe_scheduled);
|
||
|
||
if (ii >= maxii)
|
||
{
|
||
free_partial_schedule (ps);
|
||
ps = NULL;
|
||
}
|
||
return ps;
|
||
}
|
||
|
||
|
||
/* This page implements the algorithm for ordering the nodes of a DDG
|
||
for modulo scheduling, activated through the
|
||
"int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
|
||
|
||
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
|
||
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
|
||
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
|
||
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
|
||
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
|
||
#define DEPTH(x) (ASAP ((x)))
|
||
|
||
typedef struct node_order_params * nopa;
|
||
|
||
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
|
||
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
|
||
static nopa calculate_order_params (ddg_ptr, int mii);
|
||
static int find_max_asap (ddg_ptr, sbitmap);
|
||
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
|
||
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
|
||
|
||
enum sms_direction {BOTTOMUP, TOPDOWN};
|
||
|
||
struct node_order_params
|
||
{
|
||
int asap;
|
||
int alap;
|
||
int height;
|
||
};
|
||
|
||
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
|
||
static void
|
||
check_nodes_order (int *node_order, int num_nodes)
|
||
{
|
||
int i;
|
||
sbitmap tmp = sbitmap_alloc (num_nodes);
|
||
|
||
sbitmap_zero (tmp);
|
||
|
||
for (i = 0; i < num_nodes; i++)
|
||
{
|
||
int u = node_order[i];
|
||
|
||
gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
|
||
|
||
SET_BIT (tmp, u);
|
||
}
|
||
|
||
sbitmap_free (tmp);
|
||
}
|
||
|
||
/* Order the nodes of G for scheduling and pass the result in
|
||
NODE_ORDER. Also set aux.count of each node to ASAP.
|
||
Return the recMII for the given DDG. */
|
||
static int
|
||
sms_order_nodes (ddg_ptr g, int mii, int * node_order)
|
||
{
|
||
int i;
|
||
int rec_mii = 0;
|
||
ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
|
||
|
||
nopa nops = calculate_order_params (g, mii);
|
||
|
||
order_nodes_of_sccs (sccs, node_order);
|
||
|
||
if (sccs->num_sccs > 0)
|
||
/* First SCC has the largest recurrence_length. */
|
||
rec_mii = sccs->sccs[0]->recurrence_length;
|
||
|
||
/* Save ASAP before destroying node_order_params. */
|
||
for (i = 0; i < g->num_nodes; i++)
|
||
{
|
||
ddg_node_ptr v = &g->nodes[i];
|
||
v->aux.count = ASAP (v);
|
||
}
|
||
|
||
free (nops);
|
||
free_ddg_all_sccs (sccs);
|
||
check_nodes_order (node_order, g->num_nodes);
|
||
|
||
return rec_mii;
|
||
}
|
||
|
||
static void
|
||
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
|
||
{
|
||
int i, pos = 0;
|
||
ddg_ptr g = all_sccs->ddg;
|
||
int num_nodes = g->num_nodes;
|
||
sbitmap prev_sccs = sbitmap_alloc (num_nodes);
|
||
sbitmap on_path = sbitmap_alloc (num_nodes);
|
||
sbitmap tmp = sbitmap_alloc (num_nodes);
|
||
sbitmap ones = sbitmap_alloc (num_nodes);
|
||
|
||
sbitmap_zero (prev_sccs);
|
||
sbitmap_ones (ones);
|
||
|
||
/* Perfrom the node ordering starting from the SCC with the highest recMII.
