mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-26 11:47:31 +00:00
63acab6a5b
* Fix boot env back compat zfsboot must try zfsloader before loader in order to remain compatible with boot environments created prior to zfs functionality being rolled into loader proper. * Improve comments in zfsboot Explain the significance of the load path order, and put the comment about looping through the paths in the appropriate scope. Obtained From: TrueNAS commit 4c60c62fcf0b6b6eac98ee8d46e7bbea64bc86f5 Submitted by: Ryan Moeller <ryan@freqlabs.com>
1180 lines
28 KiB
C
1180 lines
28 KiB
C
/*-
|
|
* Copyright (c) 1998 Robert Nordier
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms are freely
|
|
* permitted provided that the above copyright notice and this
|
|
* paragraph and the following disclaimer are duplicated in all
|
|
* such forms.
|
|
*
|
|
* This software is provided "AS IS" and without any express or
|
|
* implied warranties, including, without limitation, the implied
|
|
* warranties of merchantability and fitness for a particular
|
|
* purpose.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "stand.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/diskmbr.h>
|
|
#ifdef GPT
|
|
#include <sys/gpt.h>
|
|
#endif
|
|
#include <sys/reboot.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <machine/bootinfo.h>
|
|
#include <machine/elf.h>
|
|
#include <machine/pc/bios.h>
|
|
|
|
#include <stdarg.h>
|
|
#include <stddef.h>
|
|
|
|
#include <a.out.h>
|
|
|
|
#include <btxv86.h>
|
|
|
|
#include "lib.h"
|
|
#include "rbx.h"
|
|
#include "drv.h"
|
|
#include "edd.h"
|
|
#include "cons.h"
|
|
#include "bootargs.h"
|
|
#include "paths.h"
|
|
|
|
#include "libzfs.h"
|
|
|
|
#define ARGS 0x900
|
|
#define NOPT 14
|
|
#define NDEV 3
|
|
|
|
#define BIOS_NUMDRIVES 0x475
|
|
#define DRV_HARD 0x80
|
|
#define DRV_MASK 0x7f
|
|
|
|
#define TYPE_AD 0
|
|
#define TYPE_DA 1
|
|
#define TYPE_MAXHARD TYPE_DA
|
|
#define TYPE_FD 2
|
|
|
|
#define DEV_GELIBOOT_BSIZE 4096
|
|
|
|
extern uint32_t _end;
|
|
|
|
#ifdef GPT
|
|
static const uuid_t freebsd_zfs_uuid = GPT_ENT_TYPE_FREEBSD_ZFS;
|
|
#endif
|
|
static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */
|
|
static const unsigned char flags[NOPT] = {
|
|
RBX_DUAL,
|
|
RBX_SERIAL,
|
|
RBX_ASKNAME,
|
|
RBX_CDROM,
|
|
RBX_CONFIG,
|
|
RBX_KDB,
|
|
RBX_GDB,
|
|
RBX_MUTE,
|
|
RBX_NOINTR,
|
|
RBX_PAUSE,
|
|
RBX_QUIET,
|
|
RBX_DFLTROOT,
|
|
RBX_SINGLE,
|
|
RBX_VERBOSE
|
|
};
|
|
uint32_t opts;
|
|
|
|
/*
|
|
* Paths to try loading before falling back to the boot2 prompt.
|
|
*
|
|
* /boot/zfsloader must be tried before /boot/loader in order to remain
|
|
* backward compatible with ZFS boot environments where /boot/loader exists
|
|
* but does not have ZFS support, which was the case before FreeBSD 12.
|
|
*
|
|
* If no loader is found, try to load a kernel directly instead.
|
|
*/
|
|
static const struct string {
|
|
const char *p;
|
|
size_t len;
|
|
} loadpath[] = {
|
|
{ PATH_LOADER_ZFS, sizeof(PATH_LOADER_ZFS) },
|
|
{ PATH_LOADER, sizeof(PATH_LOADER) },
|
|
{ PATH_KERNEL, sizeof(PATH_KERNEL) },
|
|
};
|
|
|
|
static const unsigned char dev_maj[NDEV] = {30, 4, 2};
|
|
|
|
static char cmd[512];
|
|
static char cmddup[512];
|
|
static char kname[1024];
|
|
static char rootname[256];
|
|
static int comspeed = SIOSPD;
|
|
static struct bootinfo bootinfo;
|
|
static uint32_t bootdev;
|
|
static struct zfs_boot_args zfsargs;
|
|
|
|
vm_offset_t high_heap_base;
|
|
uint32_t bios_basemem, bios_extmem, high_heap_size;
|
|
|
|
static struct bios_smap smap;
|
|
|
|
/*
|
|
* The minimum amount of memory to reserve in bios_extmem for the heap.
|
|
*/
|
|
#define HEAP_MIN (64 * 1024 * 1024)
|
|
|
|
static char *heap_next;
|
|
static char *heap_end;
|
|
|
|
/* Buffers that must not span a 64k boundary. */
|
|
#define READ_BUF_SIZE 8192
|
|
struct dmadat {
|
|
char rdbuf[READ_BUF_SIZE]; /* for reading large things */
|
|
char secbuf[READ_BUF_SIZE]; /* for MBR/disklabel */
|
|
};
|
|
static struct dmadat *dmadat;
|
|
|
|
void exit(int);
|
|
void reboot(void);
|
|
static void load(void);
|
|
static int parse_cmd(void);
|
|
static void bios_getmem(void);
|
|
int main(void);
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
#include "geliboot.h"
|
|
static char gelipw[GELI_PW_MAXLEN];
|
|
#endif
|
|
|
|
struct zfsdsk {
|
|
struct dsk dsk;
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
struct geli_dev *gdev;
|
|
#endif
|
|
};
|
|
|
|
#include "zfsimpl.c"
|
|
|
|
/*
|
|
* Read from a dnode (which must be from a ZPL filesystem).
