mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-12 09:58:36 +00:00
760 lines
17 KiB
C
760 lines
17 KiB
C
/* Control flow graph manipulation code for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This file contains low level functions to manipulate the CFG and
|
||
analyze it. All other modules should not transform the datastructure
|
||
directly and use abstraction instead. The file is supposed to be
|
||
ordered bottom-up and should not contain any code dependent on a
|
||
particular intermediate language (RTL or trees).
|
||
|
||
Available functionality:
|
||
- Initialization/deallocation
|
||
init_flow, clear_edges
|
||
- Low level basic block manipulation
|
||
alloc_block, expunge_block
|
||
- Edge manipulation
|
||
make_edge, make_single_succ_edge, cached_make_edge, remove_edge
|
||
- Low level edge redirection (without updating instruction chain)
|
||
redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
|
||
- Dumping and debugging
|
||
dump_flow_info, debug_flow_info, dump_edge_info
|
||
- Allocation of AUX fields for basic blocks
|
||
alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "function.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
|
||
/* The obstack on which the flow graph components are allocated. */
|
||
|
||
struct obstack flow_obstack;
|
||
static char *flow_firstobj;
|
||
|
||
/* Number of basic blocks in the current function. */
|
||
|
||
int n_basic_blocks;
|
||
|
||
/* Number of edges in the current function. */
|
||
|
||
int n_edges;
|
||
|
||
/* First edge in the deleted edges chain. */
|
||
|
||
edge first_deleted_edge;
|
||
static basic_block first_deleted_block;
|
||
|
||
/* The basic block array. */
|
||
|
||
varray_type basic_block_info;
|
||
|
||
/* The special entry and exit blocks. */
|
||
|
||
struct basic_block_def entry_exit_blocks[2]
|
||
= {{NULL, /* head */
|
||
NULL, /* end */
|
||
NULL, /* head_tree */
|
||
NULL, /* end_tree */
|
||
NULL, /* pred */
|
||
NULL, /* succ */
|
||
NULL, /* local_set */
|
||
NULL, /* cond_local_set */
|
||
NULL, /* global_live_at_start */
|
||
NULL, /* global_live_at_end */
|
||
NULL, /* aux */
|
||
ENTRY_BLOCK, /* index */
|
||
0, /* loop_depth */
|
||
0, /* count */
|
||
0, /* frequency */
|
||
0 /* flags */
|
||
},
|
||
{
|
||
NULL, /* head */
|
||
NULL, /* end */
|
||
NULL, /* head_tree */
|
||
NULL, /* end_tree */
|
||
NULL, /* pred */
|
||
NULL, /* succ */
|
||
NULL, /* local_set */
|
||
NULL, /* cond_local_set */
|
||
NULL, /* global_live_at_start */
|
||
NULL, /* global_live_at_end */
|
||
NULL, /* aux */
|
||
EXIT_BLOCK, /* index */
|
||
0, /* loop_depth */
|
||
0, /* count */
|
||
0, /* frequency */
|
||
0 /* flags */
|
||
}
|
||
};
|
||
|
||
void debug_flow_info PARAMS ((void));
|
||
static void free_edge PARAMS ((edge));
|
||
|
||
/* Called once at initialization time. */
|
||
|
||
void
|
||
init_flow ()
|
||
{
|
||
static int initialized;
|
||
|
||
first_deleted_edge = 0;
|
||
first_deleted_block = 0;
|
||
n_edges = 0;
|
||
|
||
if (!initialized)
|
||
{
|
||
gcc_obstack_init (&flow_obstack);
|
||
flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
|
||
initialized = 1;
|
||
}
|
||
else
|
||
{
|
||
obstack_free (&flow_obstack, flow_firstobj);
|
||
flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
|
||
}
|
||
}
|
||
|
||
/* Helper function for remove_edge and clear_edges. Frees edge structure
|
||
without actually unlinking it from the pred/succ lists. */
|
||
|
||
static void
|
||
free_edge (e)
|
||
edge e;
|
||
{
|
||
n_edges--;
|
||
memset (e, 0, sizeof *e);
|
||