|
||
For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
|
||
for (i = 0; i < all_sccs->num_sccs; i++)
|
||
{
|
||
ddg_scc_ptr scc = all_sccs->sccs[i];
|
||
|
||
/* Add nodes on paths from previous SCCs to the current SCC. */
|
||
find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
|
||
sbitmap_a_or_b (tmp, scc->nodes, on_path);
|
||
|
||
/* Add nodes on paths from the current SCC to previous SCCs. */
|
||
find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
|
||
sbitmap_a_or_b (tmp, tmp, on_path);
|
||
|
||
/* Remove nodes of previous SCCs from current extended SCC. */
|
||
sbitmap_difference (tmp, tmp, prev_sccs);
|
||
|
||
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
||
/* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
|
||
}
|
||
|
||
/* Handle the remaining nodes that do not belong to any scc. Each call
|
||
to order_nodes_in_scc handles a single connected component. */
|
||
while (pos < g->num_nodes)
|
||
{
|
||
sbitmap_difference (tmp, ones, prev_sccs);
|
||
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
||
}
|
||
sbitmap_free (prev_sccs);
|
||
sbitmap_free (on_path);
|
||
sbitmap_free (tmp);
|
||
sbitmap_free (ones);
|
||
}
|
||
|
||
/* MII is needed if we consider backarcs (that do not close recursive cycles). */
|
||
static struct node_order_params *
|
||
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
|
||
{
|
||
int u;
|
||
int max_asap;
|
||
int num_nodes = g->num_nodes;
|
||
ddg_edge_ptr e;
|
||
/* Allocate a place to hold ordering params for each node in the DDG. */
|
||
nopa node_order_params_arr;
|
||
|
||
/* Initialize of ASAP/ALAP/HEIGHT to zero. */
|
||
node_order_params_arr = (nopa) xcalloc (num_nodes,
|
||
sizeof (struct node_order_params));
|
||
|
||
/* Set the aux pointer of each node to point to its order_params structure. */
|
||
for (u = 0; u < num_nodes; u++)
|
||
g->nodes[u].aux.info = &node_order_params_arr[u];
|
||
|
||
/* Disregarding a backarc from each recursive cycle to obtain a DAG,
|
||
calculate ASAP, ALAP, mobility, distance, and height for each node
|
||
in the dependence (direct acyclic) graph. */
|
||
|
||
/* We assume that the nodes in the array are in topological order. */
|
||
|
||
max_asap = 0;
|
||
for (u = 0; u < num_nodes; u++)
|
||
{
|
||
ddg_node_ptr u_node = &g->nodes[u];
|
||
|
||
ASAP (u_node) = 0;
|
||
for (e = u_node->in; e; e = e->next_in)
|
||
if (e->distance == 0)
|
||
ASAP (u_node) = MAX (ASAP (u_node),
|
||
ASAP (e->src) + e->latency);
|
||
max_asap = MAX (max_asap, ASAP (u_node));
|
||
}
|
||
|
||
for (u = num_nodes - 1; u > -1; u--)
|
||
{
|
||
ddg_node_ptr u_node = &g->nodes[u];
|
||
|
||
ALAP (u_node) = max_asap;
|
||
HEIGHT (u_node) = 0;
|
||
for (e = u_node->out; e; e = e->next_out)
|
||
if (e->distance == 0)
|
||
{
|
||
ALAP (u_node) = MIN (ALAP (u_node),
|
||
ALAP (e->dest) - e->latency);
|
||
HEIGHT (u_node) = MAX (HEIGHT (u_node),
|
||
HEIGHT (e->dest) + e->latency);
|
||
}
|
||
}
|
||
|
||
return node_order_params_arr;
|
||
}
|
||
|
||
static int
|
||
find_max_asap (ddg_ptr g, sbitmap nodes)
|
||
{
|
||
unsigned int u = 0;
|
||
int max_asap = -1;
|
||
int result = -1;
|
||
sbitmap_iterator sbi;
|
||
|
||
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
||
{
|
||
ddg_node_ptr u_node = &g->nodes[u];
|
||
|
||
if (max_asap < ASAP (u_node))
|
||
{
|
||
max_asap = ASAP (u_node);
