mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-25 11:37:56 +00:00
84344f9fbf
assure backward compatibility (conditional on !BURN_BRIDGES), look it up by its old name first, and log a warning (but accept the setting) if it was found. If both the old and new name are defined, the new name takes precedence. Also export vm.kmem_size as a read-only sysctl variable; I find it hard to tune a parameter when I don't know its default value, especially when that default value is computed at boot time.
692 lines
17 KiB
C
692 lines
17 KiB
C
/*
|
|
* Copyright (c) 1987, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#if defined(INVARIANTS) && defined(__i386__)
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
/*
|
|
* When realloc() is called, if the new size is sufficiently smaller than
|
|
* the old size, realloc() will allocate a new, smaller block to avoid
|
|
* wasting memory. 'Sufficiently smaller' is defined as: newsize <=
|
|
* oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
|
|
*/
|
|
#ifndef REALLOC_FRACTION
|
|
#define REALLOC_FRACTION 1 /* new block if <= half the size */
|
|
#endif
|
|
|
|
MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
|
|
MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
|
|
MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
|
|
|
|
MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
|
|
MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
|
|
|
|
static void kmeminit(void *);
|
|
SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
|
|
|
|
static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
|
|
|
|
static struct malloc_type *kmemstatistics;
|
|
static char *kmembase;
|
|
static char *kmemlimit;
|
|
|
|
#define KMEM_ZSHIFT 4
|
|
#define KMEM_ZBASE 16
|
|
#define KMEM_ZMASK (KMEM_ZBASE - 1)
|
|
|
|
#define KMEM_ZMAX PAGE_SIZE
|
|
#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
|
|
static u_int8_t kmemsize[KMEM_ZSIZE + 1];
|
|
|
|
/* These won't be powers of two for long */
|
|
struct {
|
|
int kz_size;
|
|
char *kz_name;
|
|
uma_zone_t kz_zone;
|
|
} kmemzones[] = {
|
|
{16, "16", NULL},
|
|
{32, "32", NULL},
|
|
{64, "64", NULL},
|
|
{128, "128", NULL},
|
|
{256, "256", NULL},
|
|
{512, "512", NULL},
|
|
{1024, "1024", NULL},
|
|
{2048, "2048", NULL},
|
|
{4096, "4096", NULL},
|
|
#if PAGE_SIZE > 4096
|
|
{8192, "8192", NULL},
|
|
#if PAGE_SIZE > 8192
|
|
{16384, "16384", NULL},
|
|
#if PAGE_SIZE > 16384
|
|
{32768, "32768", NULL},
|
|
#if PAGE_SIZE > 32768
|
|
{65536, "65536", NULL},
|
|
#if PAGE_SIZE > 65536
|
|
#error "Unsupported PAGE_SIZE"
|
|
#endif /* 65536 */
|
|
#endif /* 32768 */
|
|
#endif /* 16384 */
|
|
#endif /* 8192 */
|
|
#endif /* 4096 */
|
|
{0, NULL},
|
|
};
|
|
|
|
u_int vm_kmem_size;
|
|
SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
|
|
"Size of kernel memory");
|
|
|
|
/*
|
|
* The malloc_mtx protects the kmemstatistics linked list.
|
|
*/
|
|
|
|
struct mtx malloc_mtx;
|
|
|
|
#ifdef MALLOC_PROFILE
|
|
uint64_t krequests[KMEM_ZSIZE + 1];
|
|
|
|
static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
|
|
#endif
|
|
|
|
static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
|
|
|
|
/* time_uptime of last malloc(9) failure */
|
|
static time_t t_malloc_fail;
|
|
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
/*
|
|
* Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0,
|
|
* doesn't cause failures.
|
|
*/
|
|
SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
|
|
"Kernel malloc debugging options");
|
|
|
|
static int malloc_failure_rate;
|
|
static int malloc_nowait_count;
|
|
static int malloc_failure_count;
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
|
|
&malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
|
|
TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
|
|
&malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
|
|
#endif
|
|
|
|
int
|
|
malloc_last_fail(void)
|
|
{
|
|
|
|
return (time_uptime - t_malloc_fail);
|
|
}
|
|
|
|
/*
|
|
* malloc:
|
|
*
|
|
* Allocate a block of memory.
