1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-14 10:09:48 +00:00
freebsd/contrib/awk/awk.y
1997-10-14 18:17:11 +00:00

2435 lines
54 KiB
Plaintext

/*
* awk.y --- yacc/bison parser
*/
/*
* Copyright (C) 1986, 1988, 1989, 1991-1997 the Free Software Foundation, Inc.
*
* This file is part of GAWK, the GNU implementation of the
* AWK Programming Language.
*
* GAWK is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GAWK is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
%{
#ifdef DEBUG
#define YYDEBUG 12
#endif
#include "awk.h"
#define CAN_FREE TRUE
#define DONT_FREE FALSE
#if defined(HAVE_STDARG_H) && defined(__STDC__) && __STDC__
static void yyerror(const char *m, ...) ;
#else
static void yyerror(); /* va_alist */
#endif
static char *get_src_buf P((void));
static int yylex P((void));
static NODE *node_common P((NODETYPE op));
static NODE *snode P((NODE *subn, NODETYPE op, int sindex));
static NODE *mkrangenode P((NODE *cpair));
static NODE *make_for_loop P((NODE *init, NODE *cond, NODE *incr));
static NODE *append_right P((NODE *list, NODE *new));
static void func_install P((NODE *params, NODE *def));
static void pop_var P((NODE *np, int freeit));
static void pop_params P((NODE *params));
static NODE *make_param P((char *name));
static NODE *mk_rexp P((NODE *exp));
static int dup_parms P((NODE *func));
static void param_sanity P((NODE *arglist));
static int isnoeffect P((NODETYPE t));
static int isassignable P((NODE *n));
enum defref { FUNC_DEFINE, FUNC_USE };
static void func_use P((char *name, enum defref how));
static void check_funcs P((void));
static int want_assign; /* lexical scanning kludge */
static int want_regexp; /* lexical scanning kludge */
static int can_return; /* lexical scanning kludge */
static int io_allowed = TRUE; /* lexical scanning kludge */
static char *lexptr; /* pointer to next char during parsing */
static char *lexend;
static char *lexptr_begin; /* keep track of where we were for error msgs */
static char *lexeme; /* beginning of lexeme for debugging */
static char *thisline = NULL;
#define YYDEBUG_LEXER_TEXT (lexeme)
static int param_counter;
static char *tokstart = NULL;
static char *tok = NULL;
static char *tokend;
#define HASHSIZE 1021 /* this constant only used here */
NODE *variables[HASHSIZE];
extern char *source;
extern int sourceline;
extern struct src *srcfiles;
extern int numfiles;
extern int errcount;
extern NODE *begin_block;
extern NODE *end_block;
%}
%union {
long lval;
AWKNUM fval;
NODE *nodeval;
NODETYPE nodetypeval;
char *sval;
NODE *(*ptrval)();
}
%type <nodeval> function_prologue function_body
%type <nodeval> rexp exp start program rule simp_exp
%type <nodeval> non_post_simp_exp
%type <nodeval> pattern
%type <nodeval> action variable param_list
%type <nodeval> rexpression_list opt_rexpression_list
%type <nodeval> expression_list opt_expression_list
%type <nodeval> statements statement if_statement opt_param_list
%type <nodeval> opt_exp opt_variable regexp
%type <nodeval> input_redir output_redir
%type <nodetypeval> print
%type <sval> func_name
%type <lval> lex_builtin
%token <sval> FUNC_CALL NAME REGEXP
%token <lval> ERROR
%token <nodeval> YNUMBER YSTRING
%token <nodetypeval> RELOP APPEND_OP
%token <nodetypeval> ASSIGNOP MATCHOP NEWLINE CONCAT_OP
%token <nodetypeval> LEX_BEGIN LEX_END LEX_IF LEX_ELSE LEX_RETURN LEX_DELETE
%token <nodetypeval> LEX_WHILE LEX_DO LEX_FOR LEX_BREAK LEX_CONTINUE
