1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-10 14:02:43 +00:00
freebsd/include/tgmath.h
Stefan Farfeleder 6549b8a280 Add a workaround to recognise I/_Complex_I as complex arguments. Although
the GCC manual claims that the expression 1.0fi has type float _Complex,
__builtin_types_compatible_p(float _Complex, __typeof__(1.0fi))) yields 0.
2004-09-03 23:44:09 +00:00

168 lines
7.0 KiB
C

/*-
* Copyright (c) 2004 Stefan Farfeleder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _TGMATH_H_
#define _TGMATH_H_
#include <complex.h>
#include <math.h>
/*
* This implementation of <tgmath.h> requires two implementation-dependent
* macros to be defined:
* __tg_impl_simple(x, y, z, fn, fnf, fnl, ...)
* Invokes fnl() if the corresponding real type of x, y or z is long
* double, fn() if it is double or any has an integer type, and fnf()
* otherwise.
* __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)
* Invokes [c]fnl() if the corresponding real type of x, y or z is long
* double, [c]fn() if it is double or any has an integer type, and
* [c]fnf() otherwise. The function with the 'c' prefix is called if
* any of x, y or z is a complex number.
* Both macros call the chosen function with all additional arguments passed
* to them, as given by __VA_ARGS__.
*
* Note that these macros cannot be implemented with C's ?: operator,
* because the return type of the whole expression would incorrectly be long
* double complex regardless of the argument types.
*/
#if __GNUC_PREREQ__(3, 1)
#define __tg_type(e, t) __builtin_types_compatible_p(__typeof__(e), t)
#define __tg_type3(e1, e2, e3, t) \
(__tg_type(e1, t) || __tg_type(e2, t) || __tg_type(e3, t))
#define __tg_type_corr(e1, e2, e3, t) \
(__tg_type3(e1, e2, e3, t) || __tg_type3(e1, e2, e3, t _Complex))
#define __tg_integer(e1, e2, e3) \
(((__typeof__(e1))1.5 == 1) || ((__typeof__(e2))1.5 == 1) || \
((__typeof__(e3))1.5 == 1))
#define __tg_is_complex(e1, e2, e3) \
(__tg_type3(e1, e2, e3, float _Complex) || \
__tg_type3(e1, e2, e3, double _Complex) || \
__tg_type3(e1, e2, e3, long double _Complex)) || \
__tg_type3(e1, e2, e3, __typeof__(_Complex_I))
#define __tg_impl_simple(x, y, z, fn, fnf, fnl, ...) \
__builtin_choose_expr(__tg_type_corr(x, y, z, long double), \
fnl(__VA_ARGS__), __builtin_choose_expr( \
__tg_type_corr(x, y, z, double) || __tg_integer(x, y, z),\
fn(__VA_ARGS__), fnf(__VA_ARGS__)))
#define __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...) \
__builtin_choose_expr(__tg_is_complex(x, y, z), \
__tg_impl_simple(x, y, z, cfn, cfnf, cfnl, __VA_ARGS__), \
__tg_impl_simple(x, y, z, fn, fnf, fnl, __VA_ARGS__))
#else /* __GNUC__ */
#error "<tgmath.h> not implemented for this compiler"
#endif /* !__GNUC__ */
/* Macros to save lots of repetition below */
#define __tg_simple(x, fn) \
__tg_impl_simple(x, x, x, fn, fn##f, fn##l, x)
#define __tg_simple2(x, y, fn) \
__tg_impl_simple(x, x, y, fn, fn##f, fn##l, x, y)
#define __tg_simplev(x, fn, ...) \
__tg_impl_simple(x, x, x, fn, fn##f, fn##l, __VA_ARGS__)
#define __tg_full(x, fn) \