e->succ_next = first_deleted_edge;
|
||
first_deleted_edge = e;
|
||
}
|
||
|
||
/* Free the memory associated with the edge structures. */
|
||
|
||
void
|
||
clear_edges ()
|
||
{
|
||
int i;
|
||
edge e;
|
||
|
||
for (i = 0; i < n_basic_blocks; ++i)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
edge e = bb->succ;
|
||
|
||
while (e)
|
||
{
|
||
edge next = e->succ_next;
|
||
|
||
free_edge (e);
|
||
e = next;
|
||
}
|
||
|
||
bb->succ = NULL;
|
||
bb->pred = NULL;
|
||
}
|
||
|
||
e = ENTRY_BLOCK_PTR->succ;
|
||
while (e)
|
||
{
|
||
edge next = e->succ_next;
|
||
|
||
free_edge (e);
|
||
e = next;
|
||
}
|
||
|
||
EXIT_BLOCK_PTR->pred = NULL;
|
||
ENTRY_BLOCK_PTR->succ = NULL;
|
||
|
||
if (n_edges)
|
||
abort ();
|
||
}
|
||
|
||
/* Allocate memory for basic_block. */
|
||
|
||
basic_block
|
||
alloc_block ()
|
||
{
|
||
basic_block bb;
|
||
|
||
if (first_deleted_block)
|
||
{
|
||
bb = first_deleted_block;
|
||
first_deleted_block = (basic_block) bb->succ;
|
||
bb->succ = NULL;
|
||
}
|
||
else
|
||
{
|
||
bb = (basic_block) obstack_alloc (&flow_obstack, sizeof *bb);
|
||
memset (bb, 0, sizeof *bb);
|
||
}
|
||
return bb;
|
||
}
|
||
|
||
/* Remove block B from the basic block array and compact behind it. */
|
||
|
||
void
|
||
expunge_block_nocompact (b)
|
||
basic_block b;
|
||
{
|
||
/* Invalidate data to make bughunting easier. */
|
||
memset (b, 0, sizeof *b);
|
||
b->index = -3;
|
||
b->succ = (edge) first_deleted_block;
|
||
first_deleted_block = (basic_block) b;
|
||
}
|
||
|
||
void
|
||
expunge_block (b)
|
||
basic_block b;
|
||
{
|
||
int i, n = n_basic_blocks;
|
||
|
||
for (i = b->index; i + 1 < n; ++i)
|
||
{
|
||
basic_block x = BASIC_BLOCK (i + 1);
|
||
BASIC_BLOCK (i) = x;
|
||
x->index = i;
|
||
}
|
||
|
||
n_basic_blocks--;
|
||
basic_block_info->num_elements--;
|
||
|
||
expunge_block_nocompact (b);
|
||
}
|
||
|
||
/* Create an edge connecting SRC and DST with FLAGS optionally using
|
||
edge cache CACHE. Return the new edge, NULL if already exist. */
|
||
|
||
edge
|
||
cached_make_edge (edge_cache, src, dst, flags)
|
||
sbitmap *edge_cache;
|
||
basic_block src, dst;
|
||
int flags;
|
||
{
|
||
int use_edge_cache;
|
||
edge e;
|
||
|
||
/* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
|
||
many edges to them, or we didn't allocate memory for it. */
|
||
use_edge_cache = (edge_cache
|
||
&& src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
|
||
|
||
/* Make sure we don't add duplicate edges. */
|
||
switch (use_edge_cache)
|
||
{
|
||
default:
|
||
/* Quick test for non-existence of the edge. */
|
||
if (! TEST_BIT (edge_cache[src->index], dst->index))
|
||
break;
|
||
|
||
/* The edge exists; early exit if no work to do. */
|
||
if (flags == 0)
|
||
return NULL;
|
||
|
||
/* FALLTHRU */
|
||
case 0:
|
||
for (e = src->succ; e; e = e->succ_next)
|
||
if (e->dest == dst)
|
||
{
|
||
e->flags |= flags;
|
||
return NULL;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (first_deleted_edge)
|
||
{
|
||
e = first_deleted_edge;
|
||
first_deleted_edge = e->succ_next;
|
||
}
|
||
else
|
||
{
|
||
e = (edge) obstack_alloc (&flow_obstack, sizeof *e);
|
||
memset (e, 0, sizeof *e);
|
||
}
|
||
n_edges++;
|
||
|
||
e->succ_next = src->succ;
|
||
e->pred_next = dst->pred;
|
||
e->src = src;
|
||
e->dest = dst;
|
||
e->flags = flags;
|
||
|
||
src->succ = e;
|
||
dst->pred = e;
|
||
|
||
if (use_edge_cache)
|
||
SET_BIT (edge_cache[src->index], dst->index);
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
|
||
created edge or NULL if already exist. */
|
||
|
||
edge
|