|
||
result = u;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static int
|
||
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
|
||
{
|
||
unsigned int u = 0;
|
||
int max_hv = -1;
|
||
int min_mob = INT_MAX;
|
||
int result = -1;
|
||
sbitmap_iterator sbi;
|
||
|
||
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
||
{
|
||
ddg_node_ptr u_node = &g->nodes[u];
|
||
|
||
if (max_hv < HEIGHT (u_node))
|
||
{
|
||
max_hv = HEIGHT (u_node);
|
||
min_mob = MOB (u_node);
|
||
result = u;
|
||
}
|
||
else if ((max_hv == HEIGHT (u_node))
|
||
&& (min_mob > MOB (u_node)))
|
||
{
|
||
min_mob = MOB (u_node);
|
||
result = u;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static int
|
||
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
|
||
{
|
||
unsigned int u = 0;
|
||
int max_dv = -1;
|
||
int min_mob = INT_MAX;
|
||
int result = -1;
|
||
sbitmap_iterator sbi;
|
||
|
||
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
||
{
|
||
ddg_node_ptr u_node = &g->nodes[u];
|
||
|
||
if (max_dv < DEPTH (u_node))
|
||
{
|
||
max_dv = DEPTH (u_node);
|
||
min_mob = MOB (u_node);
|
||
result = u;
|
||
}
|
||
else if ((max_dv == DEPTH (u_node))
|
||
&& (min_mob > MOB (u_node)))
|
||
{
|
||
min_mob = MOB (u_node);
|
||
result = u;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* Places the nodes of SCC into the NODE_ORDER array starting
|
||
at position POS, according to the SMS ordering algorithm.
|
||
NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
|
||
the NODE_ORDER array, starting from position zero. */
|
||
static int
|
||
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
|
||
int * node_order, int pos)
|
||
{
|
||
enum sms_direction dir;
|
||
int num_nodes = g->num_nodes;
|
||
sbitmap workset = sbitmap_alloc (num_nodes);
|
||
sbitmap tmp = sbitmap_alloc (num_nodes);
|
||
sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
|
||
sbitmap predecessors = sbitmap_alloc (num_nodes);
|
||
sbitmap successors = sbitmap_alloc (num_nodes);
|
||
|
||
sbitmap_zero (predecessors);
|
||
find_predecessors (predecessors, g, nodes_ordered);
|
||
|
||
sbitmap_zero (successors);
|
||
find_successors (successors, g, nodes_ordered);
|
||
|
||
sbitmap_zero (tmp);
|
||
if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
|
||
{
|
||
sbitmap_copy (workset, tmp);
|
||
dir = BOTTOMUP;
|
||
}
|
||
else if (sbitmap_a_and_b_cg (tmp, successors, scc))
|
||
{
|
||
sbitmap_copy (workset, tmp);
|
||
dir = TOPDOWN;
|
||
}
|
||
else
|
||
{
|
||
int u;
|
||
|
||
sbitmap_zero (workset);
|
||
if ((u = find_max_asap (g, scc)) >= 0)
|
||
SET_BIT (workset, u);
|
||
dir = BOTTOMUP;
|
||
}
|
||
|
||
sbitmap_zero (zero_bitmap);
|
||
while (!sbitmap_equal (workset, zero_bitmap))
|
||
{
|
||
int v;
|
||
ddg_node_ptr v_node;
|
||
sbitmap v_node_preds;
|
||
sbitmap v_node_succs;
|
||
|
||
if (dir == TOPDOWN)
|
||
{
|
||
while (!sbitmap_equal (workset, zero_bitmap))
|
||
{
|
||
v = find_max_hv_min_mob (g, workset);
|
||
v_node = &g->nodes[v];
|
||
node_order[pos++] = v;
|
||
v_node_succs = NODE_SUCCESSORS (v_node);
|
||
sbitmap_a_and_b (tmp, v_node_succs, scc);
|
||
|
||
/* Don't consider the already ordered successors again. */
|
||
sbitmap_difference (tmp, tmp, nodes_ordered);
|
||
sbitmap_a_or_b (workset, workset, tmp);
|
||
RESET_BIT (workset, v);
|
||
SET_BIT (nodes_ordered, v);
|
||
}
|
||