|
|
*
|
|
* If M_NOWAIT is set, this routine will not block and return NULL if
|
|
* the allocation fails.
|
|
*/
|
|
void *
|
|
malloc(size, type, flags)
|
|
unsigned long size;
|
|
struct malloc_type *type;
|
|
int flags;
|
|
{
|
|
int indx;
|
|
caddr_t va;
|
|
uma_zone_t zone;
|
|
#ifdef DIAGNOSTIC
|
|
unsigned long osize = size;
|
|
#endif
|
|
register struct malloc_type *ksp = type;
|
|
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* To make sure that WAITOK or NOWAIT is set, but not more than
|
|
* one, and check against the API botches that are common.
|
|
*/
|
|
indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
|
|
if (indx != M_NOWAIT && indx != M_WAITOK) {
|
|
static struct timeval lasterr;
|
|
static int curerr, once;
|
|
if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
|
|
printf("Bad malloc flags: %x\n", indx);
|
|
backtrace();
|
|
flags |= M_WAITOK;
|
|
once++;
|
|
}
|
|
}
|
|
#endif
|
|
#if 0
|
|
if (size == 0)
|
|
Debugger("zero size malloc");
|
|
#endif
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
|
|
atomic_add_int(&malloc_nowait_count, 1);
|
|
if ((malloc_nowait_count % malloc_failure_rate) == 0) {
|
|
atomic_add_int(&malloc_failure_count, 1);
|
|
t_malloc_fail = time_uptime;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
if (flags & M_WAITOK)
|
|
KASSERT(curthread->td_intr_nesting_level == 0,
|
|
("malloc(M_WAITOK) in interrupt context"));
|
|
if (size <= KMEM_ZMAX) {
|
|
if (size & KMEM_ZMASK)
|
|
size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
|
|
indx = kmemsize[size >> KMEM_ZSHIFT];
|
|
zone = kmemzones[indx].kz_zone;
|
|
#ifdef MALLOC_PROFILE
|
|
krequests[size >> KMEM_ZSHIFT]++;
|
|
#endif
|
|
va = uma_zalloc(zone, flags);
|
|
mtx_lock(&ksp->ks_mtx);
|
|
if (va == NULL)
|
|
goto out;
|
|
|
|
ksp->ks_size |= 1 << indx;
|
|
size = zone->uz_size;
|
|
} else {
|
|
size = roundup(size, PAGE_SIZE);
|
|
zone = NULL;
|
|
va = uma_large_malloc(size, flags);
|
|
mtx_lock(&ksp->ks_mtx);
|
|
if (va == NULL)
|
|
goto out;
|
|
}
|
|
ksp->ks_memuse += size;
|
|
ksp->ks_inuse++;
|
|
out:
|
|
ksp->ks_calls++;
|
|
if (ksp->ks_memuse > ksp->ks_maxused)
|
|
ksp->ks_maxused = ksp->ks_memuse;
|
|
|
|
mtx_unlock(&ksp->ks_mtx);
|
|
if (flags & M_WAITOK)
|
|
KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
|
|
else if (va == NULL)
|
|
t_malloc_fail = time_uptime;
|
|
#ifdef DIAGNOSTIC
|
|
if (va != NULL && !(flags & M_ZERO)) {
|
|
memset(va, 0x70, osize);
|
|
}
|
|
#endif
|
|
return ((void *) va);
|
|
}
|
|
|
|
/*
|
|
* free:
|
|
*
|
|
* Free a block of memory allocated by malloc.
|
|
*
|
|
* This routine may not block.