||
make_edge (src, dest, flags)
|
||
basic_block src, dest;
|
||
int flags;
|
||
{
|
||
return cached_make_edge (NULL, src, dest, flags);
|
||
}
|
||
|
||
/* Create an edge connecting SRC to DEST and set probability by knowing
|
||
that it is the single edge leaving SRC. */
|
||
|
||
edge
|
||
make_single_succ_edge (src, dest, flags)
|
||
basic_block src, dest;
|
||
int flags;
|
||
{
|
||
edge e = make_edge (src, dest, flags);
|
||
|
||
e->probability = REG_BR_PROB_BASE;
|
||
e->count = src->count;
|
||
return e;
|
||
}
|
||
|
||
/* This function will remove an edge from the flow graph. */
|
||
|
||
void
|
||
remove_edge (e)
|
||
edge e;
|
||
{
|
||
edge last_pred = NULL;
|
||
edge last_succ = NULL;
|
||
edge tmp;
|
||
basic_block src, dest;
|
||
|
||
src = e->src;
|
||
dest = e->dest;
|
||
for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
|
||
last_succ = tmp;
|
||
|
||
if (!tmp)
|
||
abort ();
|
||
if (last_succ)
|
||
last_succ->succ_next = e->succ_next;
|
||
else
|
||
src->succ = e->succ_next;
|
||
|
||
for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
|
||
last_pred = tmp;
|
||
|
||
if (!tmp)
|
||
abort ();
|
||
if (last_pred)
|
||
last_pred->pred_next = e->pred_next;
|
||
else
|
||
dest->pred = e->pred_next;
|
||
|
||
free_edge (e);
|
||
}
|
||
|
||
/* Redirect an edge's successor from one block to another. */
|
||
|
||
void
|
||
redirect_edge_succ (e, new_succ)
|
||
edge e;
|
||
basic_block new_succ;
|
||
{
|
||
edge *pe;
|
||
|
||
/* Disconnect the edge from the old successor block. */
|
||
for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
|
||
continue;
|
||
*pe = (*pe)->pred_next;
|
||
|
||
/* Reconnect the edge to the new successor block. */
|
||
e->pred_next = new_succ->pred;
|
||
new_succ->pred = e;
|
||
e->dest = new_succ;
|
||
}
|
||
|
||
/* Like previous but avoid possible duplicate edge. */
|
||
|
||
edge
|
||
redirect_edge_succ_nodup (e, new_succ)
|
||
edge e;
|
||
basic_block new_succ;
|
||
{
|
||
edge s;
|
||
|
||
/* Check whether the edge is already present. */
|
||
for (s = e->src->succ; s; s = s->succ_next)
|
||
if (s->dest == new_succ && s != e)
|
||
break;
|
||
|
||
if (s)
|
||
{
|
||
s->flags |= e->flags;
|
||
s->probability += e->probability;
|
||
s->count += e->count;
|
||
remove_edge (e);
|
||
e = s;
|
||
}
|
||
else
|
||
redirect_edge_succ (e, new_succ);
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Redirect an edge's predecessor from one block to another. */
|
||
|
||
void
|
||
redirect_edge_pred (e, new_pred)
|
||
edge e;
|
||
basic_block new_pred;
|
||
{
|
||
edge *pe;
|
||
|
||
/* Disconnect the edge from the old predecessor block. */
|
||
for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
|
||
continue;
|
||
|
||
*pe = (*pe)->succ_next;
|
||
|
||
/* Reconnect the edge to the new predecessor block. */
|
||
e->succ_next = new_pred->succ;
|
||
new_pred->succ = e;
|
||
e->src = new_pred;
|
||
}
|
||
|
||
void
|
||
dump_flow_info (file)
|
||
FILE *file;
|
||
{
|
||
int i;
|
||
static const char * const reg_class_names[] = REG_CLASS_NAMES;
|
||
|
||
fprintf (file, "%d registers.\n", max_regno);
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (REG_N_REFS (i))
|
||
{
|
||
enum reg_class class, altclass;
|
||
|
||
fprintf (file, "\nRegister %d used %d times across %d insns",
|
||
i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
|
||
if (REG_BASIC_BLOCK (i) >= 0)
|
||
fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
|
||
if (REG_N_SETS (i))
|
||
fprintf (file, "; set %d time%s", REG_N_SETS (i),
|
||
(REG_N_SETS (i) == 1) ? "" : "s");
