1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-16 15:11:52 +00:00
freebsd/sys/dev/isp/isp_freebsd.c
Matt Jacob c40e096ed6 Make sure we do locking if we call isp_intr.
Make sure we enter Giant for now if we call into cam for completion.
2000-12-29 19:06:32 +00:00

2287 lines
60 KiB
C

/* $FreeBSD$ */
/*
* Platform (FreeBSD) dependent common attachment code for Qlogic adapters.
*
* Copyright (c) 1997, 1998, 1999, 2000 by Matthew Jacob
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <dev/isp/isp_freebsd.h>
#include <machine/stdarg.h> /* for use by isp_prt below */
static void isp_intr_enable(void *);
static void isp_cam_async(void *, u_int32_t, struct cam_path *, void *);
static void isp_poll(struct cam_sim *);
static void isp_relsim(void *);
static timeout_t isp_watchdog;
static void isp_action(struct cam_sim *, union ccb *);
static struct ispsoftc *isplist = NULL;
void
isp_attach(struct ispsoftc *isp)
{
int primary, secondary;
struct ccb_setasync csa;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
/*
* Establish (in case of 12X0) which bus is the primary.
*/
primary = 0;
secondary = 1;
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(isp->isp_maxcmds);
if (devq == NULL) {
return;
}
/*
* Construct our SIM entry.
*/
sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp,
isp->isp_unit, 1, isp->isp_maxcmds, devq);
if (sim == NULL) {
cam_simq_free(devq);
return;
}
isp->isp_osinfo.ehook.ich_func = isp_intr_enable;
isp->isp_osinfo.ehook.ich_arg = isp;
if (config_intrhook_establish(&isp->isp_osinfo.ehook) != 0) {
isp_prt(isp, ISP_LOGERR,
"could not establish interrupt enable hook");
cam_sim_free(sim, TRUE);
return;
}
if (xpt_bus_register(sim, primary) != CAM_SUCCESS) {
cam_sim_free(sim, TRUE);
return;
}
if (xpt_create_path(&path, NULL, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, TRUE);
return;
}
xpt_setup_ccb(&csa.ccb_h, path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = isp_cam_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);
isp->isp_sim = sim;
isp->isp_path = path;
/*
* If we have a second channel, construct SIM entry for that.
*/
if (IS_DUALBUS(isp)) {
sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp,
isp->isp_unit, 1, isp->isp_maxcmds, devq);
if (sim == NULL) {
xpt_bus_deregister(cam_sim_path(isp->isp_sim));
xpt_free_path(isp->isp_path);
cam_simq_free(devq);
return;
}
if (xpt_bus_register(sim, secondary) != CAM_SUCCESS) {
xpt_bus_deregister(cam_sim_path(isp->isp_sim));
xpt_free_path(isp->isp_path);
cam_sim_free(sim, TRUE);
return;
}
if (xpt_create_path(&path, NULL, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(isp->isp_sim));
xpt_free_path(isp->isp_path);
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, TRUE);
return;
}
xpt_setup_ccb(&csa.ccb_h, path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = isp_cam_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);
isp->isp_sim2 = sim;
isp->isp_path2 = path;
}
isp->isp_state = ISP_RUNSTATE;
ENABLE_INTS(isp);
if (isplist == NULL) {
isplist = isp;
} else {
struct ispsoftc *tmp = isplist;
while (tmp->isp_osinfo.next) {
tmp = tmp->isp_osinfo.next;
}
tmp->isp_osinfo.next = isp;
}
}
static void
isp_intr_enable(void *arg)
{
struct ispsoftc *isp = arg;
ENABLE_INTS(isp);
isp->isp_osinfo.intsok = 1;
/* Release our hook so that the boot can continue. */
config_intrhook_disestablish(&isp->isp_osinfo.ehook);
}
/*
* Put the target mode functions here, because some are inlines
*/
#ifdef ISP_TARGET_MODE
static __inline int is_lun_enabled(struct ispsoftc *, lun_id_t);
static __inline int are_any_luns_enabled(struct ispsoftc *);
static __inline tstate_t *get_lun_statep(struct ispsoftc *, lun_id_t);
static __inline void rls_lun_statep(struct ispsoftc *, tstate_t *);
static __inline int isp_psema_sig_rqe(struct ispsoftc *);
static __inline int isp_cv_wait_timed_rqe(struct ispsoftc *, int);
static __inline void isp_cv_signal_rqe(struct ispsoftc *, int);
static __inline void isp_vsema_rqe(struct ispsoftc *);
static cam_status
create_lun_state(struct ispsoftc *, struct cam_path *, tstate_t **);
static void destroy_lun_state(struct ispsoftc *, tstate_t *);
static void isp_en_lun(struct ispsoftc *, union ccb *);
static cam_status isp_abort_tgt_ccb(struct ispsoftc *, union ccb *);
static cam_status isp_target_start_ctio(struct ispsoftc *, union ccb *);
static cam_status isp_target_putback_atio(struct ispsoftc *, union ccb *);
static timeout_t isp_refire_putback_atio;
static int isp_handle_platform_atio(struct ispsoftc *, at_entry_t *);
static int isp_handle_platform_atio2(struct ispsoftc *, at2_entry_t *);
static int isp_handle_platform_ctio(struct ispsoftc *, void *);
static void isp_handle_platform_ctio_part2(struct ispsoftc *, union ccb *);
static __inline int
is_lun_enabled(struct ispsoftc *isp, lun_id_t lun)
{
tstate_t *tptr;
ISP_LOCK(isp);
if ((tptr = isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(lun)]) == NULL) {
ISP_UNLOCK(isp);
return (0);
}
do {
if (tptr->lun == (lun_id_t) lun) {
ISP_UNLOCK(isp);
return (1);
}
} while ((tptr = tptr->next) != NULL);
ISP_UNLOCK(isp);
return (0);
}
static __inline int
are_any_luns_enabled(struct ispsoftc *isp)
{
int i;
for (i = 0; i < LUN_HASH_SIZE; i++) {
if (isp->isp_osinfo.lun_hash[i]) {
return (1);
}
}
return (0);
}
static __inline tstate_t *
get_lun_statep(struct ispsoftc *isp, lun_id_t lun)
{
tstate_t *tptr;
ISP_LOCK(isp);
if (lun == CAM_LUN_WILDCARD) {
tptr = &isp->isp_osinfo.tsdflt;
tptr->hold++;
ISP_UNLOCK(isp);
return (tptr);
} else {
tptr = isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(lun)];
}
if (tptr == NULL) {
ISP_UNLOCK(isp);
return (NULL);
}
do {
if (tptr->lun == lun) {
tptr->hold++;
ISP_UNLOCK(isp);
return (tptr);
}
} while ((tptr = tptr->next) != NULL);
ISP_UNLOCK(isp);
return (tptr);
}
static __inline void
rls_lun_statep(struct ispsoftc *isp, tstate_t *tptr)
{
if (tptr->hold)
tptr->hold--;
}
static __inline int
isp_psema_sig_rqe(struct ispsoftc *isp)
{
ISP_LOCK(isp);
while (isp->isp_osinfo.tmflags & TM_BUSY) {
isp->isp_osinfo.tmflags |= TM_WANTED;
if (tsleep(&isp->isp_osinfo.tmflags, PRIBIO|PCATCH, "i0", 0)) {
ISP_UNLOCK(isp);
return (-1);
}
isp->isp_osinfo.tmflags |= TM_BUSY;
}
ISP_UNLOCK(isp);
return (0);
}
static __inline int
isp_cv_wait_timed_rqe(struct ispsoftc *isp, int timo)
{
ISP_LOCK(isp);
if (tsleep(&isp->isp_osinfo.rstatus, PRIBIO, "qt1", timo)) {
ISP_UNLOCK(isp);
return (-1);
}
ISP_UNLOCK(isp);
return (0);
}
static __inline void
isp_cv_signal_rqe(struct ispsoftc *isp, int status)
{
isp->isp_osinfo.rstatus = status;
wakeup(&isp->isp_osinfo.rstatus);
}
static __inline void
isp_vsema_rqe(struct ispsoftc *isp)
{
ISP_LOCK(isp);
if (isp->isp_osinfo.tmflags & TM_WANTED) {
isp->isp_osinfo.tmflags &= ~TM_WANTED;
wakeup(&isp->isp_osinfo.tmflags);
}
isp->isp_osinfo.tmflags &= ~TM_BUSY;
ISP_UNLOCK(isp);
}
static cam_status
create_lun_state(struct ispsoftc *isp, struct cam_path *path, tstate_t **rslt)
{
cam_status status;
lun_id_t lun;
tstate_t *tptr, *new;
lun = xpt_path_lun_id(path);
if (lun < 0) {
return (CAM_LUN_INVALID);
}
if (is_lun_enabled(isp, lun)) {
return (CAM_LUN_ALRDY_ENA);
}
new = (tstate_t *) malloc(sizeof (tstate_t), M_DEVBUF, M_NOWAIT|M_ZERO);
if (new == NULL) {
return (CAM_RESRC_UNAVAIL);
}
status = xpt_create_path(&new->owner, NULL, xpt_path_path_id(path),
xpt_path_target_id(path), xpt_path_lun_id(path));
if (status != CAM_REQ_CMP) {
free(new, M_DEVBUF);
return (status);
}
new->lun = lun;
SLIST_INIT(&new->atios);
SLIST_INIT(&new->inots);
new->hold = 1;
ISP_LOCK(isp);
if ((tptr = isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(lun)]) == NULL) {
isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(lun)] = new;
} else {
while (tptr->next)
tptr = tptr->next;
tptr->next = new;
}
ISP_UNLOCK(isp);
*rslt = new;
return (CAM_REQ_CMP);
}
static __inline void
destroy_lun_state(struct ispsoftc *isp, tstate_t *tptr)
{
tstate_t *lw, *pw;
ISP_LOCK(isp);
if (tptr->hold) {
ISP_UNLOCK(isp);
return;
}
pw = isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(tptr->lun)];
if (pw == NULL) {
ISP_UNLOCK(isp);
return;
} else if (pw->lun == tptr->lun) {
isp->isp_osinfo.lun_hash[LUN_HASH_FUNC(tptr->lun)] = pw->next;
} else {
lw = pw;
pw = lw->next;
while (pw) {
if (pw->lun == tptr->lun) {
lw->next = pw->next;
break;
}
lw = pw;
pw = pw->next;
}
if (pw == NULL) {
ISP_UNLOCK(isp);
return;
}
}
free(tptr, M_DEVBUF);
ISP_UNLOCK(isp);
}
static void
isp_en_lun(struct ispsoftc *isp, union ccb *ccb)
{
const char *lfmt = "Lun now %sabled for target mode\n";
struct ccb_en_lun *cel = &ccb->cel;
tstate_t *tptr;
u_int16_t rstat;
int bus, frozen = 0;
lun_id_t lun;
target_id_t tgt;
bus = XS_CHANNEL(ccb);
tgt = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
/*
* Do some sanity checking first.