|
|
*/
|
|
static int
|
|
zfs_read(spa_t *spa, const dnode_phys_t *dnode, off_t *offp, void *start, size_t size)
|
|
{
|
|
const znode_phys_t *zp = (const znode_phys_t *) dnode->dn_bonus;
|
|
size_t n;
|
|
int rc;
|
|
|
|
n = size;
|
|
if (*offp + n > zp->zp_size)
|
|
n = zp->zp_size - *offp;
|
|
|
|
rc = dnode_read(spa, dnode, *offp, start, n);
|
|
if (rc)
|
|
return (-1);
|
|
*offp += n;
|
|
|
|
return (n);
|
|
}
|
|
|
|
/*
|
|
* Current ZFS pool
|
|
*/
|
|
static spa_t *spa;
|
|
static spa_t *primary_spa;
|
|
static vdev_t *primary_vdev;
|
|
|
|
/*
|
|
* A wrapper for dskread that doesn't have to worry about whether the
|
|
* buffer pointer crosses a 64k boundary.
|
|
*/
|
|
static int
|
|
vdev_read(void *xvdev, void *priv, off_t off, void *buf, size_t bytes)
|
|
{
|
|
char *p;
|
|
daddr_t lba, alignlba;
|
|
off_t diff;
|
|
unsigned int nb, alignnb;
|
|
struct zfsdsk *zdsk = (struct zfsdsk *) priv;
|
|
|
|
if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
|
|
return -1;
|
|
|
|
p = buf;
|
|
lba = off / DEV_BSIZE;
|
|
lba += zdsk->dsk.start;
|
|
/*
|
|
* Align reads to 4k else 4k sector GELIs will not decrypt.
|
|
* Round LBA down to nearest multiple of DEV_GELIBOOT_BSIZE bytes.
|
|
*/
|
|
alignlba = rounddown2(off, DEV_GELIBOOT_BSIZE) / DEV_BSIZE;
|
|
/*
|
|
* The read must be aligned to DEV_GELIBOOT_BSIZE bytes relative to the
|
|
* start of the GELI partition, not the start of the actual disk.
|
|
*/
|
|
alignlba += zdsk->dsk.start;
|
|
diff = (lba - alignlba) * DEV_BSIZE;
|
|
|
|
while (bytes > 0) {
|
|
nb = bytes / DEV_BSIZE;
|
|
/*
|
|
* Ensure that the read size plus the leading offset does not
|
|
* exceed the size of the read buffer.
|
|
*/
|
|
if (nb > (READ_BUF_SIZE - diff) / DEV_BSIZE)
|
|
nb = (READ_BUF_SIZE - diff) / DEV_BSIZE;
|
|
/*
|
|
* Round the number of blocks to read up to the nearest multiple
|
|
* of DEV_GELIBOOT_BSIZE.
|
|
*/
|
|
alignnb = roundup2(nb * DEV_BSIZE + diff, DEV_GELIBOOT_BSIZE)
|
|
/ DEV_BSIZE;
|
|
|
|
if (zdsk->dsk.size > 0 && alignlba + alignnb >
|
|
zdsk->dsk.size + zdsk->dsk.start) {
|
|
printf("Shortening read at %lld from %d to %lld\n",
|
|
alignlba, alignnb,
|
|
(zdsk->dsk.size + zdsk->dsk.start) - alignlba);
|
|
alignnb = (zdsk->dsk.size + zdsk->dsk.start) - alignlba;
|
|
}
|
|
|
|
if (drvread(&zdsk->dsk, dmadat->rdbuf, alignlba, alignnb))
|
|
return -1;
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
/* decrypt */
|
|
if (zdsk->gdev != NULL) {
|
|
if (geli_read(zdsk->gdev, ((alignlba - zdsk->dsk.start) *
|
|
DEV_BSIZE), dmadat->rdbuf, alignnb * DEV_BSIZE))
|
|
return (-1);
|
|
}
|
|
#endif
|
|
memcpy(p, dmadat->rdbuf + diff, nb * DEV_BSIZE);
|
|
p += nb * DEV_BSIZE;
|
|
lba += nb;
|
|
alignlba += alignnb;
|
|
bytes -= nb * DEV_BSIZE;
|
|
/* Don't need the leading offset after the first block. */
|
|
diff = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* Match the signature exactly due to signature madness */
|
|
static int
|
|
vdev_read2(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
|
|
{
|
|
return vdev_read(vdev, priv, off, buf, bytes);
|
|
}
|
|
|
|
|
|
static int
|
|
vdev_write(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
|
|
{
|
|
char *p;
|
|
daddr_t lba;
|
|
unsigned int nb;
|
|
struct zfsdsk *zdsk = (struct zfsdsk *) priv;
|
|
|
|
if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
|
|
return -1;
|
|
|
|
p = buf;
|
|
lba = off / DEV_BSIZE;
|
|
lba += zdsk->dsk.start;
|
|
while (bytes > 0) {
|
|
nb = bytes / DEV_BSIZE;
|
|
if (nb > READ_BUF_SIZE / DEV_BSIZE)
|
|
nb = READ_BUF_SIZE / DEV_BSIZE;
|
|
memcpy(dmadat->rdbuf, p, nb * DEV_BSIZE);
|
|
if (drvwrite(&zdsk->dsk, dmadat->rdbuf, lba, nb))
|
|
return -1;
|
|
p += nb * DEV_BSIZE;
|
|
lba += nb;
|
|
bytes -= nb * DEV_BSIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfsread(const dnode_phys_t *dnode, off_t *offp, void *buf, size_t nbyte)
|
|
{
|
|
if ((size_t)zfs_read(spa, dnode, offp, buf, nbyte) != nbyte) {
|
|
printf("Invalid format\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read Pad2 (formerly "Boot Block Header") area of the first
|
|
* vdev label of the given vdev.