|
||
if (REG_USERVAR_P (regno_reg_rtx[i]))
|
||
fprintf (file, "; user var");
|
||
if (REG_N_DEATHS (i) != 1)
|
||
fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
|
||
if (REG_N_CALLS_CROSSED (i) == 1)
|
||
fprintf (file, "; crosses 1 call");
|
||
else if (REG_N_CALLS_CROSSED (i))
|
||
fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
|
||
if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
|
||
fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
|
||
|
||
class = reg_preferred_class (i);
|
||
altclass = reg_alternate_class (i);
|
||
if (class != GENERAL_REGS || altclass != ALL_REGS)
|
||
{
|
||
if (altclass == ALL_REGS || class == ALL_REGS)
|
||
fprintf (file, "; pref %s", reg_class_names[(int) class]);
|
||
else if (altclass == NO_REGS)
|
||
fprintf (file, "; %s or none", reg_class_names[(int) class]);
|
||
else
|
||
fprintf (file, "; pref %s, else %s",
|
||
reg_class_names[(int) class],
|
||
reg_class_names[(int) altclass]);
|
||
}
|
||
|
||
if (REG_POINTER (regno_reg_rtx[i]))
|
||
fprintf (file, "; pointer");
|
||
fprintf (file, ".\n");
|
||
}
|
||
|
||
fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
edge e;
|
||
|
||
fprintf (file, "\nBasic block %d: first insn %d, last %d, ",
|
||
i, INSN_UID (bb->head), INSN_UID (bb->end));
|
||
fprintf (file, "loop_depth %d, count ", bb->loop_depth);
|
||
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
|
||
fprintf (file, ", freq %i.\n", bb->frequency);
|
||
|
||
fprintf (file, "Predecessors: ");
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
dump_edge_info (file, e, 0);
|
||
|
||
fprintf (file, "\nSuccessors: ");
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
dump_edge_info (file, e, 1);
|
||
|
||
fprintf (file, "\nRegisters live at start:");
|
||
dump_regset (bb->global_live_at_start, file);
|
||
|
||
fprintf (file, "\nRegisters live at end:");
|
||
dump_regset (bb->global_live_at_end, file);
|
||
|
||
putc ('\n', file);
|
||
}
|
||
|
||
putc ('\n', file);
|
||
}
|
||
|
||
void
|
||
debug_flow_info ()
|
||
{
|
||
dump_flow_info (stderr);
|
||
}
|
||
|
||
void
|
||
dump_edge_info (file, e, do_succ)
|
||
FILE *file;
|
||
edge e;
|
||
int do_succ;
|
||
{
|
||
basic_block side = (do_succ ? e->dest : e->src);
|
||
|
||
if (side == ENTRY_BLOCK_PTR)
|
||
fputs (" ENTRY", file);
|
||
else if (side == EXIT_BLOCK_PTR)
|
||
fputs (" EXIT", file);
|
||
else
|
||
fprintf (file, " %d", side->index);
|
||
|
||
if (e->probability)
|
||
fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
|
||
|
||
if (e->count)
|
||
{
|
||
fprintf (file, " count:");
|
||
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
|
||
}
|
||
|
||
if (e->flags)
|
||
{
|
||
static const char * const bitnames[]
|
||
= {"fallthru", "ab", "abcall", "eh", "fake", "dfs_back"};
|
||
int comma = 0;
|
||
int i, flags = e->flags;
|
||
|
||
fputs (" (", file);
|
||
for (i = 0; flags; i++)
|
||
if (flags & (1 << i))
|
||
{
|
||
flags &= ~(1 << i);
|
||
|
||
if (comma)
|
||
fputc (',', file);
|
||
if (i < (int) ARRAY_SIZE (bitnames))
|
||
fputs (bitnames[i], file);
|
||
else
|
||
fprintf (file, "%d", i);
|
||
comma = 1;
|
||
}
|
||
|
||
fputc (')', file);
|
||
}
|
||
}
|
||
|
||
/* Simple routines to easily allocate AUX fields of basic blocks. */
|
||
|
||
static struct obstack block_aux_obstack;
|
||
static void *first_block_aux_obj = 0;
|
||
static struct obstack edge_aux_obstack;
|
||
static void *first_edge_aux_obj = 0;
|
||
|
||
/* Allocate an memory block of SIZE as BB->aux. The obstack must
|
||
be first initialized by alloc_aux_for_blocks. */
|