%token <nodetypeval> LEX_PRINT LEX_PRINTF LEX_NEXT LEX_EXIT LEX_FUNCTION
%token <nodetypeval> LEX_GETLINE LEX_NEXTFILE
%token <nodetypeval> LEX_IN
%token <lval> LEX_AND LEX_OR INCREMENT DECREMENT
%token <lval> LEX_BUILTIN LEX_LENGTH
/* these are just yylval numbers */
/* Lowest to highest */
%right ASSIGNOP
%right '?' ':'
%left LEX_OR
%left LEX_AND
%left LEX_GETLINE
%nonassoc LEX_IN
%left FUNC_CALL LEX_BUILTIN LEX_LENGTH
%nonassoc ','
%nonassoc MATCHOP
%nonassoc RELOP '<' '>' '|' APPEND_OP
%left CONCAT_OP
%left YSTRING YNUMBER
%left '+' '-'
%left '*' '/' '%'
%right '!' UNARY
%right '^'
%left INCREMENT DECREMENT
%left '$'
%left '(' ')'
%%
start
: opt_nls program opt_nls
{
expression_value = $2;
check_funcs();
}
;
program
: rule
{
if ($1 != NULL)
$$ = $1;
else
$$ = NULL;
yyerrok;
}
| program rule
/* add the rule to the tail of list */
{
if ($2 == NULL)
$$ = $1;
else if ($1 == NULL)
$$ = $2;
else {
if ($1->type != Node_rule_list)
$1 = node($1, Node_rule_list,
(NODE*) NULL);
$$ = append_right($1,
node($2, Node_rule_list, (NODE *) NULL));
}
yyerrok;
}
| error { $$ = NULL; }
| program error { $$ = NULL; }
| /* empty */ { $$ = NULL; }
;
rule
: LEX_BEGIN { io_allowed = FALSE; }
action
{
if (begin_block != NULL) {
if (begin_block->type != Node_rule_list)
begin_block = node(begin_block, Node_rule_list,
(NODE *) NULL);
(void) append_right(begin_block, node(
node((NODE *) NULL, Node_rule_node, $3),
Node_rule_list, (NODE *) NULL) );
} else
begin_block = node((NODE *) NULL, Node_rule_node, $3);
$$ = NULL;
io_allowed = TRUE;
yyerrok;
}
| LEX_END { io_allowed = FALSE; }
action
{
if (end_block != NULL) {
if (end_block->type != Node_rule_list)
end_block = node(end_block, Node_rule_list,
(NODE *) NULL);
(void) append_right (end_block, node(
node((NODE *) NULL, Node_rule_node, $3),
Node_rule_list, (NODE *) NULL));
} else
end_block = node((NODE *) NULL, Node_rule_node, $3);
$$ = NULL;
io_allowed = TRUE;
yyerrok;
}
| LEX_BEGIN statement_term
{
warning("BEGIN blocks must have an action part");
errcount++;
yyerrok;
}
| LEX_END statement_term
{
warning("END blocks must have an action part");
errcount++;
yyerrok;
}
| pattern action
{ $$ = node($1, Node_rule_node, $2); yyerrok; }
| action
{ $$ = node((NODE *) NULL, Node_rule_node, $1); yyerrok; }
| pattern statement_term
{
$$ = node($1,
Node_rule_node,
node(node(node(make_number(0.0),
Node_field_spec,
(NODE *) NULL),
Node_expression_list,
(NODE *) NULL),
Node_K_print,
(NODE *) NULL));
yyerrok;
}
| function_prologue function_body
{
func_install($1, $2);
$$ = NULL;
yyerrok;
}
;
func_name
: NAME
{ $$ = $1; }
| FUNC_CALL
{ $$ = $1; }
| lex_builtin
{
yyerror("%s() is a built-in function, it cannot be redefined",
tokstart);
errcount++;
/* yyerrok; */
}
;
lex_builtin
: LEX_BUILTIN
| LEX_LENGTH
;
function_prologue
: LEX_FUNCTION
{
param_counter = 0;
}
func_name '(' opt_param_list r_paren opt_nls
{
NODE *t;
t = make_param($3);
t->flags |= FUNC;
$$ = append_right(t, $5);
can_return = TRUE;
/* check for duplicate parameter names */
if (dup_parms($$))
errcount++;
}
;
function_body
: l_brace statements r_brace opt_semi
{
$$ = $2;
can_return = FALSE;
}
| l_brace r_brace opt_semi opt_nls
{
$$ = node((NODE *) NULL, Node_K_return, (NODE *) NULL);
can_return = FALSE;
}
;
pattern
: exp
{ $$ = $1; }
| exp ',' exp
{ $$ = mkrangenode(node($1, Node_cond_pair, $3)); }
;
regexp
/*
* In this rule, want_regexp tells yylex that the next thing
* is a regexp so it should read up to the closing slash.