dir = BOTTOMUP;
|
||
sbitmap_zero (predecessors);
|
||
find_predecessors (predecessors, g, nodes_ordered);
|
||
sbitmap_a_and_b (workset, predecessors, scc);
|
||
}
|
||
else
|
||
{
|
||
while (!sbitmap_equal (workset, zero_bitmap))
|
||
{
|
||
v = find_max_dv_min_mob (g, workset);
|
||
v_node = &g->nodes[v];
|
||
node_order[pos++] = v;
|
||
v_node_preds = NODE_PREDECESSORS (v_node);
|
||
sbitmap_a_and_b (tmp, v_node_preds, scc);
|
||
|
||
/* Don't consider the already ordered predecessors again. */
|
||
sbitmap_difference (tmp, tmp, nodes_ordered);
|
||
sbitmap_a_or_b (workset, workset, tmp);
|
||
RESET_BIT (workset, v);
|
||
SET_BIT (nodes_ordered, v);
|
||
}
|
||
dir = TOPDOWN;
|
||
sbitmap_zero (successors);
|
||
find_successors (successors, g, nodes_ordered);
|
||
sbitmap_a_and_b (workset, successors, scc);
|
||
}
|
||
}
|
||
sbitmap_free (tmp);
|
||
sbitmap_free (workset);
|
||
sbitmap_free (zero_bitmap);
|
||
sbitmap_free (predecessors);
|
||
sbitmap_free (successors);
|
||
return pos;
|
||
}
|
||
|
||
|
||
/* This page contains functions for manipulating partial-schedules during
|
||
modulo scheduling. */
|
||
|
||
/* Create a partial schedule and allocate a memory to hold II rows. */
|
||
|
||
static partial_schedule_ptr
|
||
create_partial_schedule (int ii, ddg_ptr g, int history)
|
||
{
|
||
partial_schedule_ptr ps = XNEW (struct partial_schedule);
|
||
ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
|
||
ps->ii = ii;
|
||
ps->history = history;
|
||
ps->min_cycle = INT_MAX;
|
||
ps->max_cycle = INT_MIN;
|
||
ps->g = g;
|
||
|
||
return ps;
|
||
}
|
||
|
||
/* Free the PS_INSNs in rows array of the given partial schedule.
|
||
??? Consider caching the PS_INSN's. */
|
||
static void
|
||
free_ps_insns (partial_schedule_ptr ps)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < ps->ii; i++)
|
||
{
|
||
while (ps->rows[i])
|
||
{
|
||
ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
|
||
|
||
free (ps->rows[i]);
|
||
ps->rows[i] = ps_insn;
|
||
}
|
||
ps->rows[i] = NULL;
|
||
}
|
||
}
|
||
|
||
/* Free all the memory allocated to the partial schedule. */
|
||
|
||
static void
|
||
free_partial_schedule (partial_schedule_ptr ps)
|
||
{
|
||
if (!ps)
|
||
return;
|
||
free_ps_insns (ps);
|
||
free (ps->rows);
|
||
free (ps);
|
||
}
|
||
|
||
/* Clear the rows array with its PS_INSNs, and create a new one with
|
||
NEW_II rows. */
|
||
|
||
static void
|
||
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
|
||
{
|
||
if (!ps)
|
||
return;
|
||
free_ps_insns (ps);
|
||
if (new_ii == ps->ii)
|
||
return;
|
||
ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
|
||
* sizeof (ps_insn_ptr));
|
||
memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
|
||
ps->ii = new_ii;
|
||
ps->min_cycle = INT_MAX;
|
||
ps->max_cycle = INT_MIN;
|
||
}
|
||
|
||
/* Prints the partial schedule as an ii rows array, for each rows
|
||
print the ids of the insns in it. */
|
||
void
|
||
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < ps->ii; i++)
|
||
{
|
||
ps_insn_ptr ps_i = ps->rows[i];
|
||
|
||
fprintf (dump, "\n[CYCLE %d ]: ", i);
|
||
while (ps_i)
|
||
{
|
||
fprintf (dump, "%d, ",
|
||
INSN_UID (ps_i->node->insn));
|
||
ps_i = ps_i->next_in_row;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Creates an object of PS_INSN and initializes it to the given parameters. */
|
||
