1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/dev/sound/isa/opl.c
John Baldwin 6008862bc2 Change callers of mtx_init() to pass in an appropriate lock type name. In
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.

Tested on:	i386, alpha, sparc64
2002-04-04 21:03:38 +00:00

1886 lines
48 KiB
C

/*
* A low level driver for Yamaha YM3812 and OPL-3 -chips
*
* Copyright by Hannu Savolainen 1993
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Major improvements to the FM handling 30AUG92 by Rob Hooft,
*/
/*
* hooft@chem.ruu.nl
*/
/*
*
* Ported to the new Audio Driver by Luigi Rizzo:
* (C) 1999 Seigo Tanimura
*
* This is the OPL2/3/4 chip driver for FreeBSD, based on the Luigi Sound Driver.
* This handles io against /dev/midi, the midi {in, out}put event queues
* and the event/message operation to the OPL chip.
*
* $FreeBSD$
*
*/
#include <dev/sound/midi/midi.h>
#include <dev/sound/chip.h>
#include <isa/isavar.h>
static devclass_t midi_devclass;
#ifndef DDB
#undef DDB
#define DDB(x)
#endif /* DDB */
/*
* The OPL-3 mode is switched on by writing 0x01, to the offset 5
* of the right side.
*
* Another special register at the right side is at offset 4. It contains
* a bit mask defining which voices are used as 4 OP voices.
*
* The percussive mode is implemented in the left side only.
*
* With the above exeptions the both sides can be operated independently.
*
* A 4 OP voice can be created by setting the corresponding
* bit at offset 4 of the right side.
*
* For example setting the rightmost bit (0x01) changes the
* first voice on the right side to the 4 OP mode. The fourth
* voice is made inaccessible.
*
* If a voice is set to the 2 OP mode, it works like 2 OP modes
* of the original YM3812 (AdLib). In addition the voice can
* be connected the left, right or both stereo channels. It can
* even be left unconnected. This works with 4 OP voices also.
*
* The stereo connection bits are located in the FEEDBACK_CONNECTION
* register of the voice (0xC0-0xC8). In 4 OP voices these bits are
* in the second half of the voice.
*/
/*
* Register numbers for the global registers
*/
#define TEST_REGISTER 0x01
#define ENABLE_WAVE_SELECT 0x20
#define TIMER1_REGISTER 0x02
#define TIMER2_REGISTER 0x03
#define TIMER_CONTROL_REGISTER 0x04 /* Left side */
#define IRQ_RESET 0x80
#define TIMER1_MASK 0x40
#define TIMER2_MASK 0x20
#define TIMER1_START 0x01
#define TIMER2_START 0x02
#define CONNECTION_SELECT_REGISTER 0x04 /* Right side */
#define RIGHT_4OP_0 0x01
#define RIGHT_4OP_1 0x02
#define RIGHT_4OP_2 0x04
#define LEFT_4OP_0 0x08
#define LEFT_4OP_1 0x10
#define LEFT_4OP_2 0x20
#define OPL3_MODE_REGISTER 0x05 /* Right side */
#define OPL3_ENABLE 0x01
#define OPL4_ENABLE 0x02
#define KBD_SPLIT_REGISTER 0x08 /* Left side */
#define COMPOSITE_SINE_WAVE_MODE 0x80 /* Don't use with OPL-3? */
#define KEYBOARD_SPLIT 0x40
#define PERCUSSION_REGISTER 0xbd /* Left side only */
#define TREMOLO_DEPTH 0x80
#define VIBRATO_DEPTH 0x40
#define PERCUSSION_ENABLE 0x20
#define BASSDRUM_ON 0x10
#define SNAREDRUM_ON 0x08
#define TOMTOM_ON 0x04
#define CYMBAL_ON 0x02
#define HIHAT_ON 0x01
/*
* Offsets to the register banks for operators. To get the
* register number just add the operator offset to the bank offset
*
* AM/VIB/EG/KSR/Multiple (0x20 to 0x35)
*/
#define AM_VIB 0x20
#define TREMOLO_ON 0x80
#define VIBRATO_ON 0x40
#define SUSTAIN_ON 0x20
#define KSR 0x10 /* Key scaling rate */
#define MULTIPLE_MASK 0x0f /* Frequency multiplier */
/*
* KSL/Total level (0x40 to 0x55)
*/
#define KSL_LEVEL 0x40
#define KSL_MASK 0xc0 /* Envelope scaling bits */
#define TOTAL_LEVEL_MASK 0x3f /* Strength (volume) of OP */
/*
* Attack / Decay rate (0x60 to 0x75)
*/
#define ATTACK_DECAY 0x60
#define ATTACK_MASK 0xf0
#define DECAY_MASK 0x0f
/*
* Sustain level / Release rate (0x80 to 0x95)
*/
#define SUSTAIN_RELEASE 0x80
#define SUSTAIN_MASK 0xf0
#define RELEASE_MASK 0x0f
/*
* Wave select (0xE0 to 0xF5)
*/
#define WAVE_SELECT 0xe0
/*
* Offsets to the register banks for voices. Just add to the
* voice number to get the register number.
*
* F-Number low bits (0xA0 to 0xA8).
*/
#define FNUM_LOW 0xa0
/*
* F-number high bits / Key on / Block (octave) (0xB0 to 0xB8)
*/
#define KEYON_BLOCK 0xb0
#define KEYON_BIT 0x20
#define BLOCKNUM_MASK 0x1c
#define FNUM_HIGH_MASK 0x03
/*
* Feedback / Connection (0xc0 to 0xc8)
*
* These registers have two new bits when the OPL-3 mode
* is selected. These bits controls connecting the voice
* to the stereo channels. For 4 OP voices this bit is
* defined in the second half of the voice (add 3 to the
* register offset).
*
* For 4 OP voices the connection bit is used in the
* both halfs (gives 4 ways to connect the operators).
*/
#define FEEDBACK_CONNECTION 0xc0
#define FEEDBACK_MASK 0x0e /* Valid just for 1st OP of a voice */
#define CONNECTION_BIT 0x01
/*
* In the 4 OP mode there is four possible configurations how the
* operators can be connected together (in 2 OP modes there is just
* AM or FM). The 4 OP connection mode is defined by the rightmost
* bit of the FEEDBACK_CONNECTION (0xC0-0xC8) on the both halfs.
*
* First half Second half Mode
*
* +---+
* v |
* 0 0 >+-1-+--2--3--4-->
*
*
*
* +---+
* | |
* 0 1 >+-1-+--2-+
* |->
* >--3----4-+
*
* +---+
* | |
* 1 0 >+-1-+-----+
* |->
* >--2--3--4-+
*
* +---+
* | |
* 1 1 >+-1-+--+
* |
* >--2--3-+->
* |
* >--4----+
*/
#define STEREO_BITS 0x30 /* OPL-3 only */
#define VOICE_TO_LEFT 0x10
#define VOICE_TO_RIGHT 0x20
/*
* Definition table for the physical voices
*/
struct physical_voice_info {
unsigned char voice_num;
unsigned char voice_mode; /* 0=unavailable, 2=2 OP, 4=4 OP */
int ch; /* channel (left=USE_LEFT, right=USE_RIGHT) */
unsigned char op[4]; /* Operator offsets */
};
/*
* There is 18 possible 2 OP voices
* (9 in the left and 9 in the right).
* The first OP is the modulator and 2nd is the carrier.
