1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-21 15:45:02 +00:00
freebsd/sys/mips/nlm/hal/haldefs.h
Jayachandran C. 0dc79f3cc1 Whitespace fixes in XLP HAL files.
Also fixup a macro in iomap.h
2011-11-19 14:06:15 +00:00

438 lines
9.2 KiB
C

/*-
* Copyright 2003-2011 Netlogic Microsystems (Netlogic). All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY Netlogic Microsystems ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* NETLOGIC_BSD
* $FreeBSD$
*/
#ifndef __NLM_HAL_MMIO_H__
#define __NLM_HAL_MMIO_H__
/*
* This file contains platform specific memory mapped IO implementation
* and will provide a way to read 32/64 bit memory mapped registers in
* all ABIs
*/
/*
* For o32 compilation, we have to disable interrupts and enable KX bit to
* access 64 bit addresses or data.
*
* We need to disable interrupts because we save just the lower 32 bits of
* registers in interrupt handling. So if we get hit by an interrupt while
* using the upper 32 bits of a register, we lose.
*/
static inline uint32_t nlm_save_flags_kx(void)
{
uint32_t sr = mips_rd_status();
mips_wr_status((sr & ~MIPS_SR_INT_IE) | MIPS_SR_KX);
return (sr);
}
static inline uint32_t nlm_save_flags_cop2(void)
{
uint32_t sr = mips_rd_status();
mips_wr_status((sr & ~MIPS_SR_INT_IE) | MIPS_SR_COP_2_BIT);
return (sr);
}
static inline void nlm_restore_flags(uint32_t sr)
{
mips_wr_status(sr);
}
static inline uint32_t
nlm_load_word(uint64_t addr)
{
volatile uint32_t *p = (volatile uint32_t *)(long)addr;
return *p;
}
static inline void
nlm_store_word(uint64_t addr, uint32_t val)
{
volatile uint32_t *p = (volatile uint32_t *)(long)addr;
*p = val;
}
#if defined(__mips_n64) || defined(__mips_n32)
static inline uint64_t
nlm_load_dword(volatile uint64_t addr)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
return *p;
}
static inline void
nlm_store_dword(volatile uint64_t addr, uint64_t val)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
*p = val;
}
#else /* o32 */
static inline uint64_t
nlm_load_dword(uint64_t addr)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
uint32_t valhi, vallo, sr;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"ld $8, 0(%2)\n\t"
"dsra32 %0, $8, 0\n\t"
"sll %1, $8, 0\n\t"
".set pop\n"
: "=r"(valhi), "=r"(vallo)
: "r"(p)
: "$8");
nlm_restore_flags(sr);
return ((uint64_t)valhi << 32) | vallo;
}
static inline void
nlm_store_dword(uint64_t addr, uint64_t val)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
uint32_t valhi, vallo, sr;
valhi = val >> 32;
vallo = val & 0xffffffff;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"dsll32 $8, %1, 0\n\t"
"dsll32 $9, %2, 0\n\t" /* get rid of the */
"dsrl32 $9, $9, 0\n\t" /* sign extend */
"or $9, $9, $8\n\t"
"sd $9, 0(%0)\n\t"
".set pop\n"
: : "r"(p), "r"(valhi), "r"(vallo)
: "$8", "$9", "memory");
nlm_restore_flags(sr);
}
#endif
#if defined(__mips_n64)
static inline uint64_t
nlm_load_word_daddr(uint64_t addr)
{
volatile uint32_t *p = (volatile uint32_t *)(long)addr;
return *p;
}
static inline void
nlm_store_word_daddr(uint64_t addr, uint32_t val)
{
volatile uint32_t *p = (volatile uint32_t *)(long)addr;
*p = val;
}
static inline uint64_t
nlm_load_dword_daddr(uint64_t addr)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
return *p;
}
static inline void
nlm_store_dword_daddr(uint64_t addr, uint64_t val)
{
volatile uint64_t *p = (volatile uint64_t *)(long)addr;
*p = val;
}
#elif defined(__mips_n32)
static inline uint64_t
nlm_load_word_daddr(uint64_t addr)
{
uint32_t val;
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"lw %0, 0(%1)\n\t"
".set pop\n"
: "=r"(val)
: "r"(addr));
return val;
}
static inline void
nlm_store_word_daddr(uint64_t addr, uint32_t val)
{
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"sw %0, 0(%1)\n\t"
".set pop\n"
: : "r"(val), "r"(addr)
: "memory");
}
static inline uint64_t
nlm_load_dword_daddr(uint64_t addr)
{
uint64_t val;
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"ld %0, 0(%1)\n\t"
".set pop\n"