*/
if (lun < 0 || lun >= (lun_id_t) isp->isp_maxluns) {
ccb->ccb_h.status = CAM_LUN_INVALID;
return;
}
if (IS_SCSI(isp)) {
if (tgt != CAM_TARGET_WILDCARD &&
tgt != ((sdparam *) isp->isp_param)->isp_initiator_id) {
ccb->ccb_h.status = CAM_TID_INVALID;
return;
}
} else {
if (tgt != CAM_TARGET_WILDCARD &&
tgt != ((fcparam *) isp->isp_param)->isp_loopid) {
ccb->ccb_h.status = CAM_TID_INVALID;
return;
}
}
/*
* If Fibre Channel, stop and drain all activity to this bus.
*/
if (IS_FC(isp)) {
ISP_LOCK(isp);
frozen = 1;
xpt_freeze_simq(isp->isp_sim, 1);
isp->isp_osinfo.drain = 1;
/* ISP_UNLOCK(isp); XXX NEED CV_WAIT HERE XXX */
while (isp->isp_osinfo.drain) {
tsleep(&isp->isp_osinfo.drain, PRIBIO, "ispdrain", 0);
}
ISP_UNLOCK(isp);
}
/*
* Check to see if we're enabling on fibre channel and
* don't yet have a notion of who the heck we are (no
* loop yet).
*/
if (IS_FC(isp) && cel->enable &&
(isp->isp_osinfo.tmflags & TM_TMODE_ENABLED) == 0) {
int rv= 2 * 1000000;
fcparam *fcp = isp->isp_param;
ISP_LOCK(isp);
rv = isp_control(isp, ISPCTL_FCLINK_TEST, &rv);
ISP_UNLOCK(isp);
if (rv || fcp->isp_fwstate != FW_READY) {
xpt_print_path(ccb->ccb_h.path);
printf("link status not good yet\n");
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
ISP_LOCK(isp);
rv = isp_control(isp, ISPCTL_PDB_SYNC, NULL);
ISP_UNLOCK(isp);
if (rv || fcp->isp_fwstate != FW_READY) {
xpt_print_path(ccb->ccb_h.path);
printf("could not get a good port database read\n");
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
}
/*
* Next check to see whether this is a target/lun wildcard action.
*
* If so, we enable/disable target mode but don't do any lun enabling.
*/
if (lun == CAM_LUN_WILDCARD && tgt == CAM_TARGET_WILDCARD) {
int av;
tptr = &isp->isp_osinfo.tsdflt;
if (cel->enable) {
if (isp->isp_osinfo.tmflags & TM_TMODE_ENABLED) {
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
ccb->ccb_h.status =
xpt_create_path(&tptr->owner, NULL,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path));
if (ccb->ccb_h.status != CAM_REQ_CMP) {
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
SLIST_INIT(&tptr->atios);
SLIST_INIT(&tptr->inots);
av = 1;
ISP_LOCK(isp);
av = isp_control(isp, ISPCTL_TOGGLE_TMODE, &av);
if (av) {
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_free_path(tptr->owner);
ISP_UNLOCK(isp);
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
isp->isp_osinfo.tmflags |= TM_TMODE_ENABLED;
ISP_UNLOCK(isp);
} else {
if ((isp->isp_osinfo.tmflags & TM_TMODE_ENABLED) == 0) {
ccb->ccb_h.status = CAM_LUN_INVALID;
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
if (are_any_luns_enabled(isp)) {
ccb->ccb_h.status = CAM_SCSI_BUSY;
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
av = 0;
ISP_LOCK(isp);
av = isp_control(isp, ISPCTL_TOGGLE_TMODE, &av);
if (av) {
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
ISP_UNLOCK(isp);
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
isp->isp_osinfo.tmflags &= ~TM_TMODE_ENABLED;
ISP_UNLOCK(isp);
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_print_path(ccb->ccb_h.path);
printf(lfmt, (cel->enable) ? "en" : "dis");
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
return;
}
/*
* We can move along now...
*/
if (frozen)
xpt_release_simq(isp->isp_sim, 1);
if (cel->enable) {
ccb->ccb_h.status =
create_lun_state(isp, ccb->ccb_h.path, &tptr);
if (ccb->ccb_h.status != CAM_REQ_CMP) {
return;
}
} else {
tptr = get_lun_statep(isp, lun);
if (tptr == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
return;
}
}
if (isp_psema_sig_rqe(isp)) {
rls_lun_statep(isp, tptr);
if (cel->enable)
destroy_lun_state(isp, tptr);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
return;
}
ISP_LOCK(isp);
if (cel->enable) {
u_int32_t seq = isp->isp_osinfo.rollinfo++;
rstat = LUN_ERR;
if (isp_lun_cmd(isp, RQSTYPE_ENABLE_LUN, bus, tgt, lun, seq)) {
xpt_print_path(ccb->ccb_h.path);
printf("isp_lun_cmd failed\n");
goto out;
}
if (isp_cv_wait_timed_rqe(isp, 30 * hz)) {
xpt_print_path(ccb->ccb_h.path);
printf("wait for ENABLE LUN timed out\n");
goto out;
}
rstat = isp->isp_osinfo.rstatus;
if (rstat != LUN_OK) {
xpt_print_path(ccb->ccb_h.path);
printf("ENABLE LUN returned 0x%x\n", rstat);
goto out;
}
} else {
u_int32_t seq;
seq = isp->isp_osinfo.rollinfo++;
rstat = LUN_ERR;
if (isp_lun_cmd(isp, -RQSTYPE_MODIFY_LUN, bus, tgt, lun, seq)) {
xpt_print_path(ccb->ccb_h.path);
printf("isp_lun_cmd failed\n");
goto out;
}
if (isp_cv_wait_timed_rqe(isp, 30 * hz)) {
xpt_print_path(ccb->ccb_h.path);
printf("wait for MODIFY LUN timed out\n");
goto out;
}
rstat = isp->isp_osinfo.rstatus;
if (rstat != LUN_OK) {
xpt_print_path(ccb->ccb_h.path);
printf("MODIFY LUN returned 0x%x\n", rstat);
goto out;
}
rstat = LUN_ERR;
seq = isp->isp_osinfo.rollinfo++;
if (isp_lun_cmd(isp, -RQSTYPE_ENABLE_LUN, bus, tgt, lun, seq)) {
xpt_print_path(ccb->ccb_h.path);
printf("isp_lun_cmd failed\n");
goto out;
}
if (isp_cv_wait_timed_rqe(isp, 30 * hz)) {
xpt_print_path(ccb->ccb_h.path);
printf("wait for ENABLE LUN timed out\n");
goto out;
}
rstat = isp->isp_osinfo.rstatus;
if (rstat != LUN_OK) {
xpt_print_path(ccb->ccb_h.path);
printf("ENABLE LUN returned 0x%x\n", rstat);
goto out;
}
}
out:
isp_vsema_rqe(isp);
ISP_UNLOCK(isp);
if (rstat != LUN_OK) {
xpt_print_path(ccb->ccb_h.path);
printf("lun %sable failed\n", (cel->enable) ? "en" : "dis");
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
rls_lun_statep(isp, tptr);
if (cel->enable)
destroy_lun_state(isp, tptr);
} else {
xpt_print_path(ccb->ccb_h.path);
printf(lfmt, (cel->enable) ? "en" : "dis");
rls_lun_statep(isp, tptr);
if (cel->enable == 0) {
destroy_lun_state(isp, tptr);
}
ccb->ccb_h.status = CAM_REQ_CMP;
}
}
static cam_status
isp_abort_tgt_ccb(struct ispsoftc *isp, union ccb *ccb)
{
tstate_t *tptr;
struct ccb_hdr_slist *lp;
struct ccb_hdr *curelm;
int found;
union ccb *accb = ccb->cab.abort_ccb;
if (accb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
if (IS_FC(isp) && (accb->ccb_h.target_id !=
((fcparam *) isp->isp_param)->isp_loopid)) {
return (CAM_PATH_INVALID);
} else if (IS_SCSI(isp) && (accb->ccb_h.target_id !=
((sdparam *) isp->isp_param)->isp_initiator_id)) {
return (CAM_PATH_INVALID);
}
}
tptr = get_lun_statep(isp, accb->ccb_h.target_lun);
if (tptr == NULL) {
return (CAM_PATH_INVALID);
}
if (accb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