__tg_impl_full(x, x, x, fn, fn##f, fn##l, c##fn, c##fn##f, c##fn##l, x)
/* 7.22#4 -- These macros expand to real or complex functions, depending on
* the type of their arguments. */
#define acos(x) __tg_full(x, acos)
#define asin(x) __tg_full(x, asin)
#define atan(x) __tg_full(x, atan)
#define acosh(x) __tg_full(x, acosh)
#define asinh(x) __tg_full(x, asinh)
#define atanh(x) __tg_full(x, atanh)
#define cos(x) __tg_full(x, cos)
#define sin(x) __tg_full(x, sin)
#define tan(x) __tg_full(x, tan)
#define cosh(x) __tg_full(x, cosh)
#define sinh(x) __tg_full(x, sinh)
#define tanh(x) __tg_full(x, tanh)
#define exp(x) __tg_full(x, exp)
#define log(x) __tg_full(x, log)
#define pow(x, y) __tg_impl_full(x, x, y, pow, powf, powl, \
cpow, cpowf, cpowl, x, y)
#define sqrt(x) __tg_full(x, sqrt)
/* "The corresponding type-generic macro for fabs and cabs is fabs." */
#define fabs(x) __tg_impl_full(x, x, x, fabs, fabsf, fabsl, \
cabs, cabsf, cabsl, x)
/* 7.22#5 -- These macros are only defined for arguments with real type. */
#define atan2(x, y) __tg_simple2(x, y, atan2)
#define cbrt(x) __tg_simple(x, cbrt)
#define ceil(x) __tg_simple(x, ceil)
#define copysign(x, y) __tg_simple2(x, y, copysign)
#define erf(x) __tg_simple(x, erf)
#define erfc(x) __tg_simple(x, erfc)
#define exp2(x) __tg_simple(x, exp2)
#define expm1(x) __tg_simple(x, expm1)
#define fdim(x, y) __tg_simple2(x, y, fdim)
#define floor(x) __tg_simple(x, floor)
#define fma(x, y, z) __tg_impl_simple(x, y, z, fma, fmaf, fmal, x, y, z)
#define fmax(x, y) __tg_simple2(x, y, fmax)
#define fmin(x, y) __tg_simple2(x, y, fmin)
#define fmod(x, y) __tg_simple2(x, y, fmod)
#define frexp(x, y) __tg_simplev(x, frexp, x, y)
#define hypot(x, y) __tg_simple2(x, y, hypot)
#define ilogb(x) __tg_simple(x, ilogb)
#define ldexp(x, y) __tg_simplev(x, ldexp, x, y)
#define lgamma(x) __tg_simple(x, lgamma)
#define llrint(x) __tg_simple(x, llrint)
#define llround(x) __tg_simple(x, llround)
#define log10(x) __tg_simple(x, log10)
#define log1p(x) __tg_simple(x, log1p)
#define log2(x) __tg_simple(x, log2)
#define logb(x) __tg_simple(x, logb)
#define lrint(x) __tg_simple(x, lrint)
#define lround(x) __tg_simple(x, lround)
#define nearbyint(x) __tg_simple(x, nearbyint)
#define nextafter(x, y) __tg_simple2(x, y, nextafter)
#define nexttoward(x, y) __tg_simplev(x, nexttoward, x, y)
#define remainder(x, y) __tg_simple2(x, y, remainder)
#define remquo(x, y, z) __tg_impl_simple(x, x, y, remquo, remquof, \
remquol, x, y, z)
#define rint(x) __tg_simple(x, rint)
#define round(x) __tg_simple(x, round)
#define scalbn(x, y) __tg_simplev(x, scalbn, x, y)
#define scalbln(x, y) __tg_simplev(x, scalbln, x, y)
#define tgamma(x) __tg_simple(x, tgamma)
#define trunc(x) __tg_simple(x, trunc)
/* 7.22#6 -- These macros always expand to complex functions. */
#define carg(x) __tg_simple(x, carg)
#define cimag(x) __tg_simple(x, cimag)
#define conj(x) __tg_simple(x, conj)
#define cproj(x) __tg_simple(x, cproj)
#define creal(x) __tg_simple(x, creal)
#endif /* !_TGMATH_H_ */