mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
478 lines
12 KiB
Groff
478 lines
12 KiB
Groff
.\" $OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
|
|
.\"
|
|
.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
|
|
.\" All rights reserved.
|
|
.\"
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
.\" modification, are permitted provided that the following conditions
|
|
.\" are met:
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
.\" documentation and/or other materials provided with the distribution.
|
|
.\" 3. All advertising materials mentioning features or use of this software
|
|
.\" must display the following acknowledgement:
|
|
.\" This product includes software developed by Niels Provos.
|
|
.\" 4. The name of the author may not be used to endorse or promote products
|
|
.\" derived from this software without specific prior written permission.
|
|
.\"
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
.\"
|
|
.\" $FreeBSD$
|
|
.\"
|
|
.Dd February 24, 2002
|
|
.Dt TREE 3
|
|
.Os
|
|
.Sh NAME
|
|
.Nm SPLAY_PROTOTYPE ,
|
|
.Nm SPLAY_GENERATE ,
|
|
.Nm SPLAY_ENTRY ,
|
|
.Nm SPLAY_HEAD ,
|
|
.Nm SPLAY_INITIALIZER ,
|
|
.Nm SPLAY_ROOT ,
|
|
.Nm SPLAY_EMPTY ,
|
|
.Nm SPLAY_NEXT ,
|
|
.Nm SPLAY_MIN ,
|
|
.Nm SPLAY_MAX ,
|
|
.Nm SPLAY_FIND ,
|
|
.Nm SPLAY_LEFT ,
|
|
.Nm SPLAY_RIGHT ,
|
|
.Nm SPLAY_FOREACH ,
|
|
.Nm SPLAY_INIT ,
|
|
.Nm SPLAY_INSERT ,
|
|
.Nm SPLAY_REMOVE ,
|
|
.Nm RB_PROTOTYPE ,
|
|
.Nm RB_GENERATE ,
|
|
.Nm RB_ENTRY ,
|
|
.Nm RB_HEAD ,
|
|
.Nm RB_INITIALIZER ,
|
|
.Nm RB_ROOT ,
|
|
.Nm RB_EMPTY ,
|
|
.Nm RB_NEXT ,
|
|
.Nm RB_MIN ,
|
|
.Nm RB_MAX ,
|
|
.Nm RB_FIND ,
|
|
.Nm RB_LEFT ,
|
|
.Nm RB_RIGHT ,
|
|
.Nm RB_PARENT ,
|
|
.Nm RB_FOREACH ,
|
|
.Nm RB_INIT ,
|
|
.Nm RB_INSERT ,
|
|
.Nm RB_REMOVE
|
|
.Nd "implementations of splay and red-black trees"
|
|
.Sh SYNOPSIS
|
|
.In sys/tree.h
|
|
.Fn SPLAY_PROTOTYPE NAME TYPE FIELD CMP
|
|
.Fn SPLAY_GENERATE NAME TYPE FIELD CMP
|
|
.Fn SPLAY_ENTRY TYPE
|
|
.Fn SPLAY_HEAD HEADNAME TYPE
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
|
|
.Fn SPLAY_ROOT "SPLAY_HEAD *head"
|
|
.Ft bool
|
|
.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_NEXT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_MIN NAME "SPLAY_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_MAX NAME "SPLAY_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_FIND NAME "SPLAY_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
|
|
.Fn SPLAY_FOREACH VARNAME NAME "SPLAY_HEAD *head"
|
|
.Ft void
|
|
.Fn SPLAY_INIT "SPLAY_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_INSERT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn SPLAY_REMOVE NAME "SPLAY_HEAD *head" "struct TYPE *elm"
|
|
.Fn RB_PROTOTYPE NAME TYPE FIELD CMP
|
|
.Fn RB_GENERATE NAME TYPE FIELD CMP
|
|
.Fn RB_ENTRY TYPE
|
|
.Fn RB_HEAD HEADNAME TYPE
|
|
.Fn RB_INITIALIZER "RB_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_ROOT "RB_HEAD *head"
|
|
.Ft "bool"
|
|
.Fn RB_EMPTY "RB_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_NEXT NAME "RB_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_MIN NAME "RB_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_MAX NAME "RB_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_FIND NAME "RB_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
|
|
.Fn RB_FOREACH VARNAME NAME "RB_HEAD *head"
|
|
.Ft void
|
|
.Fn RB_INIT "RB_HEAD *head"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_INSERT NAME "RB_HEAD *head" "struct TYPE *elm"
|
|
.Ft "struct TYPE *"
|
|
.Fn RB_REMOVE NAME "RB_HEAD *head" "struct TYPE *elm"
|
|
.Sh DESCRIPTION
|
|
These macros define data structures for different types of trees:
|
|
splay trees and red-black trees.