*/
: '/'
{ ++want_regexp; }
REGEXP '/'
{
NODE *n;
size_t len;
getnode(n);
n->type = Node_regex;
len = strlen($3);
n->re_exp = make_string($3, len);
n->re_reg = make_regexp($3, len, FALSE, TRUE);
n->re_text = NULL;
n->re_flags = CONST;
n->re_cnt = 1;
$$ = n;
}
;
action
: l_brace statements r_brace opt_semi opt_nls
{ $$ = $2; }
| l_brace r_brace opt_semi opt_nls
{ $$ = NULL; }
;
statements
: statement
{
$$ = $1;
if (do_lint && isnoeffect($$->type))
warning("statement may have no effect");
}
| statements statement
{
if ($1 == NULL || $1->type != Node_statement_list)
$1 = node($1, Node_statement_list, (NODE *) NULL);
$$ = append_right($1,
node($2, Node_statement_list, (NODE *) NULL));
yyerrok;
}
| error
{ $$ = NULL; }
| statements error
{ $$ = NULL; }
;
statement_term
: nls
| semi opt_nls
;
statement
: semi opt_nls
{ $$ = NULL; }
| l_brace r_brace
{ $$ = NULL; }
| l_brace statements r_brace
{ $$ = $2; }
| if_statement
{ $$ = $1; }
| LEX_WHILE '(' exp r_paren opt_nls statement
{ $$ = node($3, Node_K_while, $6); }
| LEX_DO opt_nls statement LEX_WHILE '(' exp r_paren opt_nls
{ $$ = node($6, Node_K_do, $3); }
| LEX_FOR '(' NAME LEX_IN NAME r_paren opt_nls statement
{
$$ = node($8, Node_K_arrayfor,
make_for_loop(variable($3, CAN_FREE, Node_var),
(NODE *) NULL, variable($5, CAN_FREE, Node_var_array)));
}
| LEX_FOR '(' opt_exp semi exp semi opt_exp r_paren opt_nls statement
{
$$ = node($10, Node_K_for, (NODE *) make_for_loop($3, $5, $7));
}
| LEX_FOR '(' opt_exp semi semi opt_exp r_paren opt_nls statement
{
$$ = node($9, Node_K_for,
(NODE *) make_for_loop($3, (NODE *) NULL, $6));
}
| LEX_BREAK statement_term
/* for break, maybe we'll have to remember where to break to */
{ $$ = node((NODE *) NULL, Node_K_break, (NODE *) NULL); }
| LEX_CONTINUE statement_term
/* similarly */
{ $$ = node((NODE *) NULL, Node_K_continue, (NODE *) NULL); }
| print '(' expression_list r_paren output_redir statement_term
{ $$ = node($3, $1, $5); }
| print opt_rexpression_list output_redir statement_term
{
if ($1 == Node_K_print && $2 == NULL) {
static int warned = FALSE;
$2 = node(node(make_number(0.0),
Node_field_spec,
(NODE *) NULL),
Node_expression_list,
(NODE *) NULL);
if (do_lint && ! io_allowed && ! warned) {
warned = TRUE;
warning(
"plain `print' in BEGIN or END rule should probably be `print \"\"'");
}
}
$$ = node($2, $1, $3);
}
| LEX_NEXT opt_exp statement_term
{ NODETYPE type;
if ($2) {
if ($2 == lookup("file")) {
static int warned = FALSE;
if (! warned) {
warned = TRUE;
warning("`next file' is obsolete; use `nextfile'");
}
if (do_lint)
warning("`next file' is a gawk extension");
if (do_traditional) {
/*
* can't use yyerror, since may have overshot
* the source line
*/
errcount++;
error("`next file' is a gawk extension");
}
if (! io_allowed) {
/* same thing */
errcount++;
error("`next file' used in BEGIN or END action");
}
type = Node_K_nextfile;
} else {
errcount++;
error("illegal expression after `next'");
type = Node_K_next; /* sanity */
}
} else {
if (! io_allowed)
yyerror("`next' used in BEGIN or END action");
type = Node_K_next;
}
$$ = node((NODE *) NULL, type, (NODE *) NULL);
}