: "=r"(val)
: "r"(addr));
return val;
}
static inline void
nlm_store_dword_daddr(uint64_t addr, uint64_t val)
{
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"sd %0, 0(%1)\n\t"
".set pop\n"
: : "r"(val), "r"(addr)
: "memory");
}
#else /* o32 */
static inline uint64_t
nlm_load_word_daddr(uint64_t addr)
{
uint32_t val, addrhi, addrlo, sr;
addrhi = addr >> 32;
addrlo = addr & 0xffffffff;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"dsll32 $8, %1, 0\n\t"
"dsll32 $9, %2, 0\n\t"
"dsrl32 $9, $9, 0\n\t"
"or $9, $9, $8\n\t"
"lw %0, 0($9)\n\t"
".set pop\n"
: "=r"(val)
: "r"(addrhi), "r"(addrlo)
: "$8", "$9");
nlm_restore_flags(sr);
return val;
}
static inline void
nlm_store_word_daddr(uint64_t addr, uint32_t val)
{
uint32_t addrhi, addrlo, sr;
addrhi = addr >> 32;
addrlo = addr & 0xffffffff;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"dsll32 $8, %1, 0\n\t"
"dsll32 $9, %2, 0\n\t"
"dsrl32 $9, $9, 0\n\t"
"or $9, $9, $8\n\t"
"sw %0, 0($9)\n\t"
".set pop\n"
: : "r"(val), "r"(addrhi), "r"(addrlo)
: "$8", "$9", "memory");
nlm_restore_flags(sr);
}
static inline uint64_t
nlm_load_dword_daddr(uint64_t addr)
{
uint32_t addrh, addrl, sr;
uint32_t valh, vall;
addrh = addr >> 32;
addrl = addr & 0xffffffff;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"dsll32 $8, %2, 0\n\t"
"dsll32 $9, %3, 0\n\t"
"dsrl32 $9, $9, 0\n\t"
"or $9, $9, $8\n\t"
"ld $8, 0($9)\n\t"
"dsra32 %0, $8, 0\n\t"
"sll %1, $8, 0\n\t"
".set pop\n"
: "=r"(valh), "=r"(vall)
: "r"(addrh), "r"(addrl)
: "$8", "$9");
nlm_restore_flags(sr);
return ((uint64_t)valh << 32) | vall;
}
static inline void
nlm_store_dword_daddr(uint64_t addr, uint64_t val)
{
uint32_t addrh, addrl, sr;
uint32_t valh, vall;
addrh = addr >> 32;
addrl = addr & 0xffffffff;
valh = val >> 32;
vall = val & 0xffffffff;
sr = nlm_save_flags_kx();
__asm__ __volatile__(
".set push\n\t"
".set mips64\n\t"
"dsll32 $8, %2, 0\n\t"
"dsll32 $9, %3, 0\n\t"
"dsrl32 $9, $9, 0\n\t"
"or $9, $9, $8\n\t"
"dsll32 $8, %0, 0\n\t"
"dsll32 $10, %1, 0\n\t"
"dsrl32 $10, $10, 0\n\t"
"or $8, $8, $10\n\t"
"sd $8, 0($9)\n\t"
".set pop\n"
: : "r"(valh), "r"(vall), "r"(addrh), "r"(addrl)
: "$8", "$9", "memory");
nlm_restore_flags(sr);
}
#endif /* __mips_n64 */
static inline uint32_t
nlm_read_reg(uint64_t base, uint32_t reg)
{
volatile uint32_t *addr = (volatile uint32_t *)(long)base + reg;
return *addr;
}
static inline void
nlm_write_reg(uint64_t base, uint32_t reg, uint32_t val)
{
volatile uint32_t *addr = (volatile uint32_t *)(long)base + reg;
*addr = val;
}
static inline uint64_t
nlm_read_reg64(uint64_t base, uint32_t reg)
{
uint64_t addr = base + (reg >> 1) * sizeof(uint64_t);
return nlm_load_dword(addr);
}
static inline void
nlm_write_reg64(uint64_t base, uint32_t reg, uint64_t val)
{
uint64_t addr = base + (reg >> 1) * sizeof(uint64_t);
return nlm_store_dword(addr, val);
}
/*
* Routines to store 32/64 bit values to 64 bit addresses,
* used when going thru XKPHYS to access registers
*/
static inline uint32_t
nlm_read_reg_xkphys(uint64_t base, uint32_t reg)
{
uint64_t addr = base + reg * sizeof(uint32_t);
return nlm_load_word_daddr(addr);
}
static inline void
nlm_write_reg_xkphys(uint64_t base, uint32_t reg, uint32_t val)
{
uint64_t addr = base + reg * sizeof(uint32_t);
return nlm_store_word_daddr(addr, val);
}
static inline uint64_t
nlm_read_reg64_xkphys(uint64_t base, uint32_t reg)
{
uint64_t addr = base + (reg >> 1) * sizeof(uint64_t);
return nlm_load_dword_daddr(addr);
}
static inline void
nlm_write_reg64_xkphys(uint64_t base, uint32_t reg, uint64_t val)
{
uint64_t addr = base + (reg >> 1) * sizeof(uint64_t);
return nlm_store_dword_daddr(addr, val);
}
/* Location where IO base is mapped */
extern uint64_t xlp_io_base;
static inline uint64_t
nlm_pcicfg_base(uint32_t devoffset)
{
return xlp_io_base + devoffset;
}
static inline uint64_t
nlm_xkphys_map_pcibar0(uint64_t pcibase)
{
uint64_t paddr;
paddr = nlm_read_reg(pcibase, 0x4) & ~0xfu;
return (uint64_t)0x9000000000000000 | paddr;
}
#endif