static ps_insn_ptr
|
||
create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
|
||
{
|
||
ps_insn_ptr ps_i = XNEW (struct ps_insn);
|
||
|
||
ps_i->node = node;
|
||
ps_i->next_in_row = NULL;
|
||
ps_i->prev_in_row = NULL;
|
||
ps_i->row_rest_count = rest_count;
|
||
ps_i->cycle = cycle;
|
||
|
||
return ps_i;
|
||
}
|
||
|
||
|
||
/* Removes the given PS_INSN from the partial schedule. Returns false if the
|
||
node is not found in the partial schedule, else returns true. */
|
||
static bool
|
||
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
|
||
{
|
||
int row;
|
||
|
||
if (!ps || !ps_i)
|
||
return false;
|
||
|
||
row = SMODULO (ps_i->cycle, ps->ii);
|
||
if (! ps_i->prev_in_row)
|
||
{
|
||
if (ps_i != ps->rows[row])
|
||
return false;
|
||
|
||
ps->rows[row] = ps_i->next_in_row;
|
||
if (ps->rows[row])
|
||
ps->rows[row]->prev_in_row = NULL;
|
||
}
|
||
else
|
||
{
|
||
ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
|
||
if (ps_i->next_in_row)
|
||
ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
|
||
}
|
||
free (ps_i);
|
||
return true;
|
||
}
|
||
|
||
/* Unlike what literature describes for modulo scheduling (which focuses
|
||
on VLIW machines) the order of the instructions inside a cycle is
|
||
important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
|
||
where the current instruction should go relative to the already
|
||
scheduled instructions in the given cycle. Go over these
|
||
instructions and find the first possible column to put it in. */
|
||
static bool
|
||
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
||
sbitmap must_precede, sbitmap must_follow)
|
||
{
|
||
ps_insn_ptr next_ps_i;
|
||
ps_insn_ptr first_must_follow = NULL;
|
||
ps_insn_ptr last_must_precede = NULL;
|
||
int row;
|
||
|
||
if (! ps_i)
|
||
return false;
|
||
|
||
row = SMODULO (ps_i->cycle, ps->ii);
|
||
|
||
/* Find the first must follow and the last must precede
|
||
and insert the node immediately after the must precede
|
||
but make sure that it there is no must follow after it. */
|
||
for (next_ps_i = ps->rows[row];
|
||
next_ps_i;
|
||
next_ps_i = next_ps_i->next_in_row)
|
||
{
|
||
if (TEST_BIT (must_follow, next_ps_i->node->cuid)
|
||
&& ! first_must_follow)
|
||
first_must_follow = next_ps_i;
|
||
if (TEST_BIT (must_precede, next_ps_i->node->cuid))
|
||
{
|
||
/* If we have already met a node that must follow, then
|
||
there is no possible column. */
|
||
if (first_must_follow)
|
||
return false;
|
||
else
|
||
last_must_precede = next_ps_i;
|
||
}
|
||
}
|
||
|
||
/* Now insert the node after INSERT_AFTER_PSI. */
|
||
|
||
if (! last_must_precede)
|
||
{
|
||
ps_i->next_in_row = ps->rows[row];
|
||
ps_i->prev_in_row = NULL;
|
||
if (ps_i->next_in_row)
|
||
ps_i->next_in_row->prev_in_row = ps_i;
|
||
ps->rows[row] = ps_i;
|
||
}
|
||
else
|
||
{
|
||
ps_i->next_in_row = last_must_precede->next_in_row;
|
||
last_must_precede->next_in_row = ps_i;
|
||
ps_i->prev_in_row = last_must_precede;
|
||
if (ps_i->next_in_row)
|
||
ps_i->next_in_row->prev_in_row = ps_i;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Advances the PS_INSN one column in its current row; returns false
|
||
in failure and true in success. Bit N is set in MUST_FOLLOW if
|
||
the node with cuid N must be come after the node pointed to by
|
||
PS_I when scheduled in the same cycle. */