|
|
*/
|
|
static int
|
|
vdev_read_pad2(vdev_t *vdev, char *buf, size_t size)
|
|
{
|
|
blkptr_t bp;
|
|
char *tmp = zap_scratch;
|
|
off_t off = offsetof(vdev_label_t, vl_pad2);
|
|
|
|
if (size > VDEV_PAD_SIZE)
|
|
size = VDEV_PAD_SIZE;
|
|
|
|
BP_ZERO(&bp);
|
|
BP_SET_LSIZE(&bp, VDEV_PAD_SIZE);
|
|
BP_SET_PSIZE(&bp, VDEV_PAD_SIZE);
|
|
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
|
|
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
|
|
DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
|
|
if (vdev_read_phys(vdev, &bp, tmp, off, 0))
|
|
return (EIO);
|
|
memcpy(buf, tmp, size);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vdev_clear_pad2(vdev_t *vdev)
|
|
{
|
|
char *zeroes = zap_scratch;
|
|
uint64_t *end;
|
|
off_t off = offsetof(vdev_label_t, vl_pad2);
|
|
|
|
memset(zeroes, 0, VDEV_PAD_SIZE);
|
|
end = (uint64_t *)(zeroes + VDEV_PAD_SIZE);
|
|
/* ZIO_CHECKSUM_LABEL magic and pre-calcualted checksum for all zeros */
|
|
end[-5] = 0x0210da7ab10c7a11;
|
|
end[-4] = 0x97f48f807f6e2a3f;
|
|
end[-3] = 0xaf909f1658aacefc;
|
|
end[-2] = 0xcbd1ea57ff6db48b;
|
|
end[-1] = 0x6ec692db0d465fab;
|
|
if (vdev_write(vdev, vdev->v_read_priv, off, zeroes, VDEV_PAD_SIZE))
|
|
return (EIO);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bios_getmem(void)
|
|
{
|
|
uint64_t size;
|
|
|
|
/* Parse system memory map */
|
|
v86.ebx = 0;
|
|
do {
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x15; /* int 0x15 function 0xe820*/
|
|
v86.eax = 0xe820;
|
|
v86.ecx = sizeof(struct bios_smap);
|
|
v86.edx = SMAP_SIG;
|
|
v86.es = VTOPSEG(&smap);
|
|
v86.edi = VTOPOFF(&smap);
|
|
v86int();
|
|
if (V86_CY(v86.efl) || (v86.eax != SMAP_SIG))
|
|
break;
|
|
/* look for a low-memory segment that's large enough */
|
|
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0) &&
|
|
(smap.length >= (512 * 1024)))
|
|
bios_basemem = smap.length;
|
|
/* look for the first segment in 'extended' memory */
|
|
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0x100000)) {
|
|
bios_extmem = smap.length;
|
|
}
|
|
|
|
/*
|
|
* Look for the largest segment in 'extended' memory beyond
|
|
* 1MB but below 4GB.
|
|
*/
|
|
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base > 0x100000) &&
|
|
(smap.base < 0x100000000ull)) {
|
|
size = smap.length;
|
|
|
|
/*
|
|
* If this segment crosses the 4GB boundary, truncate it.
|
|
*/
|
|
if (smap.base + size > 0x100000000ull)
|
|
size = 0x100000000ull - smap.base;
|
|
|
|
if (size > high_heap_size) {
|
|
high_heap_size = size;
|
|
high_heap_base = smap.base;
|
|
}
|
|
}
|
|
} while (v86.ebx != 0);
|
|
|
|
/* Fall back to the old compatibility function for base memory */
|
|
if (bios_basemem == 0) {
|
|
v86.ctl = 0;
|
|
v86.addr = 0x12; /* int 0x12 */
|
|
v86int();
|
|
|
|
bios_basemem = (v86.eax & 0xffff) * 1024;
|
|
}
|
|
|
|
/* Fall back through several compatibility functions for extended memory */
|
|
if (bios_extmem == 0) {
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x15; /* int 0x15 function 0xe801*/
|
|
v86.eax = 0xe801;
|
|
v86int();
|
|
if (!V86_CY(v86.efl)) {
|
|
bios_extmem = ((v86.ecx & 0xffff) + ((v86.edx & 0xffff) * 64)) * 1024;
|
|
}
|
|
}
|
|
if (bios_extmem == 0) {
|
|
v86.ctl = 0;
|
|
v86.addr = 0x15; /* int 0x15 function 0x88*/
|
|
v86.eax = 0x8800;
|
|
v86int();
|
|
bios_extmem = (v86.eax & 0xffff) * 1024;
|
|
}
|
|
|
|
/*
|
|
* If we have extended memory and did not find a suitable heap
|
|
* region in the SMAP, use the last 3MB of 'extended' memory as a
|
|
* high heap candidate.