*
* The first three voices in the both sides may be connected
* with another voice to a 4 OP voice. For example voice 0
* can be connected with voice 3. The operators of voice 3 are
* used as operators 3 and 4 of the new 4 OP voice.
* In this case the 2 OP voice number 0 is the 'first half' and
* voice 3 is the second.
*/
#define USE_LEFT 0
#define USE_RIGHT 1
static struct physical_voice_info pv_map[18] =
{
/* No Mode Side OP1 OP2 OP3 OP4 */
/* --------------------------------------------------- */
{ 0, 2, USE_LEFT, {0x00, 0x03, 0x08, 0x0b}},
{ 1, 2, USE_LEFT, {0x01, 0x04, 0x09, 0x0c}},
{ 2, 2, USE_LEFT, {0x02, 0x05, 0x0a, 0x0d}},
{ 3, 2, USE_LEFT, {0x08, 0x0b, 0x00, 0x00}},
{ 4, 2, USE_LEFT, {0x09, 0x0c, 0x00, 0x00}},
{ 5, 2, USE_LEFT, {0x0a, 0x0d, 0x00, 0x00}},
{ 6, 2, USE_LEFT, {0x10, 0x13, 0x00, 0x00}}, /* Used by percussive voices */
{ 7, 2, USE_LEFT, {0x11, 0x14, 0x00, 0x00}}, /* if the percussive mode */
{ 8, 2, USE_LEFT, {0x12, 0x15, 0x00, 0x00}}, /* is selected */
{ 0, 2, USE_RIGHT, {0x00, 0x03, 0x08, 0x0b}},
{ 1, 2, USE_RIGHT, {0x01, 0x04, 0x09, 0x0c}},
{ 2, 2, USE_RIGHT, {0x02, 0x05, 0x0a, 0x0d}},
{ 3, 2, USE_RIGHT, {0x08, 0x0b, 0x00, 0x00}},
{ 4, 2, USE_RIGHT, {0x09, 0x0c, 0x00, 0x00}},
{ 5, 2, USE_RIGHT, {0x0a, 0x0d, 0x00, 0x00}},
{ 6, 2, USE_RIGHT, {0x10, 0x13, 0x00, 0x00}},
{ 7, 2, USE_RIGHT, {0x11, 0x14, 0x00, 0x00}},
{ 8, 2, USE_RIGHT, {0x12, 0x15, 0x00, 0x00}}
};
/* These are the tuning parameters. */
static unsigned short semitone_tuning[24] =
{
/* 0 */ 10000, 10595, 11225, 11892, 12599, 13348, 14142, 14983,
/* 8 */ 15874, 16818, 17818, 18877, 20000, 21189, 22449, 23784,
/* 16 */ 25198, 26697, 28284, 29966, 31748, 33636, 35636, 37755
};
static unsigned short cent_tuning[100] =
{
/* 0 */ 10000, 10006, 10012, 10017, 10023, 10029, 10035, 10041,
/* 8 */ 10046, 10052, 10058, 10064, 10070, 10075, 10081, 10087,
/* 16 */ 10093, 10099, 10105, 10110, 10116, 10122, 10128, 10134,
/* 24 */ 10140, 10145, 10151, 10157, 10163, 10169, 10175, 10181,
/* 32 */ 10187, 10192, 10198, 10204, 10210, 10216, 10222, 10228,
/* 40 */ 10234, 10240, 10246, 10251, 10257, 10263, 10269, 10275,
/* 48 */ 10281, 10287, 10293, 10299, 10305, 10311, 10317, 10323,
/* 56 */ 10329, 10335, 10341, 10347, 10353, 10359, 10365, 10371,
/* 64 */ 10377, 10383, 10389, 10395, 10401, 10407, 10413, 10419,
/* 72 */ 10425, 10431, 10437, 10443, 10449, 10455, 10461, 10467,
/* 80 */ 10473, 10479, 10485, 10491, 10497, 10503, 10509, 10515,
/* 88 */ 10521, 10528, 10534, 10540, 10546, 10552, 10558, 10564,
/* 96 */ 10570, 10576, 10582, 10589
};
/*
* The next table looks magical, but it certainly is not. Its values have
* been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception
* for i=0. This log-table converts a linear volume-scaling (0..127) to a
* logarithmic scaling as present in the FM-synthesizer chips. so : Volume
* 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative
* volume -8 it was implemented as a table because it is only 128 bytes and
* it saves a lot of log() calculations. (RH)
*/
static char opl_volumetable[128] =
{
-64, -48, -40, -35, -32, -29, -27, -26,
-24, -23, -21, -20, -19, -18, -18, -17,
-16, -15, -15, -14, -13, -13, -12, -12,
-11, -11, -10, -10, -10, -9, -9, -8,
-8, -8, -7, -7, -7, -6, -6, -6,
-5, -5, -5, -5, -4, -4, -4, -4,
-3, -3, -3, -3, -2, -2, -2, -2,
-2, -1, -1, -1, -1, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
6, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 8, 8, 8, 8, 8};
#define MAX_VOICE 18
#define OFFS_4OP 11
#define SBFM_MAXINSTR 256
/* These are the OPL Models. */
#define MODEL_NONE 0
#define MODEL_OPL2 2
#define MODEL_OPL3 3
#define MODEL_OPL4 4
/* These are the OPL Voice modes. */
#define VOICE_NONE 0
#define VOICE_2OP 2
#define VOICE_4OP 4
/* PnP IDs */
static struct isa_pnp_id opl_ids[] = {
{0x01200001, "@H@2001 FM Synthesizer"}, /* @H@2001 */
{0x01100001, "@H@1001 FM Synthesizer"}, /* @H@1001 */
#if notdef
/* TODO: write bridge drivers for these devices. */
{0x0000630e, "CSC0000 FM Synthesizer"}, /* CSC0000 */
{0x68187316, "ESS1868 FM Synthesizer"}, /* ESS1868 */
{0x79187316, "ESS1879 FM Synthesizer"}, /* ESS1879 */
{0x2100a865, "YMH0021 FM Synthesizer"}, /* YMH0021 */
{0x80719304, "ADS7180 FM Synthesizer"}, /* ADS7180 */
{0x0300561e, "GRV0003 FM Synthesizer"}, /* GRV0003 */
#endif /* notdef */
};
/* These are the default io bases. */
static int opl_defaultiobase[] = {
0x388,
0x380,
};
/* These are the per-voice information. */
struct voice_info {
u_char keyon_byte;
long bender;
long bender_range;
u_long orig_freq;
u_long current_freq;
int volume;
int mode;
};
/* These are the synthesizer and the midi device information. */
static struct synth_info opl_synthinfo = {
"OPL FM Synthesizer",
0,
SYNTH_TYPE_FM,
FM_TYPE_ADLIB,
0,
9,
0,
SBFM_MAXINSTR,
0,
};
static struct midi_info opl_midiinfo = {
"OPL FM Synthesizer",
0,
0,
0,
};
/*
* These functions goes into oplsynthdev_op_desc.
*/
static mdsy_killnote_t opl_killnote;
static mdsy_setinstr_t opl_setinstr;
static mdsy_startnote_t opl_startnote;
static mdsy_reset_t opl_reset;
static mdsy_hwcontrol_t opl_hwcontrol;
static mdsy_loadpatch_t opl_loadpatch;
static mdsy_panning_t opl_panning;
static mdsy_aftertouch_t opl_aftertouch;
static mdsy_controller_t opl_controller;
static mdsy_patchmgr_t opl_patchmgr;
static mdsy_bender_t opl_bender;
static mdsy_allocvoice_t opl_allocvoice;
static mdsy_setupvoice_t opl_setupvoice;
static mdsy_sendsysex_t opl_sendsysex;
static mdsy_prefixcmd_t opl_prefixcmd;
static mdsy_volumemethod_t opl_volumemethod;
/*
* This is the synthdev_info for an OPL3 chip.