|
||
static int
|
||
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
||
sbitmap must_follow)
|
||
{
|
||
ps_insn_ptr prev, next;
|
||
int row;
|
||
ddg_node_ptr next_node;
|
||
|
||
if (!ps || !ps_i)
|
||
return false;
|
||
|
||
row = SMODULO (ps_i->cycle, ps->ii);
|
||
|
||
if (! ps_i->next_in_row)
|
||
return false;
|
||
|
||
next_node = ps_i->next_in_row->node;
|
||
|
||
/* Check if next_in_row is dependent on ps_i, both having same sched
|
||
times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
|
||
if (TEST_BIT (must_follow, next_node->cuid))
|
||
return false;
|
||
|
||
/* Advance PS_I over its next_in_row in the doubly linked list. */
|
||
prev = ps_i->prev_in_row;
|
||
next = ps_i->next_in_row;
|
||
|
||
if (ps_i == ps->rows[row])
|
||
ps->rows[row] = next;
|
||
|
||
ps_i->next_in_row = next->next_in_row;
|
||
|
||
if (next->next_in_row)
|
||
next->next_in_row->prev_in_row = ps_i;
|
||
|
||
next->next_in_row = ps_i;
|
||
ps_i->prev_in_row = next;
|
||
|
||
next->prev_in_row = prev;
|
||
if (prev)
|
||
prev->next_in_row = next;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
|
||
Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
|
||
set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
|
||
before/after (respectively) the node pointed to by PS_I when scheduled
|
||
in the same cycle. */
|
||
static ps_insn_ptr
|
||
add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
|
||
sbitmap must_precede, sbitmap must_follow)
|
||
{
|
||
ps_insn_ptr ps_i;
|
||
int rest_count = 1;
|
||
int row = SMODULO (cycle, ps->ii);
|
||
|
||
if (ps->rows[row]
|
||
&& ps->rows[row]->row_rest_count >= issue_rate)
|
||
return NULL;
|
||
|
||
if (ps->rows[row])
|
||
rest_count += ps->rows[row]->row_rest_count;
|
||
|
||
ps_i = create_ps_insn (node, rest_count, cycle);
|
||
|
||
/* Finds and inserts PS_I according to MUST_FOLLOW and
|
||
MUST_PRECEDE. */
|
||
if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
|
||
{
|
||
free (ps_i);
|
||
return NULL;
|
||
}
|
||
|
||
return ps_i;
|
||
}
|
||
|
||
/* Advance time one cycle. Assumes DFA is being used. */
|
||
static void
|
||
advance_one_cycle (void)
|
||
{
|
||
if (targetm.sched.dfa_pre_cycle_insn)
|
||
state_transition (curr_state,
|
||
targetm.sched.dfa_pre_cycle_insn ());
|
||
|
||
state_transition (curr_state, NULL);
|
||
|
||
if (targetm.sched.dfa_post_cycle_insn)
|
||
state_transition (curr_state,
|
||
targetm.sched.dfa_post_cycle_insn ());
|
||
}
|
||
|
||
/* Given the kernel of a loop (from FIRST_INSN to LAST_INSN), finds
|
||
the number of cycles according to DFA that the kernel fits in,
|
||
we use this to check if we done well with SMS after we add
|
||
register moves. In some cases register moves overhead makes
|
||
it even worse than the original loop. We want SMS to be performed
|
||
when it gives less cycles after register moves are added. */
|
||
static int
|
||
kernel_number_of_cycles (rtx first_insn, rtx last_insn)
|
||
{
|
||
int cycles = 0;
|
||
rtx insn;
|
||
int can_issue_more = issue_rate;
|
||
|
||
state_reset (curr_state);
|
||
|
||
for (insn = first_insn;
|
||
insn != NULL_RTX && insn != last_insn;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
|
||
continue;
|
||
|
||
/* Check if there is room for the current insn. */
|
||
if (!can_issue_more || state_dead_lock_p (curr_state))
|
||
{
|
||