| LEX_NEXTFILE statement_term
{
if (do_lint)
warning("`nextfile' is a gawk extension");
if (do_traditional) {
/*
* can't use yyerror, since may have overshot
* the source line
*/
errcount++;
error("`nextfile' is a gawk extension");
}
if (! io_allowed) {
/* same thing */
errcount++;
error("`nextfile' used in BEGIN or END action");
}
$$ = node((NODE *) NULL, Node_K_nextfile, (NODE *) NULL);
}
| LEX_EXIT opt_exp statement_term
{ $$ = node($2, Node_K_exit, (NODE *) NULL); }
| LEX_RETURN
{
if (! can_return)
yyerror("`return' used outside function context");
}
opt_exp statement_term
{ $$ = node($3, Node_K_return, (NODE *) NULL); }
| LEX_DELETE NAME '[' expression_list ']' statement_term
{ $$ = node(variable($2, CAN_FREE, Node_var_array), Node_K_delete, $4); }
| LEX_DELETE NAME statement_term
{
if (do_lint)
warning("`delete array' is a gawk extension");
if (do_traditional) {
/*
* can't use yyerror, since may have overshot
* the source line
*/
errcount++;
error("`delete array' is a gawk extension");
}
$$ = node(variable($2, CAN_FREE, Node_var_array), Node_K_delete, (NODE *) NULL);
}
| exp statement_term
{ $$ = $1; }
;
print
: LEX_PRINT
{ $$ = $1; }
| LEX_PRINTF
{ $$ = $1; }
;
if_statement
: LEX_IF '(' exp r_paren opt_nls statement
{
$$ = node($3, Node_K_if,
node($6, Node_if_branches, (NODE *) NULL));
}
| LEX_IF '(' exp r_paren opt_nls statement
LEX_ELSE opt_nls statement
{ $$ = node($3, Node_K_if,
node($6, Node_if_branches, $9)); }
;
nls
: NEWLINE
{ want_assign = FALSE; }
| nls NEWLINE
;
opt_nls
: /* empty */
| nls
;
input_redir
: /* empty */
{ $$ = NULL; }
| '<' simp_exp
{ $$ = node($2, Node_redirect_input, (NODE *) NULL); }
;
output_redir
: /* empty */
{ $$ = NULL; }
| '>' exp
{ $$ = node($2, Node_redirect_output, (NODE *) NULL); }
| APPEND_OP exp
{ $$ = node($2, Node_redirect_append, (NODE *) NULL); }
| '|' exp
{ $$ = node($2, Node_redirect_pipe, (NODE *) NULL); }
;
opt_param_list
: /* empty */
{ $$ = NULL; }
| param_list
{ $$ = $1; }
;
param_list
: NAME
{ $$ = make_param($1); }
| param_list comma NAME
{ $$ = append_right($1, make_param($3)); yyerrok; }
| error
{ $$ = NULL; }
| param_list error
{ $$ = NULL; }
| param_list comma error
{ $$ = NULL; }
;
/* optional expression, as in for loop */
opt_exp
: /* empty */
{ $$ = NULL; }
| exp
{ $$ = $1; }
;
opt_rexpression_list
: /* empty */
{ $$ = NULL; }
| rexpression_list
{ $$ = $1; }
;
rexpression_list
: rexp
{ $$ = node($1, Node_expression_list, (NODE *) NULL); }
| rexpression_list comma rexp
{
$$ = append_right($1,
node($3, Node_expression_list, (NODE *) NULL));
yyerrok;
}
| error
{ $$ = NULL; }
| rexpression_list error
{ $$ = NULL; }
| rexpression_list error rexp
{ $$ = NULL; }
| rexpression_list comma error
{ $$ = NULL; }
;
opt_expression_list
: /* empty */
{ $$ = NULL; }
| expression_list
{ $$ = $1; }
;
expression_list
: exp
{ $$ = node($1, Node_expression_list, (NODE *) NULL); }
| expression_list comma exp
{
$$ = append_right($1,
node($3, Node_expression_list, (NODE *) NULL));
yyerrok;
}
| error
{ $$ = NULL; }
| expression_list error
{ $$ = NULL; }
| expression_list error exp
{ $$ = NULL; }
| expression_list comma error
{ $$ = NULL; }