|
|
.Pp
|
|
In the macro definitions,
|
|
.Fa TYPE
|
|
is the name tag of a user defined structure that must contain a field of type
|
|
.Vt SPLAY_ENTRY ,
|
|
or
|
|
.Vt RB_ENTRY ,
|
|
named
|
|
.Fa ENTRYNAME .
|
|
The argument
|
|
.Fa HEADNAME
|
|
is the name tag of a user defined structure that must be declared
|
|
using the macros
|
|
.Fn SPLAY_HEAD ,
|
|
or
|
|
.Fn RB_HEAD .
|
|
The argument
|
|
.Fa NAME
|
|
has to be a unique name prefix for every tree that is defined.
|
|
.Pp
|
|
The function prototypes are declared with either
|
|
.Fn SPLAY_PROTOTYPE ,
|
|
or
|
|
.Fn RB_PROTOTYPE .
|
|
The function bodies are generated with either
|
|
.Fn SPLAY_GENERATE ,
|
|
or
|
|
.Fn RB_GENERATE .
|
|
See the examples below for further explanation of how these macros are used.
|
|
.Sh SPLAY TREES
|
|
A splay tree is a self-organizing data structure.
|
|
Every operation on the tree causes a splay to happen.
|
|
The splay moves the requested
|
|
node to the root of the tree and partly rebalances it.
|
|
.Pp
|
|
This has the benefit that request locality causes faster lookups as
|
|
the requested nodes move to the top of the tree.
|
|
On the other hand, every lookup causes memory writes.
|
|
.Pp
|
|
The Balance Theorem bounds the total access time for
|
|
.Ar m
|
|
operations and
|
|
.Ar n
|
|
inserts on an initially empty tree as
|
|
.Fn O "\*[lp]m + n\*[rp]lg n" .
|
|
The
|
|
amortized cost for a sequence of
|
|
.Ar m
|
|
accesses to a splay tree is
|
|
.Fn O "lg n" .
|
|
.Pp
|
|
A splay tree is headed by a structure defined by the
|
|
.Fn SPLAY_HEAD
|
|
macro.
|
|
A
|
|
structure is declared as follows:
|
|
.Bd -ragged -offset indent
|
|
.Fn SPLAY_HEAD HEADNAME TYPE
|
|
.Va head ;
|
|
.Ed
|
|
.Pp
|
|
where
|
|
.Fa HEADNAME
|
|
is the name of the structure to be defined, and struct
|
|
.Fa TYPE
|
|
is the type of the elements to be inserted into the tree.
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_ENTRY
|
|
macro declares a structure that allows elements to be connected in the tree.
|
|
.Pp
|
|
In order to use the functions that manipulate the tree structure,
|
|
their prototypes need to be declared with the
|
|
.Fn SPLAY_PROTOTYPE
|
|
macro,
|
|
where
|
|
.Fa NAME
|
|
is a unique identifier for this particular tree.
|
|
The
|
|
.Fa TYPE
|
|
argument is the type of the structure that is being managed
|
|
by the tree.
|
|
The
|
|
.Fa FIELD
|
|
argument is the name of the element defined by
|
|
.Fn SPLAY_ENTRY .
|
|
.Pp
|
|
The function bodies are generated with the
|
|
.Fn SPLAY_GENERATE
|
|
macro.
|
|
It takes the same arguments as the
|
|
.Fn SPLAY_PROTOTYPE
|
|
macro, but should be used only once.
|
|
.Pp
|
|
Finally,
|
|
the
|
|
.Fa CMP
|
|
argument is the name of a function used to compare tree nodes
|
|
with each other.
|
|
The function takes two arguments of type
|
|
.Vt "struct TYPE *" .
|
|
If the first argument is smaller than the second, the function returns a
|
|
value smaller than zero.
|
|
If they are equal, the function returns zero.
|
|
Otherwise, it should return a value greater than zero.
|
|
The compare
|
|
function defines the order of the tree elements.