|
|
*/
|
|
void
|
|
free(addr, type)
|
|
void *addr;
|
|
struct malloc_type *type;
|
|
{
|
|
register struct malloc_type *ksp = type;
|
|
uma_slab_t slab;
|
|
u_long size;
|
|
|
|
/* free(NULL, ...) does nothing */
|
|
if (addr == NULL)
|
|
return;
|
|
|
|
KASSERT(ksp->ks_memuse > 0,
|
|
("malloc(9)/free(9) confusion.\n%s",
|
|
"Probably freeing with wrong type, but maybe not here."));
|
|
size = 0;
|
|
|
|
slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
|
|
|
|
if (slab == NULL)
|
|
panic("free: address %p(%p) has not been allocated.\n",
|
|
addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
|
|
|
|
|
|
if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
|
|
#ifdef INVARIANTS
|
|
struct malloc_type **mtp = addr;
|
|
#endif
|
|
size = slab->us_zone->uz_size;
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* Cache a pointer to the malloc_type that most recently freed
|
|
* this memory here. This way we know who is most likely to
|
|
* have stepped on it later.
|
|
*
|
|
* This code assumes that size is a multiple of 8 bytes for
|
|
* 64 bit machines
|
|
*/
|
|
mtp = (struct malloc_type **)
|
|
((unsigned long)mtp & ~UMA_ALIGN_PTR);
|
|
mtp += (size - sizeof(struct malloc_type *)) /
|
|
sizeof(struct malloc_type *);
|
|
*mtp = type;
|
|
#endif
|
|
uma_zfree_arg(slab->us_zone, addr, slab);
|
|
} else {
|
|
size = slab->us_size;
|
|
uma_large_free(slab);
|
|
}
|
|
mtx_lock(&ksp->ks_mtx);
|
|
KASSERT(size <= ksp->ks_memuse,
|
|
("malloc(9)/free(9) confusion.\n%s",
|
|
"Probably freeing with wrong type, but maybe not here."));
|
|
ksp->ks_memuse -= size;
|
|
ksp->ks_inuse--;
|
|
mtx_unlock(&ksp->ks_mtx);
|
|
}
|
|
|
|
/*
|
|
* realloc: change the size of a memory block
|
|
*/
|
|
void *
|
|
realloc(addr, size, type, flags)
|
|
void *addr;
|
|
unsigned long size;
|
|
struct malloc_type *type;
|
|
int flags;
|
|
{
|
|
uma_slab_t slab;
|
|
unsigned long alloc;
|
|
void *newaddr;
|
|
|
|
/* realloc(NULL, ...) is equivalent to malloc(...) */
|
|
if (addr == NULL)
|
|
return (malloc(size, type, flags));
|
|
|
|
slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
|
|
|
|
/* Sanity check */
|
|
KASSERT(slab != NULL,
|
|
("realloc: address %p out of range", (void *)addr));
|
|
|
|
/* Get the size of the original block */
|
|
if (slab->us_zone)
|
|
alloc = slab->us_zone->uz_size;
|
|
else
|
|
alloc = slab->us_size;
|
|
|
|
/* Reuse the original block if appropriate */
|
|
if (size <= alloc
|
|
&& (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
|
|
return (addr);
|
|
|
|
/* Allocate a new, bigger (or smaller) block */
|
|
if ((newaddr = malloc(size, type, flags)) == NULL)
|
|
return (NULL);
|
|
|
|
/* Copy over original contents */
|
|
bcopy(addr, newaddr, min(size, alloc));
|
|
free(addr, type);
|
|
return (newaddr);
|
|
}
|
|
|
|
/*
|
|
* reallocf: same as realloc() but free memory on failure.
|
|
*/
|
|
void *
|
|
reallocf(addr, size, type, flags)
|
|
void *addr;
|
|
unsigned long size;
|
|
struct malloc_type *type;
|
|
int flags;
|
|
{
|
|
void *mem;
|
|
|
|
if ((mem = realloc(addr, size, type, flags)) == NULL)
|
|
free(addr, type);
|
|
return (mem);
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel memory allocator
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
kmeminit(dummy)
|
|
void *dummy;
|
|
{
|
|
u_int8_t indx;
|
|
u_long npg;
|
|
u_long mem_size;
|
|
int i;
|
|
|
|
mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Try to auto-tune the kernel memory size, so that it is
|
|
* more applicable for a wider range of machine sizes.