||
|
||
inline void
|
||
alloc_aux_for_block (bb, size)
|
||
basic_block bb;
|
||
int size;
|
||
{
|
||
/* Verify that aux field is clear. */
|
||
if (bb->aux || !first_block_aux_obj)
|
||
abort ();
|
||
bb->aux = obstack_alloc (&block_aux_obstack, size);
|
||
memset (bb->aux, 0, size);
|
||
}
|
||
|
||
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
|
||
alloc_aux_for_block for each basic block. */
|
||
|
||
void
|
||
alloc_aux_for_blocks (size)
|
||
int size;
|
||
{
|
||
static int initialized;
|
||
|
||
if (!initialized)
|
||
{
|
||
gcc_obstack_init (&block_aux_obstack);
|
||
initialized = 1;
|
||
}
|
||
|
||
/* Check whether AUX data are still allocated. */
|
||
else if (first_block_aux_obj)
|
||
abort ();
|
||
first_block_aux_obj = (char *) obstack_alloc (&block_aux_obstack, 0);
|
||
if (size)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
alloc_aux_for_block (BASIC_BLOCK (i), size);
|
||
|
||
alloc_aux_for_block (ENTRY_BLOCK_PTR, size);
|
||
alloc_aux_for_block (EXIT_BLOCK_PTR, size);
|
||
}
|
||
}
|
||
|
||
/* Clear AUX pointers of all blocks. */
|
||
|
||
void
|
||
clear_aux_for_blocks ()
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
BASIC_BLOCK (i)->aux = NULL;
|
||
|
||
ENTRY_BLOCK_PTR->aux = NULL;
|
||
EXIT_BLOCK_PTR->aux = NULL;
|
||
}
|
||
|
||
/* Free data allocated in block_aux_obstack and clear AUX pointers
|
||
of all blocks. */
|
||
|
||
void
|
||
free_aux_for_blocks ()
|
||
{
|
||
if (!first_block_aux_obj)
|
||
abort ();
|
||
obstack_free (&block_aux_obstack, first_block_aux_obj);
|
||
first_block_aux_obj = NULL;
|
||
|
||
clear_aux_for_blocks ();
|
||
}
|
||
|
||
/* Allocate an memory edge of SIZE as BB->aux. The obstack must
|
||
be first initialized by alloc_aux_for_edges. */
|
||
|
||
inline void
|
||
alloc_aux_for_edge (e, size)
|
||
edge e;
|
||
int size;
|
||
{
|
||
/* Verify that aux field is clear. */
|
||
if (e->aux || !first_edge_aux_obj)
|
||
abort ();
|
||
e->aux = obstack_alloc (&edge_aux_obstack, size);
|
||
memset (e->aux, 0, size);
|
||
}
|
||
|
||
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
|
||
alloc_aux_for_edge for each basic edge. */
|
||
|
||
void
|
||
alloc_aux_for_edges (size)
|
||
int size;
|
||
{
|
||
static int initialized;
|
||
|
||
if (!initialized)
|
||
{
|
||
gcc_obstack_init (&edge_aux_obstack);
|
||
initialized = 1;
|
||
}
|
||
|
||
/* Check whether AUX data are still allocated. */
|
||
else if (first_edge_aux_obj)
|
||
abort ();
|
||
|
||
first_edge_aux_obj = (char *) obstack_alloc (&edge_aux_obstack, 0);
|
||
if (size)
|
||
{
|
||
int i;
|
||
for (i = -1; i < n_basic_blocks; i++)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
|
||
if (i >= 0)
|
||
bb = BASIC_BLOCK (i);
|
||
else
|
||
bb = ENTRY_BLOCK_PTR;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
alloc_aux_for_edge (e, size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clear AUX pointers of all edges. */
|
||
|
||
void
|
||
clear_aux_for_edges ()
|
||
{
|
||
int i;
|
||
|
||
for (i = -1; i < n_basic_blocks; i++)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
|
||
if (i >= 0)
|
||
bb = BASIC_BLOCK (i);
|
||
else
|
||
bb = ENTRY_BLOCK_PTR;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
e->aux = NULL;
|
||
}
|
||
}
|
||
|
||
/* Free data allocated in edge_aux_obstack and clear AUX pointers
|
||
of all edges. */
|
||
|
||
void
|
||
free_aux_for_edges ()
|
||
{
|
||
if (!first_edge_aux_obj)
|
||
abort ();
|
||
obstack_free (&edge_aux_obstack, first_edge_aux_obj);
|
||
first_edge_aux_obj = NULL;
|
||
|
||
clear_aux_for_edges ();
|
||
}
|