lp = &tptr->atios;
} else if (accb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
lp = &tptr->inots;
} else {
rls_lun_statep(isp, tptr);
return (CAM_UA_ABORT);
}
curelm = SLIST_FIRST(lp);
found = 0;
if (curelm == &accb->ccb_h) {
found = 1;
SLIST_REMOVE_HEAD(lp, sim_links.sle);
} else {
while(curelm != NULL) {
struct ccb_hdr *nextelm;
nextelm = SLIST_NEXT(curelm, sim_links.sle);
if (nextelm == &accb->ccb_h) {
found = 1;
SLIST_NEXT(curelm, sim_links.sle) =
SLIST_NEXT(nextelm, sim_links.sle);
break;
}
curelm = nextelm;
}
}
rls_lun_statep(isp, tptr);
if (found) {
accb->ccb_h.status = CAM_REQ_ABORTED;
return (CAM_REQ_CMP);
}
return(CAM_PATH_INVALID);
}
static cam_status
isp_target_start_ctio(struct ispsoftc *isp, union ccb *ccb)
{
void *qe;
struct ccb_scsiio *cso = &ccb->csio;
u_int32_t *hp, save_handle;
u_int16_t iptr, optr;
if (isp_getrqentry(isp, &iptr, &optr, &qe)) {
xpt_print_path(ccb->ccb_h.path);
printf("Request Queue Overflow in isp_target_start_ctio\n");
return (CAM_RESRC_UNAVAIL);
}
bzero(qe, QENTRY_LEN);
/*
* We're either moving data or completing a command here.
*/
if (IS_FC(isp)) {
struct ccb_accept_tio *atiop;
ct2_entry_t *cto = qe;
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_iid = cso->init_id;
if (isp->isp_maxluns <= 16) {
cto->ct_lun = ccb->ccb_h.target_lun;
}
/*
* Start with a residual based on what the original datalength
* was supposed to be. Basically, we ignore what CAM has set
* for residuals. The data transfer routines will knock off
* the residual for each byte actually moved- and also will
* be responsible for setting the underrun flag.
*/
/* HACK! HACK! */
if ((atiop = ccb->ccb_h.periph_priv.entries[1].ptr) != NULL) {
cto->ct_resid = atiop->ccb_h.spriv_field0;
}
/*
* We always have to use the tag_id- it has the RX_ID
* for this exchage.
*/
cto->ct_rxid = cso->tag_id;
if (cso->dxfer_len == 0) {
cto->ct_flags |= CT2_FLAG_MODE1 | CT2_NO_DATA;
if (ccb->ccb_h.flags & CAM_SEND_STATUS) {
cto->ct_flags |= CT2_SENDSTATUS;
cto->rsp.m1.ct_scsi_status = cso->scsi_status;
}
if ((ccb->ccb_h.flags & CAM_SEND_SENSE) != 0) {
int m = min(cso->sense_len, MAXRESPLEN);
bcopy(&cso->sense_data, cto->rsp.m1.ct_resp, m);
cto->rsp.m1.ct_senselen = m;
cto->rsp.m1.ct_scsi_status |= CT2_SNSLEN_VALID;
}
} else {
cto->ct_flags |= CT2_FLAG_MODE0;
if ((cso->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT2_DATA_IN;
} else {
cto->ct_flags |= CT2_DATA_OUT;
}
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
cto->ct_flags |= CT2_SENDSTATUS;
cto->rsp.m0.ct_scsi_status = cso->scsi_status;
}
/*
* If we're sending data and status back together,
* we can't also send back sense data as well.
*/
ccb->ccb_h.flags &= ~CAM_SEND_SENSE;
}
if (cto->ct_flags & CAM_SEND_STATUS) {
isp_prt(isp, ISP_LOGTDEBUG2,
"CTIO2 RX_ID 0x%x SCSI STATUS 0x%x datalength %u",
cto->ct_rxid, cso->scsi_status, cto->ct_resid);
}
hp = &cto->ct_reserved;
} else {
ct_entry_t *cto = qe;
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_iid = cso->init_id;
cto->ct_tgt = ccb->ccb_h.target_id;
cto->ct_lun = ccb->ccb_h.target_lun;
if (cso->tag_id && cso->tag_action) {
/*
* We don't specify a tag type for regular SCSI.
* Just the tag value and set the flag.
*/
cto->ct_tag_val = cso->tag_id;
cto->ct_flags |= CT_TQAE;
}
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) {
cto->ct_flags |= CT_NODISC;
}
if (cso->dxfer_len == 0) {
cto->ct_flags |= CT_NO_DATA;
} else if ((cso->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT_DATA_IN;
} else {
cto->ct_flags |= CT_DATA_OUT;
}
if (ccb->ccb_h.flags & CAM_SEND_STATUS) {
cto->ct_flags |= CT_SENDSTATUS;
cto->ct_scsi_status = cso->scsi_status;
cto->ct_resid = cso->resid;
}
if (cto->ct_flags & CAM_SEND_STATUS) {
isp_prt(isp, ISP_LOGTDEBUG2,
"CTIO SCSI STATUS 0x%x resid %d",
cso->scsi_status, cso->resid);
}
hp = &cto->ct_reserved;
ccb->ccb_h.flags &= ~CAM_SEND_SENSE;
}
if (isp_save_xs(isp, (XS_T *)ccb, hp)) {
xpt_print_path(ccb->ccb_h.path);
printf("No XFLIST pointers for isp_target_start_ctio\n");
return (CAM_RESRC_UNAVAIL);
}
/*
* Call the dma setup routines for this entry (and any subsequent
* CTIOs) if there's data to move, and then tell the f/w it's got
* new things to play with. As with isp_start's usage of DMA setup,
* any swizzling is done in the machine dependent layer. Because
* of this, we put the request onto the queue area first in native
* format.
*/
save_handle = *hp;
switch (ISP_DMASETUP(isp, cso, qe, &iptr, optr)) {
case CMD_QUEUED:
ISP_ADD_REQUEST(isp, iptr);
return (CAM_REQ_INPROG);
case CMD_EAGAIN:
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
isp_destroy_handle(isp, save_handle);
return (CAM_RESRC_UNAVAIL);
default:
isp_destroy_handle(isp, save_handle);
return (XS_ERR(ccb));
}
}
static cam_status
isp_target_putback_atio(struct ispsoftc *isp, union ccb *ccb)
{
void *qe;
struct ccb_accept_tio *atiop;
u_int16_t iptr, optr;
if (isp_getrqentry(isp, &iptr, &optr, &qe)) {
xpt_print_path(ccb->ccb_h.path);
printf("Request Queue Overflow in isp_target_putback_atio\n");
return (CAM_RESRC_UNAVAIL);
}
bzero(qe, QENTRY_LEN);
atiop = (struct ccb_accept_tio *) ccb;
if (IS_FC(isp)) {
at2_entry_t *at = qe;
at->at_header.rqs_entry_type = RQSTYPE_ATIO2;
at->at_header.rqs_entry_count = 1;
if (isp->isp_maxluns > 16) {
at->at_scclun = (uint16_t) atiop->ccb_h.target_lun;
} else {
at->at_lun = (uint8_t) atiop->ccb_h.target_lun;
}
at->at_status = CT_OK;
at->at_rxid = atiop->tag_id;
ISP_SWIZ_ATIO2(isp, qe, qe);
} else {
at_entry_t *at = qe;
at->at_header.rqs_entry_type = RQSTYPE_ATIO;
at->at_header.rqs_entry_count = 1;
at->at_iid = atiop->init_id;
at->at_tgt = atiop->ccb_h.target_id;
at->at_lun = atiop->ccb_h.target_lun;
at->at_status = CT_OK;
if (atiop->ccb_h.status & CAM_TAG_ACTION_VALID) {
at->at_tag_type = atiop->tag_action;
}
at->at_tag_val = atiop->tag_id;
ISP_SWIZ_ATIO(isp, qe, qe);
}
ISP_TDQE(isp, "isp_target_putback_atio", (int) optr, qe);
ISP_ADD_REQUEST(isp, iptr);
return (CAM_REQ_CMP);
}
static void
isp_refire_putback_atio(void *arg)
{
union ccb *ccb = arg;
int s = splcam();
if (isp_target_putback_atio(XS_ISP(ccb), ccb) != CAM_REQ_CMP) {
(void) timeout(isp_refire_putback_atio, ccb, 10);
} else {
isp_handle_platform_ctio_part2(XS_ISP(ccb), ccb);
}
splx(s);
}
/*
* Handle ATIO stuff that the generic code can't.