|
|
* On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
|
|
* a VM_KMEM_SIZE of 12MB is a fair compromise. The
|
|
* VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
|
|
* available, and on an X86 with a total KVA space of 256MB,
|
|
* try to keep VM_KMEM_SIZE_MAX at 80MB or below.
|
|
*
|
|
* Note that the kmem_map is also used by the zone allocator,
|
|
* so make sure that there is enough space.
|
|
*/
|
|
vm_kmem_size = VM_KMEM_SIZE;
|
|
mem_size = cnt.v_page_count;
|
|
|
|
#if defined(VM_KMEM_SIZE_SCALE)
|
|
if ((mem_size / VM_KMEM_SIZE_SCALE) > (vm_kmem_size / PAGE_SIZE))
|
|
vm_kmem_size = (mem_size / VM_KMEM_SIZE_SCALE) * PAGE_SIZE;
|
|
#endif
|
|
|
|
#if defined(VM_KMEM_SIZE_MAX)
|
|
if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
|
|
vm_kmem_size = VM_KMEM_SIZE_MAX;
|
|
#endif
|
|
|
|
/* Allow final override from the kernel environment */
|
|
#ifndef BURN_BRIDGES
|
|
if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0)
|
|
printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
|
|
#endif
|
|
TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size);
|
|
|
|
/*
|
|
* Limit kmem virtual size to twice the physical memory.
|
|
* This allows for kmem map sparseness, but limits the size
|
|
* to something sane. Be careful to not overflow the 32bit
|
|
* ints while doing the check.
|
|
*/
|
|
if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
|
|
vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
|
|
|
|
/*
|
|
* Tune settings based on the kernel map's size at this time.
|
|
*/
|
|
init_param3(vm_kmem_size / PAGE_SIZE);
|
|
|
|
/*
|
|
* In mbuf_init(), we set up submaps for mbufs and clusters, in which
|
|
* case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
|
|
* respectively. Mathematically, this means that what we do here may
|
|
* amount to slightly more address space than we need for the submaps,
|
|
* but it never hurts to have an extra page in kmem_map.
|
|
*/
|
|
npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE;
|
|
|
|
kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
|
|
(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
|
|
kmem_map->system_map = 1;
|
|
|
|
uma_startup2();
|
|
|
|
for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
|
|
int size = kmemzones[indx].kz_size;
|
|
char *name = kmemzones[indx].kz_name;
|
|
|
|
kmemzones[indx].kz_zone = uma_zcreate(name, size,
|
|
#ifdef INVARIANTS
|
|
mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
|
|
#else
|
|
NULL, NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
|
|
|
|
for (;i <= size; i+= KMEM_ZBASE)
|
|
kmemsize[i >> KMEM_ZSHIFT] = indx;
|
|
|
|
}
|
|
}
|
|
|
|
void
|
|
malloc_init(data)
|
|
void *data;
|
|
{
|
|
struct malloc_type *type = (struct malloc_type *)data;
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc type lacks magic");
|
|
|
|
if (cnt.v_page_count == 0)
|
|
panic("malloc_init not allowed before vm init");
|
|
|
|
if (type->ks_next != NULL)
|
|
return;
|
|
|
|
type->ks_next = kmemstatistics;
|
|
kmemstatistics = type;
|
|
mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
|
|
mtx_unlock(&malloc_mtx);
|
|
}
|
|
|
|
void
|
|
malloc_uninit(data)
|
|
void *data;
|
|
{
|
|
struct malloc_type *type = (struct malloc_type *)data;
|
|
struct malloc_type *t;
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
mtx_lock(&type->ks_mtx);
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc type lacks magic");
|
|
|
|
if (cnt.v_page_count == 0)
|
|
panic("malloc_uninit not allowed before vm init");