*/
static synthdev_info oplsynth_op_desc = {
opl_killnote,
opl_setinstr,
opl_startnote,
opl_reset,
opl_hwcontrol,
opl_loadpatch,
opl_panning,
opl_aftertouch,
opl_controller,
opl_patchmgr,
opl_bender,
opl_allocvoice,
opl_setupvoice,
opl_sendsysex,
opl_prefixcmd,
opl_volumemethod,
};
/* Here is the parameter structure per a device. */
struct opl_softc {
device_t dev; /* device information */
mididev_info *devinfo; /* midi device information */
struct mtx mtx; /* Mutex to protect the device. */
struct resource *io; /* Base of io port */
int io_rid; /* Io resource ID */
int model; /* OPL model */
struct synth_info synthinfo; /* Synthesizer information */
struct sbi_instrument i_map[SBFM_MAXINSTR]; /* Instrument map */
struct sbi_instrument *act_i[SBFM_MAXINSTR]; /* Active instruments */
struct physical_voice_info pv_map[MAX_VOICE]; /* Physical voice map */
int cmask; /* Connection mask */
int lv_map[MAX_VOICE]; /* Level map */
struct voice_info voc[MAX_VOICE]; /* Voice information */
};
typedef struct opl_softc *sc_p;
/*
* These functions goes into opl_op_desc to get called
* from sound.c.
*/
static int opl_probe(device_t dev);
static int opl_probe1(sc_p scp);
static int opl_attach(device_t dev);
static int oplsbc_probe(device_t dev);
static int oplsbc_attach(device_t dev);
static d_open_t opl_open;
static d_close_t opl_close;
static d_ioctl_t opl_ioctl;
static midi_callback_t opl_callback;
/* These go to snddev_info. */
static mdsy_readraw_t opl_readraw;
static mdsy_writeraw_t opl_writeraw;
/* These functions are local. */
static void opl_command(sc_p scp, int ch, int addr, u_int val);
static int opl_status(sc_p scp);
static void opl_enter4opmode(sc_p scp);
static void opl_storeinstr(sc_p scp, int instr_no, struct sbi_instrument *instr);
static void opl_calcvol(u_char *regbyte, int volume, int main_vol);
static void opl_setvoicevolume(sc_p scp, int voice, int volume, int main_vol);
static void opl_freqtofnum(int freq, int *block, int *fnum);
static int opl_bendpitch(sc_p scp, int voice, int val);
static int opl_notetofreq(int note_num);
static u_long opl_computefinetune(u_long base_freq, int bend, int range);
static int opl_allocres(sc_p scp, device_t dev);
static void opl_releaseres(sc_p scp, device_t dev);
/*
* This is the device descriptor for the midi device.
*/
static mididev_info opl_op_desc = {
"OPL FM Synthesizer",
SNDCARD_OPL,
opl_open,
opl_close,
opl_ioctl,
opl_callback,
MIDI_BUFFSIZE, /* Queue Length */
0, /* XXX This is not an *audio* device! */
};
/*
* Here are the main functions to interact to the user process.
*/
static int
opl_probe(device_t dev)
{
sc_p scp;
int unit, i;
/* Check isapnp ids */
if (isa_get_logicalid(dev) != 0)
return (ISA_PNP_PROBE(device_get_parent(dev), dev, opl_ids));
scp = device_get_softc(dev);
unit = device_get_unit(dev);
device_set_desc(dev, opl_op_desc.name);
bzero(scp, sizeof(*scp));
MIDI_DEBUG(printf("opl%d: probing.\n", unit));
scp->io_rid = 0;
scp->io = bus_alloc_resource(dev, SYS_RES_IOPORT, &scp->io_rid, 0, ~0, 4, RF_ACTIVE);
if (opl_allocres(scp, dev)) {
/* We try the defaults in opl_defaultiobase. */
MIDI_DEBUG(printf("opl%d: port is omitted, trying the defaults.\n", unit));
for (i = 0 ; i < sizeof(opl_defaultiobase) / sizeof(*opl_defaultiobase) ; i++) {
scp->io_rid = 0;
scp->io = bus_alloc_resource(dev, SYS_RES_IOPORT, &scp->io_rid, opl_defaultiobase[i], opl_defaultiobase[i] + 1, 4, RF_ACTIVE);
if (scp->io != NULL) {
if (opl_probe1(scp))
opl_releaseres(scp, dev);
else
break;
}
}
if (scp->io == NULL)
return (ENXIO);
} else if(opl_probe1(scp)) {
opl_releaseres(scp, dev);
return (ENXIO);
}
/* We now have some kind of OPL. */
MIDI_DEBUG(printf("opl%d: probed.\n", unit));
return (0);
}
/* We do probe in this function. */
static int
opl_probe1(sc_p scp)
{
u_char stat1, stat2;
/* Reset the timers and the interrupt. */
opl_command(scp, USE_LEFT, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK);
opl_command(scp, USE_LEFT, TIMER_CONTROL_REGISTER, IRQ_RESET);
/* Read the status. */
stat1 = opl_status(scp);
if ((stat1 & 0xe0) != 0)
return (1);
/* Try firing the timer1. */
opl_command(scp, USE_LEFT, TIMER1_REGISTER, 0xff); /* Set the timer value. */
opl_command(scp, USE_LEFT, TIMER_CONTROL_REGISTER, TIMER1_START | TIMER2_MASK); /* Start the timer. */
DELAY(150); /* Wait for the timer. */
/* Read the status. */
stat2 = opl_status(scp);
/* Reset the timers and the interrupt. */
opl_command(scp, USE_LEFT, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK);
opl_command(scp, USE_LEFT, TIMER_CONTROL_REGISTER, IRQ_RESET);
if ((stat2 & 0xe0) != 0xc0)
return (1);
return (0);
}
static int
oplsbc_probe(device_t dev)
{
char *s;
sc_p scp;
struct sndcard_func *func;
/* The parent device has already been probed. */
func = device_get_ivars(dev);
if (func == NULL || func->func != SCF_SYNTH)
return (ENXIO);
s = "SB OPL FM Synthesizer";
scp = device_get_softc(dev);
bzero(scp, sizeof(*scp));
scp->io_rid = 2;
device_set_desc(dev, s);
return (0);
}
static int
opl_attach(device_t dev)
{
sc_p scp;
mididev_info *devinfo;
int i, opl4_io, opl4_id;
struct resource *opl4;
u_char signature, tmp;
scp = device_get_softc(dev);
MIDI_DEBUG(printf("opl: attaching.\n"));
/* Fill the softc for this unit. */
scp->dev = dev;
/* Allocate other resources. */
if (opl_allocres(scp, dev)) {
opl_releaseres(scp, dev);
return (ENXIO);
}
/* Detect the OPL type. */
signature = opl_status(scp);
if (signature == 0x06)
scp->model = MODEL_OPL2;
else {
