1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-24 11:29:10 +00:00
freebsd/sys/ufs/ffs
Kirk McKusick 9b97113391 This patch corrects the first round of panics and hangs reported
with the new snapshot code.

Update addaliasu to correctly implement the semantics of the old
checkalias function. When a device vnode first comes into existence,
check to see if an anonymous vnode for the same device was created
at boot time by bdevvp(). If so, adopt the bdevvp vnode rather than
creating a new vnode for the device. This corrects a problem which
caused the kernel to panic when taking a snapshot of the root
filesystem.

Change the calling convention of vn_write_suspend_wait() to be the
same as vn_start_write().

Split out softdep_flushworklist() from softdep_flushfiles() so that
it can be used to clear the work queue when suspending filesystem
operations.

Access to buffers becomes recursive so that snapshots can recursively
traverse their indirect blocks using ffs_copyonwrite() when checking
for the need for copy on write when flushing one of their own indirect
blocks. This eliminates a deadlock between the syncer daemon and a
process taking a snapshot.

Ensure that softdep_process_worklist() can never block because of a
snapshot being taken. This eliminates a problem with buffer starvation.

Cleanup change in ffs_sync() which did not synchronously wait when
MNT_WAIT was specified. The result was an unclean filesystem panic
when doing forcible unmount with heavy filesystem I/O in progress.

Return a zero'ed block when reading a block that was not in use at
the time that a snapshot was taken. Normally, these blocks should
never be read. However, the readahead code will occationally read
them which can cause unexpected behavior.

Clean up the debugging code that ensures that no blocks be written
on a filesystem while it is suspended. Snapshots must explicitly
label the blocks that they are writing during the suspension so that
they do not cause a `write on suspended filesystem' panic.

Reorganize ffs_copyonwrite() to eliminate a deadlock and also to
prevent a race condition that would permit the same block to be
copied twice. This change eliminates an unexpected soft updates
inconsistency in fsck caused by the double allocation.

Use bqrelse rather than brelse for buffers that will be needed
soon again by the snapshot code. This improves snapshot performance.
2000-07-24 05:28:33 +00:00
..
ffs_alloc.c Add snapshots to the fast filesystem. Most of the changes support 2000-07-11 22:07:57 +00:00
ffs_balloc.c Add snapshots to the fast filesystem. Most of the changes support 2000-07-11 22:07:57 +00:00
ffs_extern.h This patch corrects the first round of panics and hangs reported 2000-07-24 05:28:33 +00:00
ffs_inode.c Separate the struct bio related stuff out of <sys/buf.h> into 2000-05-05 09:59:14 +00:00
ffs_snapshot.c This patch corrects the first round of panics and hangs reported 2000-07-24 05:28:33 +00:00
ffs_softdep_stub.c Make the two calls from kern/* into softupdates #ifdef SOFTUPDATES, 2000-07-03 13:26:54 +00:00
ffs_softdep.c This patch corrects the first round of panics and hangs reported 2000-07-24 05:28:33 +00:00
ffs_subr.c Separate the struct bio related stuff out of <sys/buf.h> into 2000-05-05 09:59:14 +00:00
ffs_tables.c $Id$ -> $FreeBSD$ 1999-08-28 01:08:13 +00:00
ffs_vfsops.c This patch corrects the first round of panics and hangs reported 2000-07-24 05:28:33 +00:00
ffs_vnops.c Add snapshots to the fast filesystem. Most of the changes support 2000-07-11 22:07:57 +00:00
fs.h Get userland visible flags added for snapshots to give a few days 2000-07-04 04:58:34 +00:00
README.snapshot Add snapshots to the fast filesystem. Most of the changes support 2000-07-11 22:07:57 +00:00
README.softupdates Update to reflect current status. 2000-07-08 02:31:21 +00:00
softdep.h Add snapshots to the fast filesystem. Most of the changes support 2000-07-11 22:07:57 +00:00

$FreeBSD$

Using Soft Updates

To enable the soft updates feature in your kernel, add option
SOFTUPDATES to your kernel configuration.

Once you are running a kernel with soft update support, you need to enable
it for whichever filesystems you wish to run with the soft update policy.
This is done with the -n option to tunefs(8) on the UNMOUNTED filesystems,
e.g. from single-user mode you'd do something like:

	tunefs -n enable /usr

To permanently enable soft updates on the /usr filesystem (or at least
until a corresponding ``tunefs -n disable'' is done).


Soft Updates Copyright Restrictions

As of June 2000 the restrictive copyright has been removed and 
replaced with a `Berkeley-style' copyright. The files implementing
soft updates now reside in the sys/ufs/ffs directory and are
compiled into the generic kernel by default.


Soft Updates Status

The soft updates code has been running in production on many
systems for the past two years generally quite successfully.
The two current sets of shortcomings are:

1) On filesystems that are chronically full, the two minute lag
   from the time a file is deleted until its free space shows up
   will result in premature filesystem full failures. This
   failure mode is most evident in small filesystems such as
   the root. For this reason, use of soft updates is not
   recommended on the root filesystem.

2) If your system routines runs parallel processes each of which
   remove many files, the kernel memory rate limiting code may
   not be able to slow removal operations to a level sustainable
   by the disk subsystem. The result is that the kernel runs out
   of memory and hangs.

Both of these problems are being addressed, but have not yet
been resolved. There are no other known problems at this time.


How Soft Updates Work

For more general information on soft updates, please see:
	http://www.mckusick.com/softdep/
	http://www.ece.cmu.edu/~ganger/papers/CSE-TR-254-95/

--
Marshall Kirk McKusick <mckusick@mckusick.com>
July 2000