|
|
|
|
if (type == kmemstatistics)
|
|
kmemstatistics = type->ks_next;
|
|
else {
|
|
for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
|
|
if (t->ks_next == type) {
|
|
t->ks_next = type->ks_next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
type->ks_next = NULL;
|
|
mtx_destroy(&type->ks_mtx);
|
|
mtx_unlock(&malloc_mtx);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct malloc_type *type;
|
|
int linesize = 128;
|
|
int curline;
|
|
int bufsize;
|
|
int first;
|
|
int error;
|
|
char *buf;
|
|
char *p;
|
|
int cnt;
|
|
int len;
|
|
int i;
|
|
|
|
cnt = 0;
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
for (type = kmemstatistics; type != NULL; type = type->ks_next)
|
|
cnt++;
|
|
|
|
mtx_unlock(&malloc_mtx);
|
|
bufsize = linesize * (cnt + 1);
|
|
p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
|
|
mtx_lock(&malloc_mtx);
|
|
|
|
len = snprintf(p, linesize,
|
|
"\n Type InUse MemUse HighUse Requests Size(s)\n");
|
|
p += len;
|
|
|
|
for (type = kmemstatistics; cnt != 0 && type != NULL;
|
|
type = type->ks_next, cnt--) {
|
|
if (type->ks_calls == 0)
|
|
continue;
|
|
|
|
curline = linesize - 2; /* Leave room for the \n */
|
|
len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
|
|
type->ks_shortdesc,
|
|
type->ks_inuse,
|
|
(type->ks_memuse + 1023) / 1024,
|
|
(type->ks_maxused + 1023) / 1024,
|
|
(long long unsigned)type->ks_calls);
|
|
curline -= len;
|
|
p += len;
|
|
|
|
first = 1;
|
|
for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
|
|
i++) {
|
|
if (type->ks_size & (1 << i)) {
|
|
if (first)
|
|
len = snprintf(p, curline, " ");
|
|
else
|
|
len = snprintf(p, curline, ",");
|
|
curline -= len;
|
|
p += len;
|
|
|
|
len = snprintf(p, curline,
|
|
"%s", kmemzones[i].kz_name);
|
|
curline -= len;
|
|
p += len;
|
|
|
|
first = 0;
|
|
}
|
|
}
|
|
|
|
len = snprintf(p, 2, "\n");
|
|
p += len;
|
|
}
|
|
|
|
mtx_unlock(&malloc_mtx);
|
|
error = SYSCTL_OUT(req, buf, p - buf);
|
|
|
|
free(buf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
|
|
NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
|
|
|
|
#ifdef MALLOC_PROFILE
|
|
|
|
static int
|
|
sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int linesize = 64;
|
|
uint64_t count;
|
|
uint64_t waste;
|
|
uint64_t mem;
|
|
int bufsize;
|
|
int error;
|
|
char *buf;
|
|
int rsize;
|
|
int size;
|
|
char *p;
|
|
int len;
|
|
int i;
|
|
|
|
bufsize = linesize * (KMEM_ZSIZE + 1);
|
|
bufsize += 128; /* For the stats line */
|
|
bufsize += 128; /* For the banner line */
|
|
waste = 0;
|
|
mem = 0;
|
|
|
|
p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
|
|
len = snprintf(p, bufsize,
|
|
"\n Size Requests Real Size\n");
|
|
bufsize -= len;
|
|
p += len;
|
|
|
|
for (i = 0; i < KMEM_ZSIZE; i++) {
|
|
size = i << KMEM_ZSHIFT;
|
|
rsize = kmemzones[kmemsize[i]].kz_size;
|
|
count = (long long unsigned)krequests[i];
|
|
|
|
len = snprintf(p, bufsize, "%6d%28llu%11d\n",
|
|
size, (unsigned long long)count, rsize);
|
|
bufsize -= len;
|
|
p += len;
|
|
|
|
if ((rsize * count) > (size * count))
|
|
waste += (rsize * count) - (size * count);
|
|
mem += (rsize * count);
|
|
}
|
|
|
|
len = snprintf(p, bufsize,
|
|
"\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
|
|
(unsigned long long)mem, (unsigned long long)waste);
|
|
p += len;
|
|
|
|
error = SYSCTL_OUT(req, buf, p - buf);
|
|
|
|
free(buf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
|
|
NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
|
|
#endif /* MALLOC_PROFILE */
|