/* OPL3 or later, might be OPL4. */
/* Enable OPL3 and OPL4. */
opl_command(scp, USE_RIGHT, OPL3_MODE_REGISTER, 0);
opl_command(scp, USE_RIGHT, OPL3_MODE_REGISTER, OPL3_ENABLE | OPL4_ENABLE);
tmp = opl_status(scp);
if (tmp != 0x02)
scp->model = MODEL_OPL3;
#if notdef
else {
#endif /* notdef */
/* Alloc OPL4 ID register. */
opl4_id = 2;
opl4_io = rman_get_start(scp->io) - 8;
opl4 = bus_alloc_resource(dev, SYS_RES_IOPORT, &opl4_id, opl4_io, opl4_io + 1, 2, RF_ACTIVE);
if (opl4 != NULL) {
/* Select OPL4 ID register. */
bus_space_write_1(rman_get_bustag(opl4), rman_get_bushandle(opl4), 0, 0x02);
DELAY(10);
tmp = bus_space_read_1(rman_get_bustag(opl4), rman_get_bushandle(opl4), 1);
DELAY(10);
if (tmp != 0x20)
scp->model = MODEL_OPL3;
else {
scp->model = MODEL_OPL4;
/* Select back OPL4 FM mixer control. */
bus_space_write_1(rman_get_bustag(opl4), rman_get_bushandle(opl4), 0, 0xf8);
DELAY(10);
bus_space_write_1(rman_get_bustag(opl4), rman_get_bushandle(opl4), 1, 0x1b);
DELAY(10);
}
bus_release_resource(dev, SYS_RES_IOPORT, opl4_id, opl4);
}
#if notdef
}
#endif /* notdef */
opl_command(scp, USE_RIGHT, OPL3_MODE_REGISTER, 0);
}
/* Kill any previous notes. */
for (i = 0 ; i < 9 ; i++)
opl_command(scp, USE_RIGHT, KEYON_BLOCK + i, 0);
/* Select melodic mode. */
opl_command(scp, USE_LEFT, TEST_REGISTER, ENABLE_WAVE_SELECT);
opl_command(scp, USE_LEFT, PERCUSSION_REGISTER, 0);
for (i = 0 ; i < SBFM_MAXINSTR ; i++)
scp->i_map[i].channel = -1;
/* Fill the softc. */
bcopy(&opl_synthinfo, &scp->synthinfo, sizeof(opl_synthinfo));
snprintf(scp->synthinfo.name, 64, "Yamaha OPL%d FM", scp->model);
mtx_init(&scp->mtx, "oplmid", NULL, MTX_DEF);
bcopy(pv_map, scp->pv_map, sizeof(pv_map));
if (scp->model < MODEL_OPL3) { /* OPL2. */
scp->synthinfo.nr_voices = 9;
scp->synthinfo.nr_drums = 0;
for (i = 0 ; i < MAX_VOICE ; i++)
scp->pv_map[i].ch = USE_LEFT;
} else { /* OPL3 or later. */
scp->synthinfo.capabilities |= SYNTH_CAP_OPL3;
scp->synthinfo.nr_voices = 18;
scp->synthinfo.nr_drums = 0;
#if notdef
for (i = 0 ; i < MAX_VOICE ; i++) {
if (scp->pv_map[i].ch == USE_LEFT)
scp->pv_map[i].ch = USE_LEFT;
else
scp->pv_map[i].ch = USE_RIGHT;
}
#endif /* notdef */
opl_command(scp, USE_RIGHT, OPL3_MODE_REGISTER, OPL3_ENABLE);
opl_command(scp, USE_RIGHT, CONNECTION_SELECT_REGISTER, 0);
}
scp->devinfo = devinfo = create_mididev_info_unit(MDT_SYNTH, &opl_op_desc, &oplsynth_op_desc);
/* Fill the midi info. */
devinfo->synth.readraw = opl_readraw;
devinfo->synth.writeraw = opl_writeraw;
devinfo->synth.alloc.max_voice = scp->synthinfo.nr_voices;
strcpy(devinfo->name, scp->synthinfo.name);
snprintf(devinfo->midistat, sizeof(devinfo->midistat), "at 0x%x", (u_int)rman_get_start(scp->io));
midiinit(devinfo, dev);
MIDI_DEBUG(printf("opl: attached.\n"));
MIDI_DEBUG(printf("opl: the chip is OPL%d.\n", scp->model));
return (0);
}
static int
oplsbc_attach(device_t dev)
{
return (opl_attach(dev));
}
static int
opl_open(dev_t i_dev, int flags, int mode, struct thread *td)
{
sc_p scp;
mididev_info *devinfo;
int unit, i;
unit = MIDIUNIT(i_dev);
MIDI_DEBUG(printf("opl%d: opening.\n", unit));
devinfo = get_mididev_info(i_dev, &unit);
if (devinfo == NULL) {
MIDI_DEBUG(printf("opl_open: unit %d is not configured.\n", unit));
return (ENXIO);
}
scp = devinfo->softc;
mtx_lock(&devinfo->synth.vc_mtx);
if (scp->model < MODEL_OPL3)
devinfo->synth.alloc.max_voice = 9;
else
devinfo->synth.alloc.max_voice = 18;
devinfo->synth.alloc.timestamp = 0;
for (i = 0 ; i < MAX_VOICE ; i++) {
devinfo->synth.alloc.map[i] = 0;
devinfo->synth.alloc.alloc_times[i] = 0;
}
mtx_unlock(&devinfo->synth.vc_mtx);
scp->cmask = 0; /* We are in 2 OP mode initially. */
if (scp->model >= MODEL_OPL3) {
mtx_lock(&scp->mtx);
opl_command(scp, USE_RIGHT, CONNECTION_SELECT_REGISTER, scp->cmask);
mtx_unlock(&scp->mtx);
}
MIDI_DEBUG(printf("opl%d: opened.\n", unit));
return (0);
}
static int
opl_close(dev_t i_dev, int flags, int mode, struct thread *td)
{
sc_p scp;
mididev_info *devinfo;
int unit;
unit = MIDIUNIT(i_dev);
MIDI_DEBUG(printf("opl%d: closing.\n", unit));
devinfo = get_mididev_info(i_dev, &unit);
if (devinfo == NULL) {
MIDI_DEBUG(printf("opl_close: unit %d is not configured.\n", unit));
return (ENXIO);
}
scp = devinfo->softc;
mtx_lock(&devinfo->synth.vc_mtx);
if (scp->model < MODEL_OPL3)
devinfo->synth.alloc.max_voice = 9;
else
devinfo->synth.alloc.max_voice = 18;
mtx_unlock(&devinfo->synth.vc_mtx);
/* Stop the OPL. */
opl_reset(scp->devinfo);
MIDI_DEBUG(printf("opl%d: closed.\n", unit));
return (0);
}
static int
opl_ioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct thread *td)
{
sc_p scp;
mididev_info *devinfo;
int unit;
struct synth_info *synthinfo;
struct midi_info *midiinfo;
struct sbi_instrument *ins;
unit = MIDIUNIT(i_dev);
MIDI_DEBUG(printf("opl_ioctl: unit %d, cmd %s.\n", unit, midi_cmdname(cmd, cmdtab_midiioctl)));
devinfo = get_mididev_info(i_dev, &unit);
if (devinfo == NULL) {
MIDI_DEBUG(printf("opl_ioctl: unit %d is not configured.\n", unit));
return (ENXIO);
}
scp = devinfo->softc;
switch (cmd) {
case SNDCTL_SYNTH_INFO:
synthinfo = (struct synth_info *)arg;
if (synthinfo->device != unit)
return (ENXIO);
bcopy(&scp->synthinfo, synthinfo, sizeof(scp->synthinfo));
synthinfo->device = unit;
synthinfo->nr_voices = devinfo->synth.alloc.max_voice;
if (synthinfo->nr_voices == 12)
synthinfo->nr_voices = 6;
return (0);
break;
case SNDCTL_MIDI_INFO:
midiinfo = (struct midi_info *)arg;
if (midiinfo->device != unit)