;
/* Expressions, not including the comma operator. */
exp : variable ASSIGNOP
{ want_assign = FALSE; }
exp
{
if (do_lint && $4->type == Node_regex)
warning("Regular expression on left of assignment.");
$$ = node($1, $2, $4);
}
| '(' expression_list r_paren LEX_IN NAME
{ $$ = node(variable($5, CAN_FREE, Node_var_array), Node_in_array, $2); }
| exp '|' LEX_GETLINE opt_variable
{
$$ = node($4, Node_K_getline,
node($1, Node_redirect_pipein, (NODE *) NULL));
}
| LEX_GETLINE opt_variable input_redir
{
if (do_lint && ! io_allowed && $3 == NULL)
warning("non-redirected getline undefined inside BEGIN or END action");
$$ = node($2, Node_K_getline, $3);
}
| exp LEX_AND exp
{ $$ = node($1, Node_and, $3); }
| exp LEX_OR exp
{ $$ = node($1, Node_or, $3); }
| exp MATCHOP exp
{
if ($1->type == Node_regex)
warning("Regular expression on left of MATCH operator.");
$$ = node($1, $2, mk_rexp($3));
}
| regexp
{
$$ = $1;
if (do_lint && tokstart[0] == '*') {
/* possible C comment */
int n = strlen(tokstart) - 1;
if (tokstart[n] == '*')
warning("regexp looks like a C comment, but is not");
}
}
| '!' regexp %prec UNARY
{
$$ = node(node(make_number(0.0),
Node_field_spec,
(NODE *) NULL),
Node_nomatch,
$2);
}
| exp LEX_IN NAME
{ $$ = node(variable($3, CAN_FREE, Node_var_array), Node_in_array, $1); }
| exp RELOP exp
{
if (do_lint && $3->type == Node_regex)
warning("Regular expression on left of comparison.");
$$ = node($1, $2, $3);
}
| exp '<' exp
{ $$ = node($1, Node_less, $3); }
| exp '>' exp
{ $$ = node($1, Node_greater, $3); }
| exp '?' exp ':' exp
{ $$ = node($1, Node_cond_exp, node($3, Node_if_branches, $5));}
| simp_exp
{ $$ = $1; }
| exp simp_exp %prec CONCAT_OP
{ $$ = node($1, Node_concat, $2); }
;
rexp
: variable ASSIGNOP
{ want_assign = FALSE; }
rexp
{ $$ = node($1, $2, $4); }
| rexp LEX_AND rexp
{ $$ = node($1, Node_and, $3); }
| rexp LEX_OR rexp
{ $$ = node($1, Node_or, $3); }
| LEX_GETLINE opt_variable input_redir
{
if (do_lint && ! io_allowed && $3 == NULL)
warning("non-redirected getline undefined inside BEGIN or END action");
$$ = node($2, Node_K_getline, $3);
}
| regexp
{ $$ = $1; }
| '!' regexp %prec UNARY
{ $$ = node((NODE *) NULL, Node_nomatch, $2); }
| rexp MATCHOP rexp
{ $$ = node($1, $2, mk_rexp($3)); }
| rexp LEX_IN NAME
{ $$ = node(variable($3, CAN_FREE, Node_var_array), Node_in_array, $1); }
| rexp RELOP rexp
{ $$ = node($1, $2, $3); }
| rexp '?' rexp ':' rexp
{ $$ = node($1, Node_cond_exp, node($3, Node_if_branches, $5));}
| simp_exp
{ $$ = $1; }
| rexp simp_exp %prec CONCAT_OP
{ $$ = node($1, Node_concat, $2); }
;
simp_exp
: non_post_simp_exp
/* Binary operators in order of decreasing precedence. */
| simp_exp '^' simp_exp
{ $$ = node($1, Node_exp, $3); }
| simp_exp '*' simp_exp
{ $$ = node($1, Node_times, $3); }
| simp_exp '/' simp_exp
{ $$ = node($1, Node_quotient, $3); }
| simp_exp '%' simp_exp
{ $$ = node($1, Node_mod, $3); }
| simp_exp '+' simp_exp
{ $$ = node($1, Node_plus, $3); }
| simp_exp '-' simp_exp
{ $$ = node($1, Node_minus, $3); }
| variable INCREMENT
{ $$ = node($1, Node_postincrement, (NODE *) NULL); }
| variable DECREMENT