* This means handling CDBs.
*/
static int
isp_handle_platform_atio(struct ispsoftc *isp, at_entry_t *aep)
{
tstate_t *tptr;
int status;
struct ccb_accept_tio *atiop;
/*
* The firmware status (except for the QLTM_SVALID bit)
* indicates why this ATIO was sent to us.
*
* If QLTM_SVALID is set, the firware has recommended Sense Data.
*
* If the DISCONNECTS DISABLED bit is set in the flags field,
* we're still connected on the SCSI bus - i.e. the initiator
* did not set DiscPriv in the identify message. We don't care
* about this so it's ignored.
*/
status = aep->at_status;
if ((status & ~QLTM_SVALID) == AT_PHASE_ERROR) {
/*
* Bus Phase Sequence error. We should have sense data
* suggested by the f/w. I'm not sure quite yet what
* to do about this for CAM.
*/
printf("%s: PHASE ERROR\n", isp->isp_name);
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
if ((status & ~QLTM_SVALID) != AT_CDB) {
printf("%s: bogus atio (0x%x) leaked to platform\n",
isp->isp_name, status);
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
tptr = get_lun_statep(isp, aep->at_lun);
if (tptr == NULL) {
tptr = get_lun_statep(isp, CAM_LUN_WILDCARD);
}
if (tptr == NULL) {
/*
* Because we can't autofeed sense data back with
* a command for parallel SCSI, we can't give back
* a CHECK CONDITION. We'll give back a BUSY status
* instead. This works out okay because the only
* time we should, in fact, get this, is in the
* case that somebody configured us without the
* blackhole driver, so they get what they deserve.
*/
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
atiop = (struct ccb_accept_tio *) SLIST_FIRST(&tptr->atios);
if (atiop == NULL) {
/*
* Because we can't autofeed sense data back with
* a command for parallel SCSI, we can't give back
* a CHECK CONDITION. We'll give back a QUEUE FULL status
* instead. This works out okay because the only time we
* should, in fact, get this, is in the case that we've
* run out of ATIOS.
*/
xpt_print_path(tptr->owner);
printf("no ATIOS for lun %d from initiator %d\n",
aep->at_lun, aep->at_iid);
rls_lun_statep(isp, tptr);
if (aep->at_flags & AT_TQAE)
isp_endcmd(isp, aep, SCSI_STATUS_QUEUE_FULL, 0);
else
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
SLIST_REMOVE_HEAD(&tptr->atios, sim_links.sle);
if (tptr == &isp->isp_osinfo.tsdflt) {
atiop->ccb_h.target_id = aep->at_tgt;
atiop->ccb_h.target_lun = aep->at_lun;
}
if (aep->at_flags & AT_NODISC) {
atiop->ccb_h.flags = CAM_DIS_DISCONNECT;
} else {
atiop->ccb_h.flags = 0;
}
if (status & QLTM_SVALID) {
size_t amt = imin(QLTM_SENSELEN, sizeof (atiop->sense_data));
atiop->sense_len = amt;
MEMCPY(&atiop->sense_data, aep->at_sense, amt);
} else {
atiop->sense_len = 0;
}
atiop->init_id = aep->at_iid;
atiop->cdb_len = aep->at_cdblen;
MEMCPY(atiop->cdb_io.cdb_bytes, aep->at_cdb, aep->at_cdblen);
atiop->ccb_h.status = CAM_CDB_RECVD;
atiop->tag_id = aep->at_tag_val;
if ((atiop->tag_action = aep->at_tag_type) != 0) {
atiop->ccb_h.status |= CAM_TAG_ACTION_VALID;
}
xpt_done((union ccb*)atiop);
isp_prt(isp, ISP_LOGTDEBUG2,
"ATIO CDB=0x%x iid%d->lun%d tag 0x%x ttype 0x%x %s",
aep->at_cdb[0] & 0xff, aep->at_iid, aep->at_lun,
aep->at_tag_val & 0xff, aep->at_tag_type,
(aep->at_flags & AT_NODISC)? "nondisc" : "disconnecting");
rls_lun_statep(isp, tptr);
return (0);
}
static int
isp_handle_platform_atio2(struct ispsoftc *isp, at2_entry_t *aep)
{
lun_id_t lun;
tstate_t *tptr;
struct ccb_accept_tio *atiop;
/*
* The firmware status (except for the QLTM_SVALID bit)
* indicates why this ATIO was sent to us.
*
* If QLTM_SVALID is set, the firware has recommended Sense Data.
*/
if ((aep->at_status & ~QLTM_SVALID) != AT_CDB) {
printf("%s: bogus atio (0x%x) leaked to platform\n",
isp->isp_name, aep->at_status);
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
if (isp->isp_maxluns > 16) {
lun = aep->at_scclun;
} else {
lun = aep->at_lun;
}
tptr = get_lun_statep(isp, lun);
if (tptr == NULL) {
tptr = get_lun_statep(isp, CAM_LUN_WILDCARD);
}
if (tptr == NULL) {
/*
* What we'd like to know is whether or not we have a listener
* upstream that really hasn't configured yet. If we do, then
* we can give a more sensible reply here. If not, then we can
* reject this out of hand.
*
* Choices for what to send were
*
* Not Ready, Unit Not Self-Configured Yet
* (0x2,0x3e,0x00)
*
* for the former and
*
* Illegal Request, Logical Unit Not Supported
* (0x5,0x25,0x00)
*
* for the latter.
*
* We used to decide whether there was at least one listener
* based upon whether the black hole driver was configured.
* However, recent config(8) changes have made this hard to do
* at this time.
*
*/
u_int32_t ccode = SCSI_STATUS_BUSY;
/*
* Because we can't autofeed sense data back with
* a command for parallel SCSI, we can't give back
* a CHECK CONDITION. We'll give back a BUSY status
* instead. This works out okay because the only
* time we should, in fact, get this, is in the
* case that somebody configured us without the
* blackhole driver, so they get what they deserve.
*/
isp_endcmd(isp, aep, ccode, 0);
return (0);
}
atiop = (struct ccb_accept_tio *) SLIST_FIRST(&tptr->atios);
if (atiop == NULL) {
/*
* Because we can't autofeed sense data back with
* a command for parallel SCSI, we can't give back
* a CHECK CONDITION. We'll give back a QUEUE FULL status
* instead. This works out okay because the only time we
* should, in fact, get this, is in the case that we've
* run out of ATIOS.
*/
xpt_print_path(tptr->owner);
printf("no ATIOS for lun %d from initiator %d\n",
lun, aep->at_iid);
rls_lun_statep(isp, tptr);
if (aep->at_flags & AT_TQAE)
isp_endcmd(isp, aep, SCSI_STATUS_QUEUE_FULL, 0);
else
isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0);
return (0);
}
SLIST_REMOVE_HEAD(&tptr->atios, sim_links.sle);
if (tptr == &isp->isp_osinfo.tsdflt) {
atiop->ccb_h.target_id =
((fcparam *)isp->isp_param)->isp_loopid;
atiop->ccb_h.target_lun = lun;
}
if (aep->at_status & QLTM_SVALID) {
size_t amt = imin(QLTM_SENSELEN, sizeof (atiop->sense_data));
atiop->sense_len = amt;
MEMCPY(&atiop->sense_data, aep->at_sense, amt);
} else {
atiop->sense_len = 0;
}
atiop->init_id = aep->at_iid;
atiop->cdb_len = ATIO2_CDBLEN;
MEMCPY(atiop->cdb_io.cdb_bytes, aep->at_cdb, ATIO2_CDBLEN);
atiop->ccb_h.status = CAM_CDB_RECVD;
atiop->tag_id = aep->at_rxid;
switch (aep->at_taskflags & ATIO2_TC_ATTR_MASK) {
case ATIO2_TC_ATTR_SIMPLEQ:
atiop->tag_action = MSG_SIMPLE_Q_TAG;
break;
case ATIO2_TC_ATTR_HEADOFQ:
atiop->tag_action = MSG_HEAD_OF_Q_TAG;
break;
case ATIO2_TC_ATTR_ORDERED:
atiop->tag_action = MSG_ORDERED_Q_TAG;
break;
case ATIO2_TC_ATTR_ACAQ: /* ?? */
case ATIO2_TC_ATTR_UNTAGGED:
default:
atiop->tag_action = 0;
break;
}
if (atiop->tag_action != 0) {
atiop->ccb_h.status |= CAM_TAG_ACTION_VALID;
}
/*
* Preserve overall command datalength in private field.