|
|
*/
|
|
if (bios_extmem >= HEAP_MIN && high_heap_size < HEAP_MIN) {
|
|
high_heap_size = HEAP_MIN;
|
|
high_heap_base = bios_extmem + 0x100000 - HEAP_MIN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to detect a device supported by the legacy int13 BIOS
|
|
*/
|
|
static int
|
|
int13probe(int drive)
|
|
{
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x800;
|
|
v86.edx = drive;
|
|
v86int();
|
|
|
|
if (!V86_CY(v86.efl) && /* carry clear */
|
|
((v86.edx & 0xff) != (drive & DRV_MASK))) { /* unit # OK */
|
|
if ((v86.ecx & 0x3f) == 0) { /* absurd sector size */
|
|
return(0); /* skip device */
|
|
}
|
|
return (1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* We call this when we find a ZFS vdev - ZFS consumes the dsk
|
|
* structure so we must make a new one.
|
|
*/
|
|
static struct zfsdsk *
|
|
copy_dsk(struct zfsdsk *zdsk)
|
|
{
|
|
struct zfsdsk *newdsk;
|
|
|
|
newdsk = malloc(sizeof(struct zfsdsk));
|
|
*newdsk = *zdsk;
|
|
return (newdsk);
|
|
}
|
|
|
|
/*
|
|
* Get disk size from GPT.
|
|
*/
|
|
static uint64_t
|
|
drvsize_gpt(struct dsk *dskp)
|
|
{
|
|
#ifdef GPT
|
|
struct gpt_hdr hdr;
|
|
char *sec;
|
|
|
|
sec = dmadat->secbuf;
|
|
if (drvread(dskp, sec, 1, 1))
|
|
return (0);
|
|
|
|
memcpy(&hdr, sec, sizeof(hdr));
|
|
if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 ||
|
|
hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 ||
|
|
hdr.hdr_entsz < sizeof(struct gpt_ent) ||
|
|
DEV_BSIZE % hdr.hdr_entsz != 0) {
|
|
return (0);
|
|
}
|
|
return (hdr.hdr_lba_alt + 1);
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Get disk size from eax=0x800 and 0x4800. We need to probe both
|
|
* because 0x4800 may not be available and we would like to get more
|
|
* or less correct disk size - if it is possible at all.
|
|
* Note we do not really want to touch drv.c because that code is shared
|
|
* with boot2 and we can not afford to grow that code.
|
|
*/
|
|
static uint64_t
|
|
drvsize_ext(struct zfsdsk *zdsk)
|
|
{
|
|
struct dsk *dskp;
|
|
uint64_t size, tmp;
|
|
int cyl, hds, sec;
|
|
|
|
dskp = &zdsk->dsk;
|
|
|
|
/* Try to read disk size from GPT */
|
|
size = drvsize_gpt(dskp);
|
|
if (size != 0)
|
|
return (size);
|
|
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x800;
|
|
v86.edx = dskp->drive;
|
|
v86int();
|
|
|
|
/* Don't error out if we get bad sector number, try EDD as well */
|
|
if (V86_CY(v86.efl) || /* carry set */
|
|
(v86.edx & 0xff) <= (unsigned)(dskp->drive & 0x7f)) /* unit # bad */
|
|
return (0);
|
|
cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1;
|
|
/* Convert max head # -> # of heads */
|
|
hds = ((v86.edx & 0xff00) >> 8) + 1;
|
|
sec = v86.ecx & 0x3f;
|
|
|
|
size = (uint64_t)cyl * hds * sec;
|
|
|
|
/* Determine if we can use EDD with this device. */
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x4100;
|
|
v86.edx = dskp->drive;
|
|
v86.ebx = 0x55aa;
|
|
v86int();
|
|
if (V86_CY(v86.efl) || /* carry set */
|
|
(v86.ebx & 0xffff) != 0xaa55 || /* signature */
|
|
(v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0)
|
|
return (size);
|
|
|
|
tmp = drvsize(dskp);
|
|
if (tmp > size)
|
|
size = tmp;
|
|
|
|
return (size);
|
|
}
|
|
|
|
/*
|
|
* The "layered" ioctl to read disk/partition size. Unfortunately
|
|
* the zfsboot case is hardest, because we do not have full software
|
|
* stack available, so we need to do some manual work here.
|
|
*/
|
|
uint64_t
|
|
ldi_get_size(void *priv)
|
|
{
|
|
struct zfsdsk *zdsk = priv;
|
|
uint64_t size = zdsk->dsk.size;
|
|
|
|
if (zdsk->dsk.start == 0)
|
|
size = drvsize_ext(zdsk);
|
|
|
|
return (size * DEV_BSIZE);
|
|
}
|
|
|
|
static void
|
|
probe_drive(struct zfsdsk *zdsk)
|
|
{
|
|
#ifdef GPT
|
|
struct gpt_hdr hdr;
|
|
struct gpt_ent *ent;
|
|
unsigned part, entries_per_sec;
|
|
daddr_t slba;
|
|
#endif
|
|
#if defined(GPT) || defined(LOADER_GELI_SUPPORT)
|
|
daddr_t elba;
|
|
#endif
|
|
|
|
struct dos_partition *dp;
|
|
char *sec;
|
|
unsigned i;
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
/*
|
|
* Taste the disk, if it is GELI encrypted, decrypt it then dig out the
|
|
* partition table and probe each slice/partition in turn for a vdev or
|
|
* GELI encrypted vdev.
|
|
*/
|
|
elba = drvsize_ext(zdsk);
|
|
if (elba > 0) {
|
|
elba--;
|
|
}
|
|
zdsk->gdev = geli_taste(vdev_read, zdsk, elba, "disk%u:0:");
|
|
if ((zdsk->gdev != NULL) && (geli_havekey(zdsk->gdev) == 0))
|
|
geli_passphrase(zdsk->gdev, gelipw);
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
|
|
sec = dmadat->secbuf;
|
|
zdsk->dsk.start = 0;
|
|
|
|
#ifdef GPT
|
|
/*
|
|
* First check for GPT.