return (ENXIO);
bcopy(&opl_midiinfo, midiinfo, sizeof(opl_midiinfo));
strcpy(midiinfo->name, scp->synthinfo.name);
midiinfo->device = unit;
return (0);
break;
case SNDCTL_FM_LOAD_INSTR:
ins = (struct sbi_instrument *)arg;
if (ins->channel < 0 || ins->channel >= SBFM_MAXINSTR) {
printf("opl_ioctl: Instrument number %d is not valid.\n", ins->channel);
return (EINVAL);
}
#if notyet
pmgr_inform(scp, PM_E_PATCH_LOADED, inc->channel, 0, 0, 0);
#endif /* notyet */
opl_storeinstr(scp, ins->channel, ins);
return (0);
break;
case SNDCTL_SYNTH_MEMAVL:
*(int *)arg = 0x7fffffff;
return (0);
break;
case SNDCTL_FM_4OP_ENABLE:
if (scp->model >= MODEL_OPL3)
opl_enter4opmode(scp);
return (0);
break;
default:
return (ENOSYS);
}
/* NOTREACHED */
return (EINVAL);
}
static int
opl_callback(void *d, int reason)
{
int unit;
sc_p scp;
mididev_info *devinfo;
devinfo = (mididev_info *)d;
mtx_assert(&devinfo->flagqueue_mtx, MA_OWNED);
if (devinfo == NULL) {
MIDI_DEBUG(printf("opl_callback: device not configured.\n"));
return (ENXIO);
}
unit = devinfo->unit;
scp = devinfo->softc;
MIDI_DEBUG(printf("opl%d: callback, reason 0x%x.\n", unit, reason));
switch (reason & MIDI_CB_REASON_MASK) {
case MIDI_CB_START:
if ((reason & MIDI_CB_RD) != 0 && (devinfo->flags & MIDI_F_READING) == 0)
/* Begin recording. */
devinfo->flags |= MIDI_F_READING;
if ((reason & MIDI_CB_WR) != 0 && (devinfo->flags & MIDI_F_WRITING) == 0)
/* Start playing. */
devinfo->flags |= MIDI_F_WRITING;
break;
case MIDI_CB_STOP:
case MIDI_CB_ABORT:
if ((reason & MIDI_CB_RD) != 0 && (devinfo->flags & MIDI_F_READING) != 0)
/* Stop recording. */
devinfo->flags &= ~MIDI_F_READING;
if ((reason & MIDI_CB_WR) != 0 && (devinfo->flags & MIDI_F_WRITING) != 0)
/* Stop Playing. */
devinfo->flags &= ~MIDI_F_WRITING;
break;
}
return (0);
}
static int
opl_readraw(mididev_info *md, u_char *buf, int len, int *lenr, int nonblock)
{
sc_p scp;
int unit;
if (md == NULL)
return (ENXIO);
if (lenr == NULL)
return (EINVAL);
unit = md->unit;
scp = md->softc;
if ((md->fflags & FREAD) == 0) {
MIDI_DEBUG(printf("opl_readraw: unit %d is not for reading.\n", unit));
return (EIO);
}
/* NOP. */
*lenr = 0;
return (0);
}
static int
opl_writeraw(mididev_info *md, u_char *buf, int len, int *lenw, int nonblock)
{
sc_p scp;
int unit;
if (md == NULL)
return (ENXIO);
if (lenw == NULL)
return (EINVAL);
unit = md->unit;
scp = md->softc;
if ((md->fflags & FWRITE) == 0) {
MIDI_DEBUG(printf("opl_writeraw: unit %d is not for writing.\n", unit));
return (EIO);
}
/* NOP. */
*lenw = 0;
return (0);
}
/* The functions below here are the synthesizer interfaces. */
static int
opl_killnote(mididev_info *md, int voice, int note, int vel)
{
int unit;
sc_p scp;
struct physical_voice_info *map;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: killing a note, voice %d, note %d, vel %d.\n", unit, voice, note, vel));
if (voice < 0 || voice >= md->synth.alloc.max_voice)
return (0);
mtx_lock(&md->synth.vc_mtx);
md->synth.alloc.map[voice] = 0;
mtx_lock(&scp->mtx);
map = &scp->pv_map[scp->lv_map[voice]];
if (map->voice_mode != VOICE_NONE) {
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num, scp->voc[voice].keyon_byte & ~0x20);
scp->voc[voice].keyon_byte = 0;
scp->voc[voice].bender = 0;
scp->voc[voice].volume = 64;
scp->voc[voice].bender_range = 200;
scp->voc[voice].orig_freq = 0;
scp->voc[voice].current_freq = 0;
scp->voc[voice].mode = 0;
}
mtx_unlock(&scp->mtx);
mtx_unlock(&md->synth.vc_mtx);
return (0);
}
static int
opl_setinstr(mididev_info *md, int voice, int instr_no)
{
int unit;
sc_p scp;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: setting an instrument, voice %d, instr_no %d.\n", unit, voice, instr_no));
if (voice < 0 || voice >= md->synth.alloc.max_voice || instr_no < 0 || instr_no >= SBFM_MAXINSTR)
return (0);
mtx_lock(&scp->mtx);
scp->act_i[voice] = &scp->i_map[instr_no];
mtx_unlock(&scp->mtx);
return (0);
}
static int
opl_startnote(mididev_info *md, int voice, int note, int volume)
{
u_char fpc;
int unit, block, fnum, freq, voice_mode, voice_shift;
struct sbi_instrument *instr;
struct physical_voice_info *map;
sc_p scp;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: starting a note, voice %d, note %d, volume %d.\n", unit, voice, note, volume));
if (voice < 0 || voice >= md->synth.alloc.max_voice)
return (0);
mtx_lock(&scp->mtx);
map = &scp->pv_map[scp->lv_map[voice]];
if (map->voice_mode == VOICE_NONE) {
mtx_unlock(&scp->mtx);
return (0);
}
if (note == 255) {
/* Change the volume. */
opl_setvoicevolume(scp, voice, volume, scp->voc[voice].volume);
mtx_unlock(&scp->mtx);
return (0);
}
/* Kill the previous note. */
opl_command(scp, map->ch, KSL_LEVEL + map->op[1], 0xff); /* Carrier volume */
opl_command(scp, map->ch, KSL_LEVEL + map->op[0], 0xff); /* Modulator volume */
if (map->voice_mode == VOICE_4OP) {
opl_command(scp, map->ch, KSL_LEVEL + map->op[3], 0xff); /* Carrier volume */
opl_command(scp, map->ch, KSL_LEVEL + map->op[2], 0xff); /* Modulator volume */
}
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num, 0); /* Note off. */
instr = scp->act_i[voice];
if (instr == NULL)
instr = &scp->i_map[0];
if (instr->channel < 0) {
mtx_unlock(&scp->mtx);
printf("opl_startnote: the instrument for voice %d is undefined.\n", voice);
return (0);
}
if (map->voice_mode == VOICE_2OP && instr->key == OPL3_PATCH) {
mtx_unlock(&scp->mtx);
printf("opl_startnote: the voice mode %d mismatches the key 0x%x.\n", map->voice_mode, instr->key);
return (0);