{ $$ = node($1, Node_postdecrement, (NODE *) NULL); }
;
non_post_simp_exp
: '!' simp_exp %prec UNARY
{ $$ = node($2, Node_not, (NODE *) NULL); }
| '(' exp r_paren
{ $$ = $2; }
| LEX_BUILTIN
'(' opt_expression_list r_paren
{ $$ = snode($3, Node_builtin, (int) $1); }
| LEX_LENGTH '(' opt_expression_list r_paren
{ $$ = snode($3, Node_builtin, (int) $1); }
| LEX_LENGTH
{
if (do_lint)
warning("call of `length' without parentheses is not portable");
$$ = snode((NODE *) NULL, Node_builtin, (int) $1);
if (do_posix)
warning("call of `length' without parentheses is deprecated by POSIX");
}
| FUNC_CALL '(' opt_expression_list r_paren
{
$$ = node($3, Node_func_call, make_string($1, strlen($1)));
func_use($1, FUNC_USE);
param_sanity($3);
free($1);
}
| variable
| INCREMENT variable
{ $$ = node($2, Node_preincrement, (NODE *) NULL); }
| DECREMENT variable
{ $$ = node($2, Node_predecrement, (NODE *) NULL); }
| YNUMBER
{ $$ = $1; }
| YSTRING
{ $$ = $1; }
| '-' simp_exp %prec UNARY
{
if ($2->type == Node_val) {
$2->numbr = -(force_number($2));
$$ = $2;
} else
$$ = node($2, Node_unary_minus, (NODE *) NULL);
}
| '+' simp_exp %prec UNARY
{
/*
* was: $$ = $2
* POSIX semantics: force a conversion to numeric type
*/
$$ = node (make_number(0.0), Node_plus, $2);
}
;
opt_variable
: /* empty */
{ $$ = NULL; }
| variable
{ $$ = $1; }
;
variable
: NAME
{ $$ = variable($1, CAN_FREE, Node_var); }
| NAME '[' expression_list ']'
{
if ($3->rnode == NULL) {
$$ = node(variable($1, CAN_FREE, Node_var_array), Node_subscript, $3->lnode);
freenode($3);
} else
$$ = node(variable($1, CAN_FREE, Node_var_array), Node_subscript, $3);
}
| '$' non_post_simp_exp
{ $$ = node($2, Node_field_spec, (NODE *) NULL); }
;
l_brace
: '{' opt_nls
;
r_brace
: '}' opt_nls { yyerrok; }
;
r_paren
: ')' { yyerrok; }
;
opt_semi
: /* empty */
| semi
;
semi
: ';' { yyerrok; want_assign = FALSE; }
;
comma : ',' opt_nls { yyerrok; }
;
%%
struct token {
const char *operator; /* text to match */
NODETYPE value; /* node type */
int class; /* lexical class */
unsigned flags; /* # of args. allowed and compatability */
# define ARGS 0xFF /* 0, 1, 2, 3 args allowed (any combination */
# define A(n) (1<<(n))
# define VERSION 0xFF00 /* old awk is zero */
# define NOT_OLD 0x0100 /* feature not in old awk */
# define NOT_POSIX 0x0200 /* feature not in POSIX */
# define GAWKX 0x0400 /* gawk extension */
# define RESX 0x0800 /* Bell Labs Research extension */
NODE *(*ptr)(); /* function that implements this keyword */
};
extern NODE
*do_exp(), *do_getline(), *do_index(), *do_length(),
*do_sqrt(), *do_log(), *do_sprintf(), *do_substr(),
*do_split(), *do_system(), *do_int(), *do_close(),
*do_atan2(), *do_sin(), *do_cos(), *do_rand(),
*do_srand(), *do_match(), *do_tolower(), *do_toupper(),
*do_sub(), *do_gsub(), *do_strftime(), *do_systime(),
*do_fflush();
/* Tokentab is sorted ascii ascending order, so it can be binary searched. */
static struct token tokentab[] = {
{"BEGIN", Node_illegal, LEX_BEGIN, 0, 0},
{"END", Node_illegal, LEX_END, 0, 0},
#ifdef BITOPS
{"and", Node_builtin, LEX_BUILTIN, GAWKX|A(2), do_and},
#endif /* BITOPS */
{"atan2", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2), do_atan2},