|
|
*/
|
|
if (drvread(&zdsk->dsk, sec, 1, 1)) {
|
|
return;
|
|
}
|
|
memcpy(&hdr, sec, sizeof(hdr));
|
|
if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 ||
|
|
hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 ||
|
|
hdr.hdr_entsz < sizeof(*ent) || DEV_BSIZE % hdr.hdr_entsz != 0) {
|
|
goto trymbr;
|
|
}
|
|
|
|
/*
|
|
* Probe all GPT partitions for the presence of ZFS pools. We
|
|
* return the spa_t for the first we find (if requested). This
|
|
* will have the effect of booting from the first pool on the
|
|
* disk.
|
|
*
|
|
* If no vdev is found, GELI decrypting the device and try again
|
|
*/
|
|
entries_per_sec = DEV_BSIZE / hdr.hdr_entsz;
|
|
slba = hdr.hdr_lba_table;
|
|
elba = slba + hdr.hdr_entries / entries_per_sec;
|
|
while (slba < elba) {
|
|
zdsk->dsk.start = 0;
|
|
if (drvread(&zdsk->dsk, sec, slba, 1))
|
|
return;
|
|
for (part = 0; part < entries_per_sec; part++) {
|
|
ent = (struct gpt_ent *)(sec + part * hdr.hdr_entsz);
|
|
if (memcmp(&ent->ent_type, &freebsd_zfs_uuid,
|
|
sizeof(uuid_t)) == 0) {
|
|
zdsk->dsk.start = ent->ent_lba_start;
|
|
zdsk->dsk.size = ent->ent_lba_end - ent->ent_lba_start + 1;
|
|
zdsk->dsk.slice = part + 1;
|
|
zdsk->dsk.part = 255;
|
|
if (vdev_probe(vdev_read2, zdsk, NULL) == 0) {
|
|
/*
|
|
* This slice had a vdev. We need a new dsk
|
|
* structure now since the vdev now owns this one.
|
|
*/
|
|
zdsk = copy_dsk(zdsk);
|
|
}
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
else if ((zdsk->gdev = geli_taste(vdev_read, zdsk,
|
|
ent->ent_lba_end - ent->ent_lba_start, "disk%up%u:",
|
|
zdsk->dsk.unit, zdsk->dsk.slice)) != NULL) {
|
|
if (geli_havekey(zdsk->gdev) == 0 ||
|
|
geli_passphrase(zdsk->gdev, gelipw) == 0) {
|
|
/*
|
|
* This slice has GELI, check it for ZFS.
|
|
*/
|
|
if (vdev_probe(vdev_read2, zdsk, NULL) == 0) {
|
|
/*
|
|
* This slice had a vdev. We need a new dsk
|
|
* structure now since the vdev now owns this one.
|
|
*/
|
|
zdsk = copy_dsk(zdsk);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
}
|
|
}
|
|
slba++;
|
|
}
|
|
return;
|
|
trymbr:
|
|
#endif /* GPT */
|
|
|
|
if (drvread(&zdsk->dsk, sec, DOSBBSECTOR, 1))
|
|
return;
|
|
dp = (void *)(sec + DOSPARTOFF);
|
|
|
|
for (i = 0; i < NDOSPART; i++) {
|
|
if (!dp[i].dp_typ)
|
|
continue;
|
|
zdsk->dsk.start = dp[i].dp_start;
|
|
zdsk->dsk.size = dp[i].dp_size;
|
|
zdsk->dsk.slice = i + 1;
|
|
if (vdev_probe(vdev_read2, zdsk, NULL) == 0) {
|
|
zdsk = copy_dsk(zdsk);
|
|
}
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
else if ((zdsk->gdev = geli_taste(vdev_read, zdsk, dp[i].dp_size -
|
|
dp[i].dp_start, "disk%us%u:")) != NULL) {
|
|
if (geli_havekey(zdsk->gdev) == 0 ||
|
|
geli_passphrase(zdsk->gdev, gelipw) == 0) {
|
|
/*
|
|
* This slice has GELI, check it for ZFS.
|
|
*/
|
|
if (vdev_probe(vdev_read2, zdsk, NULL) == 0) {
|
|
/*
|
|
* This slice had a vdev. We need a new dsk
|
|
* structure now since the vdev now owns this one.