*/
atiop->ccb_h.spriv_field0 = aep->at_datalen;
xpt_done((union ccb*)atiop);
isp_prt(isp, ISP_LOGTDEBUG2,
"ATIO2 RX_ID 0x%x CDB=0x%x iid%d->lun%d tattr 0x%x datalen %u",
aep->at_rxid & 0xffff, aep->at_cdb[0] & 0xff, aep->at_iid,
lun, aep->at_taskflags, aep->at_datalen);
rls_lun_statep(isp, tptr);
return (0);
}
static int
isp_handle_platform_ctio(struct ispsoftc *isp, void *arg)
{
union ccb *ccb;
int sentstatus, ok, notify_cam;
/*
* CTIO and CTIO2 are close enough....
*/
ccb = (union ccb *) isp_find_xs(isp, ((ct_entry_t *)arg)->ct_reserved);
KASSERT((ccb != NULL), ("null ccb in isp_handle_platform_ctio"));
isp_destroy_handle(isp, ((ct_entry_t *)arg)->ct_reserved);
if (IS_FC(isp)) {
ct2_entry_t *ct = arg;
sentstatus = ct->ct_flags & CT2_SENDSTATUS;
ok = (ct->ct_status & ~QLTM_SVALID) == CT_OK;
if (ok && (ccb->ccb_h.flags & CAM_SEND_SENSE)) {
ccb->ccb_h.status |= CAM_SENT_SENSE;
}
isp_prt(isp, ISP_LOGTDEBUG2,
"CTIO2 RX_ID 0x%x sts 0x%x flg 0x%x sns %d FIN",
ct->ct_rxid, ct->ct_status, ct->ct_flags,
(ccb->ccb_h.status & CAM_SENT_SENSE) != 0);
notify_cam = ct->ct_header.rqs_seqno;
} else {
ct_entry_t *ct = arg;
sentstatus = ct->ct_flags & CT_SENDSTATUS;
ok = (ct->ct_status & ~QLTM_SVALID) == CT_OK;
isp_prt(isp, ISP_LOGTDEBUG2,
"CTIO tag 0x%x sts 0x%x flg 0x%x FIN",
ct->ct_tag_val, ct->ct_status, ct->ct_flags);
notify_cam = ct->ct_header.rqs_seqno;
}
/*
* We're here either because data transfers are done (and
* it's time to send a final status CTIO) or because the final
* status CTIO is done. We don't get called for all intermediate
* CTIOs that happen for a large data transfer.
*
* In any case, for this platform, the upper layers figure out
* what to do next, so all we do here is collect status and
* pass information along. The exception is that we clear
* the notion of handling a non-disconnecting command here.
*/
if (sentstatus) {
/*
* Data transfer done. See if all went okay.
*/
if (ok) {
ccb->csio.resid = 0;
} else {
ccb->csio.resid = ccb->csio.dxfer_len;
}
}
if (notify_cam == 0) {
isp_prt(isp, ISP_LOGTDEBUG1, "Intermediate CTIO done");
return (0);
}
isp_prt(isp, ISP_LOGTDEBUG1, "Final CTIO done");
if (isp_target_putback_atio(isp, ccb) != CAM_REQ_CMP) {
(void) timeout(isp_refire_putback_atio, ccb, 10);
} else {
isp_handle_platform_ctio_part2(isp, ccb);
}
return (0);
}
static void
isp_handle_platform_ctio_part2(struct ispsoftc *isp, union ccb *ccb)
{
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
ccb->ccb_h.status |= CAM_REQ_CMP;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if (isp->isp_osinfo.simqfrozen & SIMQFRZ_RESOURCE) {
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_RESOURCE;
if (isp->isp_osinfo.simqfrozen == 0) {
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
isp_prt(isp, ISP_LOGDEBUG2, "ctio->relsimq");
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
} else {
isp_prt(isp, ISP_LOGDEBUG2, "ctio->devqfrozen");
}
} else {
isp_prt(isp, ISP_LOGDEBUG2,
"ctio->simqfrozen(%x)", isp->isp_osinfo.simqfrozen);
}
}
xpt_done(ccb);
}
#endif
static void
isp_cam_async(void *cbarg, u_int32_t code, struct cam_path *path, void *arg)
{
struct cam_sim *sim;
struct ispsoftc *isp;
sim = (struct cam_sim *)cbarg;
isp = (struct ispsoftc *) cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
if (IS_SCSI(isp)) {
u_int16_t oflags, nflags;
sdparam *sdp = isp->isp_param;
int rvf, tgt;
tgt = xpt_path_target_id(path);
rvf = ISP_FW_REVX(isp->isp_fwrev);
ISP_LOCK(isp);
sdp += cam_sim_bus(sim);
isp->isp_update |= (1 << cam_sim_bus(sim));
nflags = DPARM_SAFE_DFLT;
if (rvf >= ISP_FW_REV(7, 55, 0) ||
(ISP_FW_REV(4, 55, 0) <= rvf &&
(rvf < ISP_FW_REV(5, 0, 0)))) {
nflags |= DPARM_NARROW | DPARM_ASYNC;
}
oflags = sdp->isp_devparam[tgt].dev_flags;
sdp->isp_devparam[tgt].dev_flags = nflags;
sdp->isp_devparam[tgt].dev_update = 1;
(void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL);
sdp->isp_devparam[tgt].dev_flags = oflags;
ISP_UNLOCK(isp);
}
break;
default:
printf("%s: isp_attach Async Code 0x%x\n", isp->isp_name, code);
break;
}
}
static void
isp_poll(struct cam_sim *sim)
{
struct ispsoftc *isp = cam_sim_softc(sim);
ISP_LOCK(isp);
(void) isp_intr(isp);
ISP_UNLOCK(isp);
}
static void
isp_relsim(void *arg)
{
struct ispsoftc *isp = arg;
ISP_LOCK(isp);
if (isp->isp_osinfo.simqfrozen & SIMQFRZ_TIMED) {
int wasfrozen = isp->isp_osinfo.simqfrozen & SIMQFRZ_TIMED;
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_TIMED;
if (wasfrozen && isp->isp_osinfo.simqfrozen == 0) {
xpt_release_simq(isp->isp_sim, 1);
isp_prt(isp, ISP_LOGDEBUG2, "timed relsimq");
}
}
ISP_UNLOCK(isp);
}
static void
isp_watchdog(void *arg)
{
XS_T *xs = arg;
struct ispsoftc *isp = XS_ISP(xs);
u_int32_t handle;
/*
* We've decided this command is dead. Make sure we're not trying
* to kill a command that's already dead by getting it's handle and
* and seeing whether it's still alive.
*/
ISP_LOCK(isp);
handle = isp_find_handle(isp, xs);
if (handle) {
u_int16_t r;
if (XS_CMD_DONE_P(xs)) {
isp_prt(isp, ISP_LOGDEBUG1,
"watchdog found done cmd (handle 0x%x)", handle);
ISP_UNLOCK(isp);
return;
}
if (XS_CMD_WDOG_P(xs)) {
isp_prt(isp, ISP_LOGDEBUG2,
"recursive watchdog (handle 0x%x)", handle);
ISP_UNLOCK(isp);
return;
}
XS_CMD_S_WDOG(xs);
r = ISP_READ(isp, BIU_ISR);
if (INT_PENDING(isp, r) && isp_intr(isp) && XS_CMD_DONE_P(xs)) {
isp_prt(isp, ISP_LOGDEBUG2,
"watchdog cleanup (%x, %x)", handle, r);
xpt_done((union ccb *) xs);
} else if (XS_CMD_GRACE_P(xs)) {
/*
* Make sure the command is *really* dead before we
* release the handle (and DMA resources) for reuse.
*/
(void) isp_control(isp, ISPCTL_ABORT_CMD, arg);
/*
* After this point, the comamnd is really dead.