}
voice_mode = map->voice_mode;
if (voice_mode == VOICE_4OP) {
if (map->ch == USE_LEFT)
voice_shift = 0;
else
voice_shift = 3;
voice_shift += map->voice_num;
if (instr->key != OPL3_PATCH) {
voice_mode = VOICE_2OP;
scp->cmask &= ~(1 << voice_shift);
} else
scp->cmask |= 1 << voice_shift;
opl_command(scp, USE_RIGHT, CONNECTION_SELECT_REGISTER, scp->cmask);
}
/* Set the sound characteristics, attack, decay, sustain, release, wave select, feedback, connection. */
opl_command(scp, map->ch, AM_VIB + map->op[0], instr->operators[0]); /* Sound characteristics. */
opl_command(scp, map->ch, AM_VIB + map->op[1], instr->operators[1]);
opl_command(scp, map->ch, ATTACK_DECAY + map->op[0], instr->operators[4]); /* Attack and decay. */
opl_command(scp, map->ch, ATTACK_DECAY + map->op[1], instr->operators[5]);
opl_command(scp, map->ch, SUSTAIN_RELEASE + map->op[0], instr->operators[6]); /* Sustain and release. */
opl_command(scp, map->ch, SUSTAIN_RELEASE + map->op[1], instr->operators[7]);
opl_command(scp, map->ch, WAVE_SELECT + map->op[0], instr->operators[8]); /* Wave select. */
opl_command(scp, map->ch, WAVE_SELECT + map->op[1], instr->operators[9]);
fpc = instr->operators[10];
if ((fpc & 0x30) == 0)
fpc |= 0x30; /* So that at least one channel is enabled. */
opl_command(scp, map->ch, FEEDBACK_CONNECTION + map->voice_num, fpc); /* Feedback and connection. */
if (voice_mode == VOICE_4OP) {
/* Do not forget the operators 3 and 4. */
opl_command(scp, map->ch, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]); /* Sound characteristics. */
opl_command(scp, map->ch, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]);
opl_command(scp, map->ch, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]); /* Attack and decay. */
opl_command(scp, map->ch, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]);
opl_command(scp, map->ch, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]); /* Sustain and release. */
opl_command(scp, map->ch, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]);
opl_command(scp, map->ch, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]); /* Wave select. */
opl_command(scp, map->ch, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]);
fpc = instr->operators[OFFS_4OP + 10];
if ((fpc & 0x30) == 0)
fpc |= 0x30; /* So that at least one channel is enabled. */
opl_command(scp, map->ch, FEEDBACK_CONNECTION + map->voice_num + 3, fpc); /* Feedback and connection. */
}
scp->voc[voice].mode = voice_mode;
opl_setvoicevolume(scp, voice, volume, scp->voc[voice].volume);
/* Calcurate the frequency. */
scp->voc[voice].orig_freq = opl_notetofreq(note) / 1000;
/* Tune for the pitch bend. */
freq = scp->voc[voice].current_freq = opl_computefinetune(scp->voc[voice].orig_freq, scp->voc[voice].bender, scp->voc[voice].bender_range);
opl_freqtofnum(freq, &block, &fnum);
/* Now we can play the note. */
opl_command(scp, map->ch, FNUM_LOW + map->voice_num, fnum & 0xff);
scp->voc[voice].keyon_byte = 0x20 | ((block & 0x07) << 2) | ((fnum >> 8) & 0x03);
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num, scp->voc[voice].keyon_byte);
if (voice_mode == VOICE_4OP)
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num + 3, scp->voc[voice].keyon_byte);
mtx_unlock(&scp->mtx);
return (0);
}
static int
opl_reset(mididev_info *md)
{
int unit, i;
sc_p scp;
struct physical_voice_info *map;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: resetting.\n", unit));
mtx_lock(&md->synth.vc_mtx);
mtx_lock(&scp->mtx);
for (i = 0 ; i < MAX_VOICE ; i++)
scp->lv_map[i] = i;
for (i = 0 ; i < md->synth.alloc.max_voice ; i++) {
opl_command(scp, scp->pv_map[scp->lv_map[i]].ch, KSL_LEVEL + scp->pv_map[scp->lv_map[i]].op[0], 0xff);
opl_command(scp, scp->pv_map[scp->lv_map[i]].ch, KSL_LEVEL + scp->pv_map[scp->lv_map[i]].op[1], 0xff);
if (scp->pv_map[scp->lv_map[i]].voice_mode == VOICE_4OP) {
opl_command(scp, scp->pv_map[scp->lv_map[i]].ch, KSL_LEVEL + scp->pv_map[scp->lv_map[i]].op[2], 0xff);
opl_command(scp, scp->pv_map[scp->lv_map[i]].ch, KSL_LEVEL + scp->pv_map[scp->lv_map[i]].op[3], 0xff);
}
/*
* opl_killnote(md, i, 0, 64) inline-expanded to avoid
* unlocking and relocking mutex unnecessarily.
*/
md->synth.alloc.map[i] = 0;
map = &scp->pv_map[scp->lv_map[i]];
if (map->voice_mode != VOICE_NONE) {
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num, scp->voc[i].keyon_byte & ~0x20);
scp->voc[i].keyon_byte = 0;
scp->voc[i].bender = 0;
scp->voc[i].volume = 64;
scp->voc[i].bender_range = 200;
scp->voc[i].orig_freq = 0;
scp->voc[i].current_freq = 0;
scp->voc[i].mode = 0;
}
}
if (scp->model >= MODEL_OPL3) {
md->synth.alloc.max_voice = 18;
for (i = 0 ; i < MAX_VOICE ; i++)
scp->pv_map[i].voice_mode = VOICE_2OP;
}
mtx_unlock(&md->synth.vc_mtx);
mtx_unlock(&scp->mtx);
return (0);
}
static int
opl_hwcontrol(mididev_info *md, u_char *event)
{
/* NOP. */
return (0);
}
static int
opl_loadpatch(mididev_info *md, int format, struct uio *buf, int offs, int count, int pmgr_flag)
{
int unit;
struct sbi_instrument ins;
sc_p scp;
scp = md->softc;
unit = md->unit;
if (count < sizeof(ins)) {
printf("opl_loadpatch: The patch record is too short.\n");
return (EINVAL);
}
if (uiomove(&((char *)&ins)[offs], sizeof(ins) - offs, buf) != 0)
printf("opl_loadpatch: User memory mangled?\n");
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) {
printf("opl_loadpatch: Instrument number %d is not valid.\n", ins.channel);
return (EINVAL);
}
ins.key = format;
opl_storeinstr(scp, ins.channel, &ins);