|
|
*/
|
|
zdsk = copy_dsk(zdsk);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
}
|
|
}
|
|
|
|
int
|
|
main(void)
|
|
{
|
|
dnode_phys_t dn;
|
|
off_t off;
|
|
struct zfsdsk *zdsk;
|
|
int autoboot, i;
|
|
int nextboot;
|
|
int rc;
|
|
|
|
dmadat = (void *)(roundup2(__base + (int32_t)&_end, 0x10000) - __base);
|
|
|
|
bios_getmem();
|
|
|
|
if (high_heap_size > 0) {
|
|
heap_end = PTOV(high_heap_base + high_heap_size);
|
|
heap_next = PTOV(high_heap_base);
|
|
} else {
|
|
heap_next = (char *)dmadat + sizeof(*dmadat);
|
|
heap_end = (char *)PTOV(bios_basemem);
|
|
}
|
|
setheap(heap_next, heap_end);
|
|
|
|
zdsk = calloc(1, sizeof(struct zfsdsk));
|
|
zdsk->dsk.drive = *(uint8_t *)PTOV(ARGS);
|
|
zdsk->dsk.type = zdsk->dsk.drive & DRV_HARD ? TYPE_AD : TYPE_FD;
|
|
zdsk->dsk.unit = zdsk->dsk.drive & DRV_MASK;
|
|
zdsk->dsk.slice = *(uint8_t *)PTOV(ARGS + 1) + 1;
|
|
zdsk->dsk.part = 0;
|
|
zdsk->dsk.start = 0;
|
|
zdsk->dsk.size = drvsize_ext(zdsk);
|
|
|
|
bootinfo.bi_version = BOOTINFO_VERSION;
|
|
bootinfo.bi_size = sizeof(bootinfo);
|
|
bootinfo.bi_basemem = bios_basemem / 1024;
|
|
bootinfo.bi_extmem = bios_extmem / 1024;
|
|
bootinfo.bi_memsizes_valid++;
|
|
bootinfo.bi_bios_dev = zdsk->dsk.drive;
|
|
|
|
bootdev = MAKEBOOTDEV(dev_maj[zdsk->dsk.type],
|
|
zdsk->dsk.slice, zdsk->dsk.unit, zdsk->dsk.part);
|
|
|
|
/* Process configuration file */
|
|
|
|
autoboot = 1;
|
|
|
|
zfs_init();
|
|
|
|
/*
|
|
* Probe the boot drive first - we will try to boot from whatever
|
|
* pool we find on that drive.
|
|
*/
|
|
probe_drive(zdsk);
|
|
|
|
/*
|
|
* Probe the rest of the drives that the bios knows about. This
|
|
* will find any other available pools and it may fill in missing
|
|
* vdevs for the boot pool.
|
|
*/
|
|
#ifndef VIRTUALBOX
|
|
for (i = 0; i < *(unsigned char *)PTOV(BIOS_NUMDRIVES); i++)
|
|
#else
|
|
for (i = 0; i < MAXBDDEV; i++)
|
|
#endif
|
|
{
|
|
if ((i | DRV_HARD) == *(uint8_t *)PTOV(ARGS))
|
|
continue;
|
|
|
|
if (!int13probe(i | DRV_HARD))
|
|
break;
|
|
|
|
zdsk = calloc(1, sizeof(struct zfsdsk));
|
|
zdsk->dsk.drive = i | DRV_HARD;
|
|
zdsk->dsk.type = zdsk->dsk.drive & TYPE_AD;
|
|
zdsk->dsk.unit = i;
|
|
zdsk->dsk.slice = 0;
|
|
zdsk->dsk.part = 0;
|
|
zdsk->dsk.start = 0;
|
|
zdsk->dsk.size = drvsize_ext(zdsk);
|
|
probe_drive(zdsk);
|
|
}
|
|
|
|
/*
|
|
* The first discovered pool, if any, is the pool.
|
|
*/
|
|
spa = spa_get_primary();
|
|
if (!spa) {
|
|
printf("%s: No ZFS pools located, can't boot\n", BOOTPROG);
|
|
for (;;)
|
|
;
|
|
}
|
|
|
|
primary_spa = spa;
|
|
primary_vdev = spa_get_primary_vdev(spa);
|
|
|
|
nextboot = 0;
|
|
rc = vdev_read_pad2(primary_vdev, cmd, sizeof(cmd));
|
|
if (vdev_clear_pad2(primary_vdev))
|
|
printf("failed to clear pad2 area of primary vdev\n");
|
|
if (rc == 0) {
|
|
if (*cmd) {
|
|
/*
|
|
* We could find an old-style ZFS Boot Block header here.
|
|
* Simply ignore it.
|
|
*/
|
|
if (*(uint64_t *)cmd != 0x2f5b007b10c) {
|
|
/*
|
|
* Note that parse() is destructive to cmd[] and we also want
|
|
* to honor RBX_QUIET option that could be present in cmd[].
|
|
*/
|
|
nextboot = 1;
|
|
memcpy(cmddup, cmd, sizeof(cmd));
|
|
if (parse_cmd()) {
|
|
printf("failed to parse pad2 area of primary vdev\n");
|
|
reboot();
|
|
}
|
|
if (!OPT_CHECK(RBX_QUIET))
|
|
printf("zfs nextboot: %s\n", cmddup);
|
|
}
|
|
/* Do not process this command twice */
|
|
*cmd = 0;
|
|
}
|
|
} else
|
|
printf("failed to read pad2 area of primary vdev\n");
|
|
|
|
/* Mount ZFS only if it's not already mounted via nextboot parsing. */
|
|
if (zfsmount.spa == NULL &&
|
|
(zfs_spa_init(spa) != 0 || zfs_mount(spa, 0, &zfsmount) != 0)) {
|
|
printf("%s: failed to mount default pool %s\n",
|
|
BOOTPROG, spa->spa_name);
|
|
autoboot = 0;
|
|
} else if (zfs_lookup(&zfsmount, PATH_CONFIG, &dn) == 0 ||
|
|
zfs_lookup(&zfsmount, PATH_DOTCONFIG, &dn) == 0) {
|
|
off = 0;
|
|
zfs_read(spa, &dn, &off, cmd, sizeof(cmd));
|
|
}
|
|
|
|
if (*cmd) {
|
|
/*
|
|
* Note that parse_cmd() is destructive to cmd[] and we also want
|
|
* to honor RBX_QUIET option that could be present in cmd[].
|
|
*/
|
|
memcpy(cmddup, cmd, sizeof(cmd));
|
|
if (parse_cmd())
|
|
autoboot = 0;
|
|
if (!OPT_CHECK(RBX_QUIET))
|
|
printf("%s: %s\n", PATH_CONFIG, cmddup);
|
|
/* Do not process this command twice */
|
|
*cmd = 0;
|
|
}
|
|
|
|
/* Do not risk waiting at the prompt forever. */
|
|
if (nextboot && !autoboot)
|
|
reboot();
|
|
|
|
if (autoboot && !*kname) {
|
|
/*
|
|
* Iterate through the list of loader and kernel paths, trying to load.