cycles ++;
|
||
advance_one_cycle ();
|
||
can_issue_more = issue_rate;
|
||
}
|
||
|
||
/* Update the DFA state and return with failure if the DFA found
|
||
recource conflicts. */
|
||
if (state_transition (curr_state, insn) >= 0)
|
||
{
|
||
cycles ++;
|
||
advance_one_cycle ();
|
||
can_issue_more = issue_rate;
|
||
}
|
||
|
||
if (targetm.sched.variable_issue)
|
||
can_issue_more =
|
||
targetm.sched.variable_issue (sched_dump, sched_verbose,
|
||
insn, can_issue_more);
|
||
/* A naked CLOBBER or USE generates no instruction, so don't
|
||
let them consume issue slots. */
|
||
else if (GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
can_issue_more--;
|
||
}
|
||
return cycles;
|
||
}
|
||
|
||
/* Checks if PS has resource conflicts according to DFA, starting from
|
||
FROM cycle to TO cycle; returns true if there are conflicts and false
|
||
if there are no conflicts. Assumes DFA is being used. */
|
||
static int
|
||
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
|
||
{
|
||
int cycle;
|
||
|
||
state_reset (curr_state);
|
||
|
||
for (cycle = from; cycle <= to; cycle++)
|
||
{
|
||
ps_insn_ptr crr_insn;
|
||
/* Holds the remaining issue slots in the current row. */
|
||
int can_issue_more = issue_rate;
|
||
|
||
/* Walk through the DFA for the current row. */
|
||
for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
|
||
crr_insn;
|
||
crr_insn = crr_insn->next_in_row)
|
||
{
|
||
rtx insn = crr_insn->node->insn;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
/* Check if there is room for the current insn. */
|
||
if (!can_issue_more || state_dead_lock_p (curr_state))
|
||
return true;
|
||
|
||
/* Update the DFA state and return with failure if the DFA found
|
||
recource conflicts. */
|
||
if (state_transition (curr_state, insn) >= 0)
|
||
return true;
|
||
|
||
if (targetm.sched.variable_issue)
|
||
can_issue_more =
|
||
targetm.sched.variable_issue (sched_dump, sched_verbose,
|
||
insn, can_issue_more);
|
||
/* A naked CLOBBER or USE generates no instruction, so don't
|
||
let them consume issue slots. */
|
||
else if (GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
can_issue_more--;
|
||
}
|
||
|
||
/* Advance the DFA to the next cycle. */
|
||
advance_one_cycle ();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Checks if the given node causes resource conflicts when added to PS at
|
||
cycle C. If not the node is added to PS and returned; otherwise zero
|
||
is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
|
||
cuid N must be come before/after (respectively) the node pointed to by
|
||
PS_I when scheduled in the same cycle. */
|
||
ps_insn_ptr
|
||
ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
|
||
int c, sbitmap must_precede,
|
||
sbitmap must_follow)
|
||
{
|
||
int has_conflicts = 0;
|
||
ps_insn_ptr ps_i;
|
||
|
||
/* First add the node to the PS, if this succeeds check for
|
||
conflicts, trying different issue slots in the same row. */
|
||
if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
|
||
return NULL; /* Failed to insert the node at the given cycle. */
|
||
|
||
has_conflicts = ps_has_conflicts (ps, c, c)
|
||
|| (ps->history > 0
|
||
&& ps_has_conflicts (ps,
|
||
c - ps->history,
|
||
c + ps->history));
|
||
|
||
/* Try different issue slots to find one that the given node can be
|
||
scheduled in without conflicts. */