*/
if (XS_XFRLEN(xs)) {
ISP_DMAFREE(isp, xs, handle);
}
isp_destroy_handle(isp, handle);
xpt_print_path(xs->ccb_h.path);
printf("%s: watchdog timeout (%x, %x)\n",
isp->isp_name, handle, r);
XS_SETERR(xs, CAM_CMD_TIMEOUT);
XS_CMD_C_WDOG(xs);
isp_done(xs);
} else {
u_int16_t iptr, optr;
ispreq_t *mp;
XS_CMD_C_WDOG(xs);
xs->ccb_h.timeout_ch = timeout(isp_watchdog, xs, hz);
if (isp_getrqentry(isp, &iptr, &optr, (void **) &mp)) {
ISP_UNLOCK(isp);
return;
}
XS_CMD_S_GRACE(xs);
MEMZERO((void *) mp, sizeof (*mp));
mp->req_header.rqs_entry_count = 1;
mp->req_header.rqs_entry_type = RQSTYPE_MARKER;
mp->req_modifier = SYNC_ALL;
mp->req_target = XS_CHANNEL(xs) << 7;
ISP_SWIZZLE_REQUEST(isp, mp);
ISP_ADD_REQUEST(isp, iptr);
}
} else {
isp_prt(isp, ISP_LOGDEBUG2, "watchdog with no command");
}
ISP_UNLOCK(isp);
}
static void
isp_action(struct cam_sim *sim, union ccb *ccb)
{
int bus, tgt, error;
struct ispsoftc *isp;
struct ccb_trans_settings *cts;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("isp_action\n"));
isp = (struct ispsoftc *)cam_sim_softc(sim);
ccb->ccb_h.sim_priv.entries[0].field = 0;
ccb->ccb_h.sim_priv.entries[1].ptr = isp;
if (isp->isp_state != ISP_RUNSTATE &&
ccb->ccb_h.func_code == XPT_SCSI_IO) {
ISP_LOCK(isp);
isp_init(isp);
if (isp->isp_state != ISP_INITSTATE) {
ISP_UNLOCK(isp);
/*
* Lie. Say it was a selection timeout.
*/
ccb->ccb_h.status = CAM_SEL_TIMEOUT | CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, 1);
xpt_done(ccb);
return;
}
isp->isp_state = ISP_RUNSTATE;
ISP_UNLOCK(isp);
}
isp_prt(isp, ISP_LOGDEBUG2, "isp_action code %x", ccb->ccb_h.func_code);
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/*
* Do a couple of preliminary checks...
*/
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
#ifdef DIAGNOSTIC
if (ccb->ccb_h.target_id > (ISP_MAX_TARGETS(isp) - 1)) {
ccb->ccb_h.status = CAM_PATH_INVALID;
} else if (ccb->ccb_h.target_lun > (ISP_MAX_LUNS(isp) - 1)) {
ccb->ccb_h.status = CAM_PATH_INVALID;
}
if (ccb->ccb_h.status == CAM_PATH_INVALID) {
isp_prt(isp, ISP_LOGERR,
"invalid tgt/lun (%d.%d) in XPT_SCSI_IO",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
xpt_done(ccb);
break;
}
#endif
((struct ccb_scsiio *) ccb)->scsi_status = SCSI_STATUS_OK;
ISP_LOCK(isp);
error = isp_start((XS_T *) ccb);
ISP_UNLOCK(isp);
switch (error) {
case CMD_QUEUED:
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
int ticks;
if (ccb->ccb_h.timeout == CAM_TIME_DEFAULT)
ticks = 60 * 1000 * hz;
else
ticks = ccb->ccb_h.timeout * hz;
ticks = ((ticks + 999) / 1000) + hz + hz;
ccb->ccb_h.timeout_ch =
timeout(isp_watchdog, (caddr_t)ccb, ticks);
} else {
callout_handle_init(&ccb->ccb_h.timeout_ch);
}
break;
case CMD_RQLATER:
if (isp->isp_osinfo.simqfrozen == 0) {
isp_prt(isp, ISP_LOGDEBUG2,
"RQLATER freeze simq");
isp->isp_osinfo.simqfrozen |= SIMQFRZ_TIMED;
timeout(isp_relsim, isp, 500);
xpt_freeze_simq(sim, 1);
}
XS_SETERR(ccb, CAM_REQUEUE_REQ);
xpt_done(ccb);
break;
case CMD_EAGAIN:
if (isp->isp_osinfo.simqfrozen == 0) {
xpt_freeze_simq(sim, 1);
isp_prt(isp, ISP_LOGDEBUG2,
"EAGAIN freeze simq");
}
isp->isp_osinfo.simqfrozen |= SIMQFRZ_RESOURCE;
XS_SETERR(ccb, CAM_REQUEUE_REQ);
xpt_done(ccb);
break;
case CMD_COMPLETE:
ISP_LOCK(isp);
isp_done((struct ccb_scsiio *) ccb);
ISP_UNLOCK(isp);
break;
default:
isp_prt(isp, ISP_LOGERR,
"What's this? 0x%x at %d in file %s",
isp->isp_name, error, __LINE__, __FILE__);
XS_SETERR(ccb, CAM_REQ_CMP_ERR);
xpt_done(ccb);
}
break;
#ifdef ISP_TARGET_MODE
case XPT_EN_LUN: /* Enable LUN as a target */
isp_en_lun(isp, ccb);
xpt_done(ccb);
break;
case XPT_NOTIFY_ACK: /* recycle notify ack */
case XPT_IMMED_NOTIFY: /* Add Immediate Notify Resource */
case XPT_ACCEPT_TARGET_IO: /* Add Accept Target IO Resource */
{
tstate_t *tptr = get_lun_statep(isp, ccb->ccb_h.target_lun);
if (tptr == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
break;
}
ccb->ccb_h.sim_priv.entries[0].field = 0;
ccb->ccb_h.sim_priv.entries[1].ptr = isp;
ISP_LOCK(isp);
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
#if 0
(void) isp_target_putback_atio(isp, ccb);
#endif
SLIST_INSERT_HEAD(&tptr->atios,
&ccb->ccb_h, sim_links.sle);
} else {
SLIST_INSERT_HEAD(&tptr->inots, &ccb->ccb_h,
sim_links.sle);
}
ISP_UNLOCK(isp);
rls_lun_statep(isp, tptr);
ccb->ccb_h.status = CAM_REQ_INPROG;
break;
}
case XPT_CONT_TARGET_IO:
{
ISP_LOCK(isp);
ccb->ccb_h.status = isp_target_start_ctio(isp, ccb);
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (isp->isp_osinfo.simqfrozen == 0) {
xpt_freeze_simq(sim, 1);
xpt_print_path(ccb->ccb_h.path);
printf("XPT_CONT_TARGET_IO freeze simq\n");
}
isp->isp_osinfo.simqfrozen |= SIMQFRZ_RESOURCE;
XS_SETERR(ccb, CAM_REQUEUE_REQ);
xpt_done(ccb);
} else {
ccb->ccb_h.status |= CAM_SIM_QUEUED;
}
ISP_UNLOCK(isp);
break;
}
#endif
case XPT_RESET_DEV: /* BDR the specified SCSI device */
bus = cam_sim_bus(xpt_path_sim(ccb->ccb_h.path));
tgt = ccb->ccb_h.target_id;
tgt |= (bus << 16);
ISP_LOCK(isp);
error = isp_control(isp, ISPCTL_RESET_DEV, &tgt);
ISP_UNLOCK(isp);
if (error) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
case XPT_ABORT: /* Abort the specified CCB */
{
union ccb *accb = ccb->cab.abort_ccb;
switch (accb->ccb_h.func_code) {
#ifdef ISP_TARGET_MODE
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMED_NOTIFY:
ccb->ccb_h.status = isp_abort_tgt_ccb(isp, ccb);
break;
case XPT_CONT_TARGET_IO:
isp_prt(isp, ISP_LOGERR, "cannot abort CTIOs yet");
ccb->ccb_h.status = CAM_UA_ABORT;
break;
#endif
case XPT_SCSI_IO:
ISP_LOCK(isp);
error = isp_control(isp, ISPCTL_ABORT_CMD, ccb);
ISP_UNLOCK(isp);
if (error) {
ccb->ccb_h.status = CAM_UA_ABORT;
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
break;
}
case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */
cts = &ccb->cts;
tgt = cts->ccb_h.target_id;
ISP_LOCK(isp);
if (IS_SCSI(isp)) {
sdparam *sdp = isp->isp_param;
u_int16_t *dptr;
bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path));
sdp += bus;
#if 0
if (cts->flags & CCB_TRANS_CURRENT_SETTINGS)
dptr = &sdp->isp_devparam[tgt].cur_dflags;
else
dptr = &sdp->isp_devparam[tgt].dev_flags;
#else
/*
* We always update (internally) from dev_flags
* so any request to change settings just gets
* vectored to that location.
*/
dptr = &sdp->isp_devparam[tgt].dev_flags;
#endif
/*
* Note that these operations affect the
* the goal flags (dev_flags)- not
* the current state flags. Then we mark
* things so that the next operation to
* this HBA will cause the update to occur.
*/
if (cts->valid & CCB_TRANS_DISC_VALID) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) {
*dptr |= DPARM_DISC;
} else {
*dptr &= ~DPARM_DISC;
}
}
if (cts->valid & CCB_TRANS_TQ_VALID) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
*dptr |= DPARM_TQING;
} else {
*dptr &= ~DPARM_TQING;
}
}
if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) {
switch (cts->bus_width) {
case MSG_EXT_WDTR_BUS_16_BIT:
*dptr |= DPARM_WIDE;
break;
default:
*dptr &= ~DPARM_WIDE;
}
}
/*
* Any SYNC RATE of nonzero and SYNC_OFFSET
* of nonzero will cause us to go to the
* selected (from NVRAM) maximum value for
* this device. At a later point, we'll
* allow finer control.