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_INIT
|
|
macro initializes the tree referenced by
|
|
.Fa head .
|
|
.Pp
|
|
The splay tree can also be initialized statically by using the
|
|
.Fn SPLAY_INITIALIZER
|
|
macro like this:
|
|
.Bd -ragged -offset indent
|
|
.Fn SPLAY_HEAD HEADNAME TYPE
|
|
.Va head
|
|
=
|
|
.Fn SPLAY_INITIALIZER &head ;
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_INSERT
|
|
macro inserts the new element
|
|
.Fa elm
|
|
into the tree.
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_REMOVE
|
|
macro removes the element
|
|
.Fa elm
|
|
from the tree pointed by
|
|
.Fa head .
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_FIND
|
|
macro can be used to find a particular element in the tree.
|
|
.Bd -literal -offset indent
|
|
struct TYPE find, *res;
|
|
find.key = 30;
|
|
res = SPLAY_FIND(NAME, head, &find);
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_ROOT ,
|
|
.Fn SPLAY_MIN ,
|
|
.Fn SPLAY_MAX ,
|
|
and
|
|
.Fn SPLAY_NEXT
|
|
macros can be used to traverse the tree:
|
|
.Bd -literal -offset indent
|
|
for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
|
|
.Ed
|
|
.Pp
|
|
Or, for simplicity, one can use the
|
|
.Fn SPLAY_FOREACH
|
|
macro:
|
|
.Bd -ragged -offset indent
|
|
.Fn SPLAY_FOREACH np NAME head
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn SPLAY_EMPTY
|
|
macro should be used to check whether a splay tree is empty.
|
|
.Sh RED-BLACK TREES
|
|
A red-black tree is a binary search tree with the node color as an
|
|
extra attribute.
|
|
It fulfills a set of conditions:
|
|
.Bl -enum -offset indent
|
|
.It
|
|
Every search path from the root to a leaf consists of the same number of
|
|
black nodes.
|
|
.It
|
|
Each red node (except for the root) has a black parent.
|
|
.It
|
|
Each leaf node is black.
|
|
.El
|
|
.Pp
|
|
Every operation on a red-black tree is bounded as
|
|
.Fn O "lg n" .
|
|
The maximum height of a red-black tree is
|
|
.Fn 2lg "n + 1" .
|
|
.Pp
|
|
A red-black tree is headed by a structure defined by the
|
|
.Fn RB_HEAD
|
|
macro.
|
|
A
|
|
structure is declared as follows:
|
|
.Bd -ragged -offset indent
|
|
.Fn RB_HEAD HEADNAME TYPE
|
|
.Va head ;
|
|
.Ed
|
|
.Pp
|
|
where
|
|
.Fa HEADNAME
|
|
is the name of the structure to be defined, and struct
|
|
.Fa TYPE
|
|
is the type of the elements to be inserted into the tree.
|
|
.Pp
|
|
The
|
|
.Fn RB_ENTRY
|
|
macro declares a structure that allows elements to be connected in the tree.
|
|
.Pp
|
|
In order to use the functions that manipulate the tree structure,
|
|
their prototypes need to be declared with the
|
|
.Fn RB_PROTOTYPE
|
|
macro,
|
|
where
|
|
.Fa NAME
|
|
is a unique identifier for this particular tree.
|
|
The
|
|
.Fa TYPE
|
|
argument is the type of the structure that is being managed
|
|
by the tree.
|
|
The
|
|
.Fa FIELD
|
|
argument is the name of the element defined by
|
|
.Fn RB_ENTRY .