|
||
while (has_conflicts)
|
||
{
|
||
if (! ps_insn_advance_column (ps, ps_i, must_follow))
|
||
break;
|
||
has_conflicts = ps_has_conflicts (ps, c, c)
|
||
|| (ps->history > 0
|
||
&& ps_has_conflicts (ps,
|
||
c - ps->history,
|
||
c + ps->history));
|
||
}
|
||
|
||
if (has_conflicts)
|
||
{
|
||
remove_node_from_ps (ps, ps_i);
|
||
return NULL;
|
||
}
|
||
|
||
ps->min_cycle = MIN (ps->min_cycle, c);
|
||
ps->max_cycle = MAX (ps->max_cycle, c);
|
||
return ps_i;
|
||
}
|
||
|
||
/* Rotate the rows of PS such that insns scheduled at time
|
||
START_CYCLE will appear in row 0. Updates max/min_cycles. */
|
||
void
|
||
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
|
||
{
|
||
int i, row, backward_rotates;
|
||
int last_row = ps->ii - 1;
|
||
|
||
if (start_cycle == 0)
|
||
return;
|
||
|
||
backward_rotates = SMODULO (start_cycle, ps->ii);
|
||
|
||
/* Revisit later and optimize this into a single loop. */
|
||
for (i = 0; i < backward_rotates; i++)
|
||
{
|
||
ps_insn_ptr first_row = ps->rows[0];
|
||
|
||
for (row = 0; row < last_row; row++)
|
||
ps->rows[row] = ps->rows[row+1];
|
||
|
||
ps->rows[last_row] = first_row;
|
||
}
|
||
|
||
ps->max_cycle -= start_cycle;
|
||
ps->min_cycle -= start_cycle;
|
||
}
|
||
|
||
/* Remove the node N from the partial schedule PS; because we restart the DFA
|
||
each time we want to check for resource conflicts; this is equivalent to
|
||
unscheduling the node N. */
|
||
static bool
|
||
ps_unschedule_node (partial_schedule_ptr ps, ddg_node_ptr n)
|
||
{
|
||
ps_insn_ptr ps_i;
|
||
int row = SMODULO (SCHED_TIME (n), ps->ii);
|
||
|
||
if (row < 0 || row > ps->ii)
|
||
return false;
|
||
|
||
for (ps_i = ps->rows[row];
|
||
ps_i && ps_i->node != n;
|
||
ps_i = ps_i->next_in_row);
|
||
if (!ps_i)
|
||
return false;
|
||
|
||
return remove_node_from_ps (ps, ps_i);
|
||
}
|
||
#endif /* INSN_SCHEDULING */
|
||
|
||
static bool
|
||
gate_handle_sms (void)
|
||
{
|
||
return (optimize > 0 && flag_modulo_sched);
|
||
}
|
||
|
||
|
||
/* Run instruction scheduler. */
|
||
/* Perform SMS module scheduling. */
|
||
static unsigned int
|
||
rest_of_handle_sms (void)
|
||
{
|
||
#ifdef INSN_SCHEDULING
|
||
basic_block bb;
|
||
|
||
/* We want to be able to create new pseudos. */
|
||
no_new_pseudos = 0;
|
||
/* Collect loop information to be used in SMS. */
|
||
cfg_layout_initialize (CLEANUP_UPDATE_LIFE);
|
||
sms_schedule ();
|
||
|
||
/* Update the life information, because we add pseudos. */
|
||
max_regno = max_reg_num ();
|
||
allocate_reg_info (max_regno, FALSE, FALSE);
|
||
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
(PROP_DEATH_NOTES
|
||
| PROP_REG_INFO
|
||
| PROP_KILL_DEAD_CODE
|
||
| PROP_SCAN_DEAD_CODE));
|
||
|
||
no_new_pseudos = 1;
|
||
|
||
/* Finalize layout changes. */
|
||
FOR_EACH_BB (bb)
|
||
if (bb->next_bb != EXIT_BLOCK_PTR)
|
||
bb->aux = bb->next_bb;
|
||
cfg_layout_finalize ();
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
#endif /* INSN_SCHEDULING */
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_sms =
|
||
{
|
||
"sms", /* name */
|
||
gate_handle_sms, /* gate */
|
||
rest_of_handle_sms, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_SMS, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
TODO_dump_func, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'm' /* letter */
|
||
};
|
||
|