|
|
* If interrupted by a keypress, or in case of failure, drop the user
|
|
* to the boot2 prompt.
|
|
*/
|
|
for (i = 0; i < nitems(loadpath); i++) {
|
|
memcpy(kname, loadpath[i].p, loadpath[i].len);
|
|
if (keyhit(3))
|
|
break;
|
|
load();
|
|
}
|
|
}
|
|
|
|
/* Present the user with the boot2 prompt. */
|
|
|
|
for (;;) {
|
|
if (!autoboot || !OPT_CHECK(RBX_QUIET)) {
|
|
printf("\nFreeBSD/x86 boot\n");
|
|
if (zfs_rlookup(spa, zfsmount.rootobj, rootname) != 0)
|
|
printf("Default: %s/<0x%llx>:%s\n"
|
|
"boot: ",
|
|
spa->spa_name, zfsmount.rootobj, kname);
|
|
else if (rootname[0] != '\0')
|
|
printf("Default: %s/%s:%s\n"
|
|
"boot: ",
|
|
spa->spa_name, rootname, kname);
|
|
else
|
|
printf("Default: %s:%s\n"
|
|
"boot: ",
|
|
spa->spa_name, kname);
|
|
}
|
|
if (ioctrl & IO_SERIAL)
|
|
sio_flush();
|
|
if (!autoboot || keyhit(5))
|
|
getstr(cmd, sizeof(cmd));
|
|
else if (!autoboot || !OPT_CHECK(RBX_QUIET))
|
|
putchar('\n');
|
|
autoboot = 0;
|
|
if (parse_cmd())
|
|
putchar('\a');
|
|
else
|
|
load();
|
|
}
|
|
}
|
|
|
|
/* XXX - Needed for btxld to link the boot2 binary; do not remove. */
|
|
void
|
|
exit(int x)
|
|
{
|
|
__exit(x);
|
|
}
|
|
|
|
void
|
|
reboot(void)
|
|
{
|
|
__exit(0);
|
|
}
|
|
|
|
static void
|
|
load(void)
|
|
{
|
|
union {
|
|
struct exec ex;
|
|
Elf32_Ehdr eh;
|
|
} hdr;
|
|
static Elf32_Phdr ep[2];
|
|
static Elf32_Shdr es[2];
|
|
caddr_t p;
|
|
dnode_phys_t dn;
|
|
off_t off;
|
|
uint32_t addr, x;
|
|
int fmt, i, j;
|
|
|
|
if (zfs_lookup(&zfsmount, kname, &dn)) {
|
|
printf("\nCan't find %s\n", kname);
|
|
return;
|
|
}
|
|
off = 0;
|
|
if (xfsread(&dn, &off, &hdr, sizeof(hdr)))
|
|
return;
|
|
if (N_GETMAGIC(hdr.ex) == ZMAGIC)
|
|
fmt = 0;
|
|
else if (IS_ELF(hdr.eh))
|
|
fmt = 1;
|
|
else {
|
|
printf("Invalid %s\n", "format");
|
|
return;
|
|
}
|
|
if (fmt == 0) {
|
|
addr = hdr.ex.a_entry & 0xffffff;
|
|
p = PTOV(addr);
|
|
off = PAGE_SIZE;
|
|
if (xfsread(&dn, &off, p, hdr.ex.a_text))
|
|
return;
|
|
p += roundup2(hdr.ex.a_text, PAGE_SIZE);
|
|
if (xfsread(&dn, &off, p, hdr.ex.a_data))
|
|
return;
|
|
p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE);
|
|
bootinfo.bi_symtab = VTOP(p);
|
|
memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms));
|
|
p += sizeof(hdr.ex.a_syms);
|
|
if (hdr.ex.a_syms) {
|
|
if (xfsread(&dn, &off, p, hdr.ex.a_syms))
|
|
return;
|
|
p += hdr.ex.a_syms;
|
|
if (xfsread(&dn, &off, p, sizeof(int)))
|
|
return;
|
|
x = *(uint32_t *)p;
|
|
p += sizeof(int);
|
|
x -= sizeof(int);
|
|
if (xfsread(&dn, &off, p, x))
|
|
return;
|
|
p += x;
|
|
}
|
|
} else {
|
|
off = hdr.eh.e_phoff;
|
|
for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) {
|
|
if (xfsread(&dn, &off, ep + j, sizeof(ep[0])))
|
|
return;
|
|
if (ep[j].p_type == PT_LOAD)
|
|
j++;
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
p = PTOV(ep[i].p_paddr & 0xffffff);
|
|
off = ep[i].p_offset;
|
|
if (xfsread(&dn, &off, p, ep[i].p_filesz))
|
|
return;
|
|
}
|
|
p += roundup2(ep[1].p_memsz, PAGE_SIZE);
|
|
bootinfo.bi_symtab = VTOP(p);
|
|
if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) {
|
|
off = hdr.eh.e_shoff + sizeof(es[0]) *
|
|
(hdr.eh.e_shstrndx + 1);
|
|
if (xfsread(&dn, &off, &es, sizeof(es)))
|
|
return;
|
|
for (i = 0; i < 2; i++) {
|
|
memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size));
|
|
p += sizeof(es[i].sh_size);
|
|
off = es[i].sh_offset;
|
|
if (xfsread(&dn, &off, p, es[i].sh_size))
|
|
return;
|
|
p += es[i].sh_size;
|
|
}
|
|
}
|
|
addr = hdr.eh.e_entry & 0xffffff;
|
|
}
|
|
bootinfo.bi_esymtab = VTOP(p);
|
|
bootinfo.bi_kernelname = VTOP(kname);
|
|
zfsargs.size = sizeof(zfsargs);
|
|
zfsargs.pool = zfsmount.spa->spa_guid;
|
|
zfsargs.root = zfsmount.rootobj;
|
|
zfsargs.primary_pool = primary_spa->spa_guid;
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
explicit_bzero(gelipw, sizeof(gelipw));
|
|
export_geli_boot_data(&zfsargs.gelidata);
|
|
#endif
|
|
if (primary_vdev != NULL)
|
|
zfsargs.primary_vdev = primary_vdev->v_guid;
|
|
else
|
|
printf("failed to detect primary vdev\n");
|
|
/*
|
|
* Note that the zfsargs struct is passed by value, not by pointer. Code in
|
|
* btxldr.S copies the values from the entry stack to a fixed location
|
|
* within loader(8) at startup due to the presence of KARGS_FLAGS_EXTARG.