return (0);
}
static int
opl_panning(mididev_info *md, int chn, int pan)
{
/* NOP. */
return (0);
}
#define SET_VIBRATO(cell) do { \
int tmp; \
tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \
if (press > 110) \
tmp |= 0x40; /* Vibrato on */ \
opl_command(scp, map->ch, AM_VIB + map->op[cell-1], tmp);} while(0);
static int
opl_aftertouch(mididev_info *md, int voice, int press)
{
int unit, connection;
struct sbi_instrument *instr;
struct physical_voice_info *map;
sc_p scp;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: setting the aftertouch, voice %d, press %d.\n", unit, voice, press));
if (voice < 0 || voice >= md->synth.alloc.max_voice)
return (0);
mtx_lock(&scp->mtx);
map = &scp->pv_map[scp->lv_map[voice]];
if (map->voice_mode == VOICE_NONE) {
mtx_unlock(&scp->mtx);
return (0);
}
/* Adjust the vibrato. */
instr = scp->act_i[voice];
if (instr == NULL)
instr = &scp->i_map[0];
if (scp->voc[voice].mode == VOICE_4OP) {
connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection) {
case 0:
SET_VIBRATO(4);
break;
case 1:
SET_VIBRATO(2);
SET_VIBRATO(4);
break;
case 2:
SET_VIBRATO(1);
SET_VIBRATO(4);
break;
case 3:
SET_VIBRATO(1);
SET_VIBRATO(3);
SET_VIBRATO(4);
break;
}
} else {
SET_VIBRATO(1);
if ((instr->operators[10] & 0x01))
SET_VIBRATO(2);
}
mtx_unlock(&scp->mtx);
return (0);
}
static int
opl_bendpitch(sc_p scp, int voice, int value)
{
int unit, block, fnum, freq;
struct physical_voice_info *map;
mididev_info *md;
md = scp->devinfo;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: setting the pitch bend, voice %d, value %d.\n", unit, voice, value));
mtx_lock(&scp->mtx);
map = &scp->pv_map[scp->lv_map[voice]];
if (map->voice_mode == 0) {
mtx_unlock(&scp->mtx);
return (0);
}
scp->voc[voice].bender = value;
if (value == 0 || (scp->voc[voice].keyon_byte & 0x20) == 0) {
mtx_unlock(&scp->mtx);
return (0);
}
freq = opl_computefinetune(scp->voc[voice].orig_freq, scp->voc[voice].bender, scp->voc[voice].bender_range);
scp->voc[voice].current_freq = freq;
opl_freqtofnum(freq, &block, &fnum);
opl_command(scp, map->ch, FNUM_LOW + map->voice_num, fnum & 0xff);
scp->voc[voice].keyon_byte = 0x20 | ((block & 0x07) << 2) | ((fnum >> 8) & 0x03);
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num, scp->voc[voice].keyon_byte);
if (map->voice_mode == VOICE_4OP)
opl_command(scp, map->ch, KEYON_BLOCK + map->voice_num + 3, scp->voc[voice].keyon_byte);
mtx_unlock(&scp->mtx);
return (0);
}
static int
opl_controller(mididev_info *md, int voice, int ctrlnum, int val)
{
int unit;
sc_p scp;
scp = md->softc;
unit = md->unit;
MIDI_DEBUG(printf("opl%d: setting the controller, voice %d, ctrlnum %d, val %d.\n", unit, voice, ctrlnum, val));
if (voice < 0 || voice >= md->synth.alloc.max_voice)
return (0);
switch (ctrlnum) {
case CTRL_PITCH_BENDER:
opl_bendpitch(scp, voice, val);
break;
case CTRL_PITCH_BENDER_RANGE:
mtx_lock(&scp->mtx);
scp->voc[voice].bender_range = val;
mtx_unlock(&scp->mtx);
break;
case CTRL_MAIN_VOLUME:
mtx_lock(&scp->mtx);
scp->voc[voice].volume = val / 128;
mtx_unlock(&scp->mtx);
break;
}
return (0);
}
static int
opl_patchmgr(mididev_info *md, struct patmgr_info *rec)
{
return (EINVAL);
}
static int
opl_bender(mididev_info *md, int voice, int val)
{
sc_p scp;
scp = md->softc;
if (voice < 0 || voice >= md->synth.alloc.max_voice)
return (0);
return opl_bendpitch(scp, voice, val - 8192);
}
static int
opl_allocvoice(mididev_info *md, int chn, int note, struct voice_alloc_info *alloc)
{
int i, p, best, first, avail, best_time, is4op, instr_no;
struct sbi_instrument *instr;
sc_p scp;
scp = md->softc;
MIDI_DEBUG(printf("opl%d: allocating a voice, chn %d, note %d.\n", md->unit, chn, note));
best_time = 0x7fffffff;
mtx_lock(&md->synth.vc_mtx);
if (chn < 0 || chn >= 15)
instr_no = 0;
else
instr_no = md->synth.chn_info[chn].pgm_num;
mtx_lock(&scp->mtx);
instr = &scp->i_map[instr_no];
if (instr->channel < 0 || md->synth.alloc.max_voice != 12)
is4op = 0;
else if (md->synth.alloc.max_voice == 12) {
if (instr->key == OPL3_PATCH)
is4op = 1;
else
is4op = 0;
} else
is4op = 0;
if (is4op) {
first = p = 0;
avail = 6;
} else {
if (md->synth.alloc.max_voice == 12)
first = p = 6;
else
first = p = 0;
avail = md->synth.alloc.max_voice;
}
/* Look up a free voice. */
best = first;
for (i = 0 ; i < avail ; i++) {
if (alloc->map[p] == 0)
return (p);
}
if (alloc->alloc_times[p] < best_time) {
best_time = alloc->alloc_times[p];
best = p;
}
p = (p + 1) % avail;
if (best < 0)
best = 0;
else if (best > md->synth.alloc.max_voice)
best -= md->synth.alloc.max_voice;
mtx_unlock(&scp->mtx);
mtx_unlock(&md->synth.vc_mtx);
return best;
}
static int
opl_setupvoice(mididev_info *md, int voice, int chn)
{
struct channel_info *info;
sc_p scp;
scp = md->softc;
MIDI_DEBUG(printf("opl%d: setting up a voice, voice %d, chn %d.\n", md->unit, voice, chn));
mtx_lock(&md->synth.vc_mtx);
info = &md->synth.chn_info[chn];
opl_setinstr(md, voice, info->pgm_num);
mtx_lock(&scp->mtx);
scp->voc[voice].bender = info->bender_value;
scp->voc[voice].volume = info->controllers[CTL_MAIN_VOLUME];
mtx_unlock(&scp->mtx);
mtx_lock(&md->synth.vc_mtx);
return (0);
}
static int
opl_sendsysex(mididev_info *md, u_char *sysex, int len)
{
/* NOP. */
return (0);
}
static int
opl_prefixcmd(mididev_info *md, int status)
{
/* NOP. */
return (0);
}
static int
opl_volumemethod(mididev_info *md, int mode)
{
/* NOP. */
return (0);
}
/*
* The functions below here are the libraries for the above ones.