{"break", Node_K_break, LEX_BREAK, 0, 0},
{"close", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_close},
#ifdef BITOPS
{"compl", Node_builtin, LEX_BUILTIN, GAWKX|A(1), do_compl},
#endif /* BITOPS */
{"continue", Node_K_continue, LEX_CONTINUE, 0, 0},
{"cos", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_cos},
{"delete", Node_K_delete, LEX_DELETE, NOT_OLD, 0},
{"do", Node_K_do, LEX_DO, NOT_OLD, 0},
{"else", Node_illegal, LEX_ELSE, 0, 0},
{"exit", Node_K_exit, LEX_EXIT, 0, 0},
{"exp", Node_builtin, LEX_BUILTIN, A(1), do_exp},
{"fflush", Node_builtin, LEX_BUILTIN, RESX|A(0)|A(1), do_fflush},
{"for", Node_K_for, LEX_FOR, 0, 0},
{"func", Node_K_function, LEX_FUNCTION, NOT_POSIX|NOT_OLD, 0},
{"function", Node_K_function, LEX_FUNCTION, NOT_OLD, 0},
{"gensub", Node_builtin, LEX_BUILTIN, GAWKX|A(3)|A(4), do_gensub},
{"getline", Node_K_getline, LEX_GETLINE, NOT_OLD, 0},
{"gsub", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2)|A(3), do_gsub},
{"if", Node_K_if, LEX_IF, 0, 0},
{"in", Node_illegal, LEX_IN, 0, 0},
{"index", Node_builtin, LEX_BUILTIN, A(2), do_index},
{"int", Node_builtin, LEX_BUILTIN, A(1), do_int},
{"length", Node_builtin, LEX_LENGTH, A(0)|A(1), do_length},
{"log", Node_builtin, LEX_BUILTIN, A(1), do_log},
#ifdef BITOPS
{"lshift", Node_builtin, LEX_BUILTIN, GAWKX|A(2), do_lshift},
#endif /* BITOPS */
{"match", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2), do_match},
{"next", Node_K_next, LEX_NEXT, 0, 0},
{"nextfile", Node_K_nextfile, LEX_NEXTFILE, GAWKX, 0},
#ifdef BITOPS
{"or", Node_builtin, LEX_BUILTIN, GAWKX|A(2), do_or},
#endif /* BITOPS */
{"print", Node_K_print, LEX_PRINT, 0, 0},
{"printf", Node_K_printf, LEX_PRINTF, 0, 0},
{"rand", Node_builtin, LEX_BUILTIN, NOT_OLD|A(0), do_rand},
{"return", Node_K_return, LEX_RETURN, NOT_OLD, 0},
#ifdef BITOPS
{"rshift", Node_builtin, LEX_BUILTIN, GAWKX|A(2), do_rshift},
#endif /* BITOPS */
{"sin", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_sin},
{"split", Node_builtin, LEX_BUILTIN, A(2)|A(3), do_split},
{"sprintf", Node_builtin, LEX_BUILTIN, 0, do_sprintf},
{"sqrt", Node_builtin, LEX_BUILTIN, A(1), do_sqrt},
{"srand", Node_builtin, LEX_BUILTIN, NOT_OLD|A(0)|A(1), do_srand},
{"strftime", Node_builtin, LEX_BUILTIN, GAWKX|A(0)|A(1)|A(2), do_strftime},
#ifdef BITOPS
{"strtonum", Node_builtin, LEX_BUILTIN, GAWKX|A(1), do_strtonum},
#endif /* BITOPS */
{"sub", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2)|A(3), do_sub},
{"substr", Node_builtin, LEX_BUILTIN, A(2)|A(3), do_substr},
{"system", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_system},
{"systime", Node_builtin, LEX_BUILTIN, GAWKX|A(0), do_systime},
{"tolower", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_tolower},
{"toupper", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_toupper},
{"while", Node_K_while, LEX_WHILE, 0, 0},
#ifdef BITOPS
{"xor", Node_builtin, LEX_BUILTIN, GAWKX|A(2), do_xor},
#endif /* BITOPS */
};
/* yyerror --- print a syntax error message, show where */
#if defined(HAVE_STDARG_H) && defined(__STDC__) && __STDC__
static void
yyerror(const char *m, ...)