*/
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
(cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) &&
(cts->sync_offset > 0)) {
*dptr |= DPARM_SYNC;
} else {
*dptr &= ~DPARM_SYNC;
}
*dptr |= DPARM_SAFE_DFLT;
isp_prt(isp, ISP_LOGDEBUG0,
"%d.%d set %s period 0x%x offset 0x%x flags 0x%x",
isp->isp_name, bus, tgt,
(cts->flags & CCB_TRANS_CURRENT_SETTINGS)?
"current" : "user",
sdp->isp_devparam[tgt].sync_period,
sdp->isp_devparam[tgt].sync_offset,
sdp->isp_devparam[tgt].dev_flags);
sdp->isp_devparam[tgt].dev_update = 1;
isp->isp_update |= (1 << bus);
}
ISP_UNLOCK(isp);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
cts = &ccb->cts;
tgt = cts->ccb_h.target_id;
if (IS_FC(isp)) {
/*
* a lot of normal SCSI things don't make sense.
*/
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
/*
* How do you measure the width of a high
* speed serial bus? Well, in bytes.
*
* Offset and period make no sense, though, so we set
* (above) a 'base' transfer speed to be gigabit.
*/
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else {
sdparam *sdp = isp->isp_param;
u_int16_t dval, pval, oval;
int bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path));
sdp += bus;
if (cts->flags & CCB_TRANS_CURRENT_SETTINGS) {
ISP_LOCK(isp);
sdp->isp_devparam[tgt].dev_refresh = 1;
isp->isp_update |= (1 << bus);
(void) isp_control(isp, ISPCTL_UPDATE_PARAMS,
NULL);
ISP_UNLOCK(isp);
dval = sdp->isp_devparam[tgt].cur_dflags;
oval = sdp->isp_devparam[tgt].cur_offset;
pval = sdp->isp_devparam[tgt].cur_period;
} else {
dval = sdp->isp_devparam[tgt].dev_flags;
oval = sdp->isp_devparam[tgt].sync_offset;
pval = sdp->isp_devparam[tgt].sync_period;
}
ISP_LOCK(isp);
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if (dval & DPARM_DISC) {
cts->flags |= CCB_TRANS_DISC_ENB;
}
if (dval & DPARM_TQING) {
cts->flags |= CCB_TRANS_TAG_ENB;
}
if (dval & DPARM_WIDE) {
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
cts->valid = CCB_TRANS_BUS_WIDTH_VALID |
CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if ((dval & DPARM_SYNC) && oval != 0) {
cts->sync_period = pval;
cts->sync_offset = oval;
cts->valid |=
CCB_TRANS_SYNC_RATE_VALID |
CCB_TRANS_SYNC_OFFSET_VALID;
}
ISP_UNLOCK(isp);
isp_prt(isp, ISP_LOGDEBUG0,
"%d.%d get %s period 0x%x offset 0x%x flags 0x%x",
isp->isp_name, bus, tgt,
(cts->flags & CCB_TRANS_CURRENT_SETTINGS)?
"current" : "user", pval, oval, dval);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t secs_per_cylinder;
u_int32_t size_mb;
ccg = &ccb->ccg;
if (ccg->block_size == 0) {
isp_prt(isp, ISP_LOGERR,
"%d.%d XPT_CALC_GEOMETRY block size 0?",
ccg->ccb_h.target_id, ccg->ccb_h.target_lun);
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
size_mb = ccg->volume_size /((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified bus */
bus = cam_sim_bus(sim);
ISP_LOCK(isp);
error = isp_control(isp, ISPCTL_RESET_BUS, &bus);
ISP_UNLOCK(isp);
if (error)
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
else {
if (cam_sim_bus(sim) && isp->isp_path2 != NULL)
xpt_async(AC_BUS_RESET, isp->isp_path2, NULL);
else if (isp->isp_path != NULL)
xpt_async(AC_BUS_RESET, isp->isp_path, NULL);
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
case XPT_TERM_IO: /* Terminate the I/O process */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
#ifdef ISP_TARGET_MODE
cpi->target_sprt = PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO;
#else
cpi->target_sprt = 0;
#endif
cpi->hba_eng_cnt = 0;
cpi->max_target = ISP_MAX_TARGETS(isp) - 1;
cpi->max_lun = ISP_MAX_LUNS(isp) - 1;
cpi->bus_id = cam_sim_bus(sim);
if (IS_FC(isp)) {
cpi->hba_misc = PIM_NOBUSRESET;
/*
* Because our loop ID can shift from time to time,
* make our initiator ID out of range of our bus.
*/
cpi->initiator_id = cpi->max_target + 1;
/*
* Set base transfer capabilities for Fibre Channel.
* Technically not correct because we don't know
* what media we're running on top of- but we'll
* look good if we always say 100MB/s.
*/
cpi->base_transfer_speed = 100000;
cpi->hba_inquiry = PI_TAG_ABLE;
} else {
sdparam *sdp = isp->isp_param;
sdp += cam_sim_bus(xpt_path_sim(cpi->ccb_h.path));
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->hba_misc = 0;
cpi->initiator_id = sdp->isp_initiator_id;
cpi->base_transfer_speed = 3300;
}
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Qlogic", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
#define ISPDDB (CAM_DEBUG_INFO|CAM_DEBUG_TRACE|CAM_DEBUG_CDB)
void
isp_done(struct ccb_scsiio *sccb)
{
struct ispsoftc *isp = XS_ISP(sccb);
if (XS_NOERR(sccb))
XS_SETERR(sccb, CAM_REQ_CMP);
if ((sccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP &&
(sccb->scsi_status != SCSI_STATUS_OK)) {
sccb->ccb_h.status &= ~CAM_STATUS_MASK;
if ((sccb->scsi_status == SCSI_STATUS_CHECK_COND) &&
(sccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0) {
sccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
} else {
sccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
}
}
sccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if ((sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
sccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(sccb->ccb_h.path, 1);
if (sccb->scsi_status != SCSI_STATUS_OK)
isp_prt(isp, ISP_LOGDEBUG2,
"freeze devq %d.%d %x %x",
sccb->ccb_h.target_id,
sccb->ccb_h.target_lun, sccb->ccb_h.status,
sccb->scsi_status);
}
}
/*
* If we were frozen waiting resources, clear that we were frozen
* waiting for resources. If we are no longer frozen, and the devq
* isn't frozen, mark the completing CCB to have the XPT layer
* release the simq.
*/
if (isp->isp_osinfo.simqfrozen & SIMQFRZ_RESOURCE) {
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_RESOURCE;
if (isp->isp_osinfo.simqfrozen == 0) {
if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
isp_prt(isp, ISP_LOGDEBUG2,
"isp_done->relsimq");
sccb->ccb_h.status |= CAM_RELEASE_SIMQ;
} else {
isp_prt(isp, ISP_LOGDEBUG2,
"isp_done->devq frozen");
}
} else {
isp_prt(isp, ISP_LOGDEBUG2,
"isp_done -> simqfrozen = %x",
isp->isp_osinfo.simqfrozen);
}
}
if ((CAM_DEBUGGED(sccb->ccb_h.path, ISPDDB)) &&
(sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
xpt_print_path(sccb->ccb_h.path);
printf("cam completion status 0x%x\n", sccb->ccb_h.status);
}
XS_CMD_S_DONE(sccb);
if (XS_CMD_WDOG_P(sccb) == 0) {
untimeout(isp_watchdog, (caddr_t)sccb, sccb->ccb_h.timeout_ch);
if (XS_CMD_GRACE_P(sccb)) {
isp_prt(isp, ISP_LOGDEBUG2,
"finished command on borrowed time");
}
XS_CMD_S_CLEAR(sccb);
ISP_UNLOCK(isp);
#ifdef ISP_SMPLOCK
mtx_enter(&Giant, MTX_DEF);
xpt_done((union ccb *) sccb);
mtx_exit(&Giant, MTX_DEF);
#else
xpt_done((union ccb *) sccb);
#endif
ISP_LOCK(isp);
}
}
int
isp_async(struct ispsoftc *isp, ispasync_t cmd, void *arg)
{
int bus, rv = 0;
switch (cmd) {
case ISPASYNC_NEW_TGT_PARAMS:
{
int flags, tgt;
sdparam *sdp = isp->isp_param;
struct ccb_trans_settings neg;
struct cam_path *tmppath;
tgt = *((int *)arg);
bus = (tgt >> 16) & 0xffff;
tgt &= 0xffff;
sdp += bus;
if (xpt_create_path(&tmppath, NULL,
cam_sim_path(bus? isp->isp_sim2 : isp->isp_sim),
tgt, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
isp_prt(isp, ISP_LOGWARN,
"isp_async cannot make temp path for %d.%d",
tgt, bus);
rv = -1;
break;
}
flags = sdp->isp_devparam[tgt].cur_dflags;
neg.valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if (flags & DPARM_DISC) {
neg.flags |= CCB_TRANS_DISC_ENB;
}
if (flags & DPARM_TQING) {
neg.flags |= CCB_TRANS_TAG_ENB;
}
neg.valid |= CCB_TRANS_BUS_WIDTH_VALID;
neg.bus_width = (flags & DPARM_WIDE)?