|
|
.Pp
|
|
The function bodies are generated with the
|
|
.Fn RB_GENERATE
|
|
macro.
|
|
It takes the same arguments as the
|
|
.Fn RB_PROTOTYPE
|
|
macro, but should be used only once.
|
|
.Pp
|
|
Finally,
|
|
the
|
|
.Fa CMP
|
|
argument is the name of a function used to compare tree noded
|
|
with each other.
|
|
The function takes two arguments of type
|
|
.Vt "struct TYPE *" .
|
|
If the first argument is smaller than the second, the function returns a
|
|
value smaller than zero.
|
|
If they are equal, the function returns zero.
|
|
Otherwise, it should return a value greater than zero.
|
|
The compare
|
|
function defines the order of the tree elements.
|
|
.Pp
|
|
The
|
|
.Fn RB_INIT
|
|
macro initializes the tree referenced by
|
|
.Fa head .
|
|
.Pp
|
|
The redblack tree can also be initialized statically by using the
|
|
.Fn RB_INITIALIZER
|
|
macro like this:
|
|
.Bd -ragged -offset indent
|
|
.Fn RB_HEAD HEADNAME TYPE
|
|
.Va head
|
|
=
|
|
.Fn RB_INITIALIZER &head ;
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn RB_INSERT
|
|
macro inserts the new element
|
|
.Fa elm
|
|
into the tree.
|
|
.Pp
|
|
The
|
|
.Fn RB_REMOVE
|
|
macro removes the element
|
|
.Fa elm
|
|
from the tree pointed by
|
|
.Fa head .
|
|
.Pp
|
|
The
|
|
.Fn RB_FIND
|
|
macro can be used to find a particular element in the tree.
|
|
.Bd -literal -offset indent
|
|
struct TYPE find, *res;
|
|
find.key = 30;
|
|
res = RB_FIND(NAME, head, &find);
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn RB_ROOT ,
|
|
.Fn RB_MIN ,
|
|
.Fn RB_MAX ,
|
|
and
|
|
.Fn RB_NEXT
|
|
macros can be used to traverse the tree:
|
|
.Pp
|
|
.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
|
|
.Pp
|
|
Or, for simplicity, one can use the
|
|
.Fn RB_FOREACH
|
|
macro:
|
|
.Bd -ragged -offset indent
|
|
.Fn RB_FOREACH np NAME head
|
|
.Ed
|
|
.Pp
|
|
The
|
|
.Fn RB_EMPTY
|
|
macro should be used to check whether a red-black tree is empty.
|
|
.Sh NOTES
|
|
Trying to free a tree in the following way is a common error:
|
|
.Bd -literal -offset indent
|
|
SPLAY_FOREACH(var, NAME, head) {
|
|
SPLAY_REMOVE(NAME, head, var);
|
|
free(var);
|
|
}
|
|
free(head);
|
|
.Ed
|
|
.Pp
|
|
Since
|
|
.Va var
|
|
is freed, the
|
|
.Fn FOREACH
|
|
macro refers to a pointer that may have been reallocated already.
|
|
Proper code needs a second variable.
|
|
.Bd -literal -offset indent
|
|
for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
|
|
nxt = SPLAY_NEXT(NAME, head, var);
|
|
SPLAY_REMOVE(NAME, head, var);
|
|
free(var);
|
|
}
|
|
.Ed
|
|
.Pp
|
|
Both
|
|
.Fn RB_INSERT
|
|
and
|
|
.Fn SPLAY_INSERT
|
|
return
|
|
.Dv NULL
|
|
if the element was inserted in the tree successfully, otherwise they
|
|
return a pointer to the element with the colliding key.
|
|
.Pp
|
|
Accordingly,
|
|
.Fn RB_REMOVE
|
|
and
|
|
.Fn SPLAY_REMOVE
|
|
return the pointer to the removed element otherwise they return
|
|
.Dv NULL
|
|
to indicate an error.
|
|
.Sh AUTHORS
|
|
The author of the tree macros is
|
|
.An Niels Provos .
|