|
|
*/
|
|
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
|
|
bootdev,
|
|
KARGS_FLAGS_ZFS | KARGS_FLAGS_EXTARG,
|
|
(uint32_t) spa->spa_guid,
|
|
(uint32_t) (spa->spa_guid >> 32),
|
|
VTOP(&bootinfo),
|
|
zfsargs);
|
|
}
|
|
|
|
static int
|
|
zfs_mount_ds(char *dsname)
|
|
{
|
|
uint64_t newroot;
|
|
spa_t *newspa;
|
|
char *q;
|
|
|
|
q = strchr(dsname, '/');
|
|
if (q)
|
|
*q++ = '\0';
|
|
newspa = spa_find_by_name(dsname);
|
|
if (newspa == NULL) {
|
|
printf("\nCan't find ZFS pool %s\n", dsname);
|
|
return -1;
|
|
}
|
|
|
|
if (zfs_spa_init(newspa))
|
|
return -1;
|
|
|
|
newroot = 0;
|
|
if (q) {
|
|
if (zfs_lookup_dataset(newspa, q, &newroot)) {
|
|
printf("\nCan't find dataset %s in ZFS pool %s\n",
|
|
q, newspa->spa_name);
|
|
return -1;
|
|
}
|
|
}
|
|
if (zfs_mount(newspa, newroot, &zfsmount)) {
|
|
printf("\nCan't mount ZFS dataset\n");
|
|
return -1;
|
|
}
|
|
spa = newspa;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
parse_cmd(void)
|
|
{
|
|
char *arg = cmd;
|
|
char *ep, *p, *q;
|
|
const char *cp;
|
|
int c, i, j;
|
|
|
|
while ((c = *arg++)) {
|
|
if (c == ' ' || c == '\t' || c == '\n')
|
|
continue;
|
|
for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++);
|
|
ep = p;
|
|
if (*p)
|
|
*p++ = 0;
|
|
if (c == '-') {
|
|
while ((c = *arg++)) {
|
|
if (c == 'P') {
|
|
if (*(uint8_t *)PTOV(0x496) & 0x10) {
|
|
cp = "yes";
|
|
} else {
|
|
opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL);
|
|
cp = "no";
|
|
}
|
|
printf("Keyboard: %s\n", cp);
|
|
continue;
|
|
} else if (c == 'S') {
|
|
j = 0;
|
|
while ((unsigned int)(i = *arg++ - '0') <= 9)
|
|
j = j * 10 + i;
|
|
if (j > 0 && i == -'0') {
|
|
comspeed = j;
|
|
break;
|
|
}
|
|
/* Fall through to error below ('S' not in optstr[]). */
|
|
}
|
|
for (i = 0; c != optstr[i]; i++)
|
|
if (i == NOPT - 1)
|
|
return -1;
|
|
opts ^= OPT_SET(flags[i]);
|
|
}
|
|
ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) :
|
|
OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD;
|
|
if (ioctrl & IO_SERIAL) {
|
|
if (sio_init(115200 / comspeed) != 0)
|
|
ioctrl &= ~IO_SERIAL;
|
|
}
|
|
} if (c == '?') {
|
|
dnode_phys_t dn;
|
|
|
|
if (zfs_lookup(&zfsmount, arg, &dn) == 0) {
|
|
zap_list(spa, &dn);
|
|
}
|
|
return -1;
|
|
} else {
|
|
arg--;
|
|
|
|
/*
|
|
* Report pool status if the comment is 'status'. Lets
|
|
* hope no-one wants to load /status as a kernel.
|
|
*/
|
|
if (!strcmp(arg, "status")) {
|
|
spa_all_status();
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If there is "zfs:" prefix simply ignore it.
|
|
*/
|
|
if (strncmp(arg, "zfs:", 4) == 0)
|
|
arg += 4;
|
|
|
|
/*
|
|
* If there is a colon, switch pools.
|
|
*/
|
|
q = strchr(arg, ':');
|
|
if (q) {
|
|
*q++ = '\0';
|
|
if (zfs_mount_ds(arg) != 0)
|
|
return -1;
|
|
arg = q;
|
|
}
|
|
if ((i = ep - arg)) {
|
|
if ((size_t)i >= sizeof(kname))
|
|
return -1;
|
|
memcpy(kname, arg, i + 1);
|
|
}
|
|
}
|
|
arg = p;
|
|
}
|
|
return 0;
|
|
}
|