MSG_EXT_WDTR_BUS_8_BIT : MSG_EXT_WDTR_BUS_16_BIT;
neg.sync_period = sdp->isp_devparam[tgt].cur_period;
neg.sync_offset = sdp->isp_devparam[tgt].cur_offset;
if (flags & DPARM_SYNC) {
neg.valid |=
CCB_TRANS_SYNC_RATE_VALID |
CCB_TRANS_SYNC_OFFSET_VALID;
}
isp_prt(isp, ISP_LOGDEBUG2,
"NEW_TGT_PARAMS bus %d tgt %d period %x offset %x flags %x",
bus, tgt, neg.sync_period, neg.sync_offset, flags);
xpt_setup_ccb(&neg.ccb_h, tmppath, 1);
xpt_async(AC_TRANSFER_NEG, tmppath, &neg);
xpt_free_path(tmppath);
break;
}
case ISPASYNC_BUS_RESET:
bus = *((int *)arg);
isp_prt(isp, ISP_LOGINFO, "SCSI bus reset on bus %d detected",
bus);
if (bus > 0 && isp->isp_path2) {
xpt_async(AC_BUS_RESET, isp->isp_path2, NULL);
} else if (isp->isp_path) {
xpt_async(AC_BUS_RESET, isp->isp_path, NULL);
}
break;
case ISPASYNC_LOOP_DOWN:
if (isp->isp_path) {
if (isp->isp_osinfo.simqfrozen == 0) {
isp_prt(isp, ISP_LOGDEBUG2,
"loop down freeze simq");
xpt_freeze_simq(isp->isp_sim, 1);
}
isp->isp_osinfo.simqfrozen |= SIMQFRZ_LOOPDOWN;
}
isp_prt(isp, ISP_LOGINFO, "Loop DOWN");
break;
case ISPASYNC_LOOP_UP:
if (isp->isp_path) {
int wasfrozen =
isp->isp_osinfo.simqfrozen & SIMQFRZ_LOOPDOWN;
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_LOOPDOWN;
if (wasfrozen && isp->isp_osinfo.simqfrozen == 0) {
xpt_release_simq(isp->isp_sim, 1);
isp_prt(isp, ISP_LOGDEBUG2,
"loop up release simq");
}
}
isp_prt(isp, ISP_LOGINFO, "Loop UP");
break;
case ISPASYNC_PDB_CHANGED:
{
const char *fmt = "Target %d (Loop 0x%x) Port ID 0x%x "
"role %s %s\n Port WWN 0x%08x%08x\n Node WWN 0x%08x%08x";
const static char *roles[4] = {
"(none)", "Target", "Initiator", "Target/Initiator"
};
char *ptr;
fcparam *fcp = isp->isp_param;
int tgt = *((int *) arg);
struct lportdb *lp = &fcp->portdb[tgt];
if (lp->valid) {
ptr = "arrived";
} else {
ptr = "disappeared";
}
isp_prt(isp, ISP_LOGINFO, fmt, tgt, lp->loopid, lp->portid,
roles[lp->roles & 0x3], ptr,
(u_int32_t) (lp->port_wwn >> 32),
(u_int32_t) (lp->port_wwn & 0xffffffffLL),
(u_int32_t) (lp->node_wwn >> 32),
(u_int32_t) (lp->node_wwn & 0xffffffffLL));
break;
}
case ISPASYNC_CHANGE_NOTIFY:
isp_prt(isp, ISP_LOGINFO, "Name Server Database Changed");
break;
#ifdef ISP2100_FABRIC
case ISPASYNC_FABRIC_DEV:
{
int target;
struct lportdb *lp;
char *pt;
sns_ganrsp_t *resp = (sns_ganrsp_t *) arg;
u_int32_t portid;
u_int64_t wwpn, wwnn;
fcparam *fcp = isp->isp_param;
rv = -1;
portid =
(((u_int32_t) resp->snscb_port_id[0]) << 16) |
(((u_int32_t) resp->snscb_port_id[1]) << 8) |
(((u_int32_t) resp->snscb_port_id[2]));
wwpn =
(((u_int64_t)resp->snscb_portname[0]) << 56) |
(((u_int64_t)resp->snscb_portname[1]) << 48) |
(((u_int64_t)resp->snscb_portname[2]) << 40) |
(((u_int64_t)resp->snscb_portname[3]) << 32) |
(((u_int64_t)resp->snscb_portname[4]) << 24) |
(((u_int64_t)resp->snscb_portname[5]) << 16) |
(((u_int64_t)resp->snscb_portname[6]) << 8) |
(((u_int64_t)resp->snscb_portname[7]));
wwnn =
(((u_int64_t)resp->snscb_nodename[0]) << 56) |
(((u_int64_t)resp->snscb_nodename[1]) << 48) |
(((u_int64_t)resp->snscb_nodename[2]) << 40) |
(((u_int64_t)resp->snscb_nodename[3]) << 32) |
(((u_int64_t)resp->snscb_nodename[4]) << 24) |
(((u_int64_t)resp->snscb_nodename[5]) << 16) |
(((u_int64_t)resp->snscb_nodename[6]) << 8) |
(((u_int64_t)resp->snscb_nodename[7]));
if (portid == 0 || wwpn == 0) {
rv = 0;
break;
}
switch (resp->snscb_port_type) {
case 1:
pt = " N_Port";
break;
case 2:
pt = " NL_Port";
break;
case 3:
pt = "F/NL_Port";
break;
case 0x7f:
pt = " Nx_Port";
break;
case 0x81:
pt = " F_port";
break;
case 0x82:
pt = " FL_Port";
break;
case 0x84:
pt = " E_port";
break;
default:
pt = "?";
break;
}
isp_prt(isp, ISP_LOGINFO,
"%s @ 0x%x, Node 0x%08x%08x Port %08x%08x",
pt, portid, ((u_int32_t) (wwnn >> 32)), ((u_int32_t) wwnn),
((u_int32_t) (wwpn >> 32)), ((u_int32_t) wwpn));
for (target = FC_SNS_ID+1; target < MAX_FC_TARG; target++) {
lp = &fcp->portdb[target];
if (lp->port_wwn == wwpn && lp->node_wwn == wwnn)
break;
}
if (target < MAX_FC_TARG) {
rv = 0;
break;
}
for (target = FC_SNS_ID+1; target < MAX_FC_TARG; target++) {
lp = &fcp->portdb[target];
if (lp->port_wwn == 0)
break;
}
if (target == MAX_FC_TARG) {
isp_prt(isp, ISP_LOGWARN,
"no more space for fabric devices");
break;
}
lp->node_wwn = wwnn;
lp->port_wwn = wwpn;
lp->portid = portid;
rv = 0;
break;
}
#endif
#ifdef ISP_TARGET_MODE
case ISPASYNC_TARGET_MESSAGE:
{
tmd_msg_t *mp = arg;
isp_prt(isp, ISP_LOGDEBUG2,
"bus %d iid %d tgt %d lun %d ttype %x tval %x msg[0]=%x",
mp->nt_bus, (int) mp->nt_iid, (int) mp->nt_tgt,
(int) mp->nt_lun, mp->nt_tagtype, mp->nt_tagval,
mp->nt_msg[0]);
break;
}
case ISPASYNC_TARGET_EVENT:
{
tmd_event_t *ep = arg;
isp_prt(isp, ISP_LOGDEBUG2,
"bus %d event code 0x%x", ep->ev_bus, ep->ev_event);
break;
}
case ISPASYNC_TARGET_ACTION:
switch (((isphdr_t *)arg)->rqs_entry_type) {
default:
isp_prt(isp, ISP_LOGWARN,
"event 0x%x for unhandled target action",
((isphdr_t *)arg)->rqs_entry_type);
break;
case RQSTYPE_ATIO:
rv = isp_handle_platform_atio(isp, (at_entry_t *) arg);
break;
case RQSTYPE_ATIO2:
rv = isp_handle_platform_atio2(isp, (at2_entry_t *)arg);
break;
case RQSTYPE_CTIO2:
case RQSTYPE_CTIO:
rv = isp_handle_platform_ctio(isp, arg);
break;
case RQSTYPE_ENABLE_LUN:
case RQSTYPE_MODIFY_LUN:
isp_cv_signal_rqe(isp, ((lun_entry_t *)arg)->le_status);
break;
}
break;
#endif
default:
isp_prt(isp, ISP_LOGERR, "unknown isp_async event %d", cmd);
rv = -1;
break;
}
return (rv);
}
/*
* Locks are held before coming here.
*/
void
isp_uninit(struct ispsoftc *isp)
{
ISP_WRITE(isp, HCCR, HCCR_CMD_RESET);
DISABLE_INTS(isp);
}
void
isp_prt(struct ispsoftc *isp, int level, const char *fmt, ...)
{
va_list ap;
if (level != ISP_LOGALL && (level & isp->isp_dblev) == 0) {
return;
}
printf("%s: ", isp->isp_name);
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}