*/
/* Writes a command to the OPL chip. */
static void
opl_command(sc_p scp, int ch, int addr, u_int val)
{
int model;
MIDI_DEBUG(printf("opl%d: sending a command, addr 0x%x, val 0x%x.\n", scp->devinfo->unit, addr, val));
model = scp->model;
/* Write the addr first. */
bus_space_write_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2, (u_char)(addr & 0xff));
if (model < MODEL_OPL3)
DELAY(10);
else {
bus_space_read_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2);
bus_space_read_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2);
}
/* Next write the value. */
bus_space_write_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2 + 1, (u_char)(val & 0xff));
if (model < MODEL_OPL3)
DELAY(30);
else {
bus_space_read_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2);
bus_space_read_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), ch * 2);
}
}
/* Reads the status of the OPL chip. */
static int
opl_status(sc_p scp)
{
MIDI_DEBUG(printf("opl%d: reading the status.\n", scp->devinfo->unit));
return bus_space_read_1(rman_get_bustag(scp->io), rman_get_bushandle(scp->io), 0);
}
static void
opl_enter4opmode(sc_p scp)
{
int i;
mididev_info *devinfo;
static int v4op[MAX_VOICE] = {
0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17,
};
devinfo = scp->devinfo;
MIDI_DEBUG(printf("opl%d: entering 4 OP mode.\n", devinfo->unit));
/* Connect all possible 4 OP voice operators. */
mtx_lock(&devinfo->synth.vc_mtx);
mtx_lock(&scp->mtx);
scp->cmask = 0x3f;
opl_command(scp, USE_RIGHT, CONNECTION_SELECT_REGISTER, scp->cmask);
for (i = 0 ; i < 3 ; i++)
scp->pv_map[i].voice_mode = VOICE_4OP;
for (i = 3 ; i < 6 ; i++)
scp->pv_map[i].voice_mode = VOICE_NONE;
for (i = 9 ; i < 12 ; i++)
scp->pv_map[i].voice_mode = VOICE_4OP;
for (i = 12 ; i < 15 ; i++)
scp->pv_map[i].voice_mode = VOICE_NONE;
for (i = 0 ; i < 12 ; i++)
scp->lv_map[i] = v4op[i];
mtx_unlock(&scp->mtx);
devinfo->synth.alloc.max_voice = 12;
mtx_unlock(&devinfo->synth.vc_mtx);
}
static void
opl_storeinstr(sc_p scp, int instr_no, struct sbi_instrument *instr)
{
if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || scp->model < MODEL_OPL3))
printf("opl_storeinstr: The patch format field 0x%x is not valid.\n", instr->key);
bcopy(instr, &scp->i_map[instr_no], sizeof(*instr));
}
static void
opl_calcvol(u_char *regbyte, int volume, int main_vol)
{
int level;
level = (~*regbyte & 0x3f);
if (main_vol > 127)
main_vol = 127;
volume = (volume * main_vol) / 127;
if (level > 0)
level += opl_volumetable[volume];
RANGE(level, 0, 0x3f);
*regbyte = (*regbyte & 0xc0) | (~level & 0x3f);
}
static void
opl_setvoicevolume(sc_p scp, int voice, int volume, int main_vol)
{
u_char vol1, vol2, vol3, vol4;
int connection;
struct sbi_instrument *instr;
struct physical_voice_info *map;
mididev_info *devinfo;
devinfo = scp->devinfo;
if (voice < 0 || voice >= devinfo->synth.alloc.max_voice)
return;
map = &scp->pv_map[scp->lv_map[voice]];
instr = scp->act_i[voice];
if (instr == NULL)
instr = &scp->i_map[0];
if (instr->channel < 0)
return;
if (scp->voc[voice].mode == VOICE_NONE)
return;
if (scp->voc[voice].mode == VOICE_2OP) { /* 2 OP mode. */
vol1 = instr->operators[2];
vol2 = instr->operators[3];
if ((instr->operators[10] & 0x01))
opl_calcvol(&vol1, volume, main_vol);
opl_calcvol(&vol2, volume, main_vol);
opl_command(scp, map->ch, KSL_LEVEL + map->op[0], vol1);
opl_command(scp, map->ch, KSL_LEVEL + map->op[1], vol2);
} else { /* 4 OP mode. */
vol1 = instr->operators[2];
vol2 = instr->operators[3];
vol3 = instr->operators[OFFS_4OP + 2];
vol4 = instr->operators[OFFS_4OP + 3];
connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch(connection) {
case 0:
opl_calcvol(&vol4, volume, main_vol);
break;
case 1:
opl_calcvol(&vol2, volume, main_vol);
opl_calcvol(&vol4, volume, main_vol);
break;
case 2:
opl_calcvol(&vol1, volume, main_vol);
opl_calcvol(&vol4, volume, main_vol);
break;
case 3:
opl_calcvol(&vol1, volume, main_vol);
opl_calcvol(&vol3, volume, main_vol);
opl_calcvol(&vol4, volume, main_vol);
break;
}
opl_command(scp, map->ch, KSL_LEVEL + map->op[0], vol1);
opl_command(scp, map->ch, KSL_LEVEL + map->op[1], vol2);
opl_command(scp, map->ch, KSL_LEVEL + map->op[2], vol3);
opl_command(scp, map->ch, KSL_LEVEL + map->op[3], vol4);
}
}
static void
opl_freqtofnum(int freq, int *block, int *fnum)
{
int f, octave;
f = freq;
octave = 5;
if (f == 0)
octave = 0;
else if (f < 261) {
while (f < 261) {
octave--;
f <<= 1;
}
} else if (f > 493) {
while (f > 493) {
octave++;
f >>= 1;
}
}
if (octave > 7)
octave = 7;
*fnum = freq * (1 << (20 - octave)) / 49716;
*block = octave;
}
static int notes[] =
{
261632,
277189,
293671,
311132,
329632,
349232,
369998,
391998,
415306,
440000,
466162,
493880
};
#define BASE_OCTAVE 5
static int
opl_notetofreq(int note_num)
{
int note, octave, note_freq;
octave = note_num / 12;
note = note_num % 12;
note_freq = notes[note];
if (octave < BASE_OCTAVE)
note_freq >>= (BASE_OCTAVE - octave);
else if (octave > BASE_OCTAVE)
note_freq <<= (octave - BASE_OCTAVE);
return (note_freq);
}
static u_long
opl_computefinetune(u_long base_freq, int bend, int range)
{
u_long amount;
int negative, semitones, cents, multiplier;
if (bend == 0 || range == 0 || base_freq == 0)
return (base_freq);
multiplier = 1;
if (range > 8192)
range = 8192;
bend = bend * range / 8192;
if (bend == 0)
return (base_freq);
if (bend < 0) {
negative = 1;
bend = -bend;
}
else
negative = 0;
if (bend > range)
bend = range;
while (bend > 2399) {
multiplier *= 4;
bend -= 2400;
}
semitones = bend / 100;
cents = bend % 100;
amount = (u_long)(semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000;
if (negative)
return (base_freq * 10000) / amount;
else
return (base_freq * amount) / 10000;
}
/* Allocates resources other than IO ports. */
static int
opl_allocres(sc_p scp, device_t dev)
{
if (scp->io == NULL) {
scp->io = bus_alloc_resource(dev, SYS_RES_IOPORT, &scp->io_rid, 0, ~0, 4, RF_ACTIVE);
if (scp->io == NULL)
return (1);
}
return (0);
}
/* Releases resources. */
static void
opl_releaseres(sc_p scp, device_t dev)
{
if (scp->io != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT, scp->io_rid, scp->io);
scp->io = NULL;
}
}
static device_method_t opl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe , opl_probe ),
DEVMETHOD(device_attach, opl_attach),
{ 0, 0 },
};
static driver_t opl_driver = {
"midi",
opl_methods,
sizeof(struct opl_softc),
};
DRIVER_MODULE(opl, isa, opl_driver, midi_devclass, 0, 0);
static device_method_t oplsbc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe , oplsbc_probe ),
DEVMETHOD(device_attach, oplsbc_attach),
{ 0, 0 },
};
static driver_t oplsbc_driver = {
"midi",
oplsbc_methods,
sizeof(struct opl_softc),
};
DRIVER_MODULE(oplsbc, sbc, oplsbc_driver, midi_devclass, 0, 0);