#else
/* VARARGS0 */
static void
yyerror(va_alist)
va_dcl
#endif
{
va_list args;
const char *mesg = NULL;
register char *bp, *cp;
char *scan;
char buf[120];
static char end_of_file_line[] = "(END OF FILE)";
errcount++;
/* Find the current line in the input file */
if (lexptr && lexeme) {
if (thisline == NULL) {
cp = lexeme;
if (*cp == '\n') {
cp--;
mesg = "unexpected newline";
}
for (; cp != lexptr_begin && *cp != '\n'; --cp)
continue;
if (*cp == '\n')
cp++;
thisline = cp;
}
/* NL isn't guaranteed */
bp = lexeme;
while (bp < lexend && *bp && *bp != '\n')
bp++;
} else {
thisline = end_of_file_line;
bp = thisline + strlen(thisline);
}
msg("%.*s", (int) (bp - thisline), thisline);
bp = buf;
cp = buf + sizeof(buf) - 24; /* 24 more than longest msg. input */
if (lexptr != NULL) {
scan = thisline;
while (bp < cp && scan < lexeme)
if (*scan++ == '\t')
*bp++ = '\t';
else
*bp++ = ' ';
*bp++ = '^';
*bp++ = ' ';
}
#if defined(HAVE_STDARG_H) && defined(__STDC__) && __STDC__
va_start(args, m);
if (mesg == NULL)
mesg = m;
#else
va_start(args);
if (mesg == NULL)
mesg = va_arg(args, char *);
#endif
strcpy(bp, mesg);
err("", buf, args);
va_end(args);
}
/* get_src_buf --- read the next buffer of source program */
static char *
get_src_buf()
{
static int samefile = FALSE;
static int nextfile = 0;
static char *buf = NULL;
static int fd;
int n;
register char *scan;
static int len = 0;
static int did_newline = FALSE;
int newfile;
struct stat sbuf;
# define SLOP 128 /* enough space to hold most source lines */
again:
newfile = FALSE;
if (nextfile > numfiles)
return NULL;
if (srcfiles[nextfile].stype == CMDLINE) {
if (len == 0) {
len = strlen(srcfiles[nextfile].val);
if (len == 0) {
/*
* Yet Another Special case:
* gawk '' /path/name
* Sigh.
*/
static int warned = FALSE;
if (do_lint && ! warned) {
warned = TRUE;
warning("empty program text on command line");
}
++nextfile;
goto again;
}
sourceline = 1;
lexptr = lexptr_begin = srcfiles[nextfile].val;
lexend = lexptr + len;
} else if (! did_newline && *(lexptr-1) != '\n') {
/*
* The following goop is to ensure that the source
* ends with a newline and that the entire current
* line is available for error messages.
*/
int offset;
did_newline = TRUE;
offset = lexptr - lexeme;
for (scan = lexeme; scan > lexptr_begin; scan--)
if (*scan == '\n') {
scan++;
break;
}
len = lexptr - scan;
emalloc(buf, char *, len+1, "get_src_buf");
memcpy(buf, scan, len);
thisline = buf;
lexptr = buf + len;
*lexptr = '\n';
lexeme = lexptr - offset;
lexptr_begin = buf;
lexend = lexptr + 1;
} else {
len = 0;
lexeme = lexptr = lexptr_begin = NULL;
}
if (lexptr == NULL && ++nextfile <= numfiles)
goto again;
return lexptr;
}
if (! samefile) {
source = srcfiles[nextfile].val;
if (source == NULL) {
if (buf != NULL) {
free(buf);
buf = NULL;
}
len = 0;
return lexeme = lexptr = lexptr_begin = NULL;
}
fd = pathopen(source);
if (fd <= INVALID_HANDLE) {
char *in;
/* suppress file name and line no. in error mesg */
in = source;
source = NULL;
fatal("can't open source file \"%s\" for reading (%s)",
in, strerror(errno));
}
len = optimal_bufsize(fd, & sbuf);
newfile = TRUE;
if (buf != NULL)
free(buf);
emalloc(buf, char *, len + SLOP, "get_src_buf");
lexptr_begin = buf + SLOP;
samefile = TRUE;
sourceline = 1;
} else {
/*
* Here, we retain the current source line (up to length SLOP)
* in the beginning of the buffer that was overallocated above
*/
int offset;
int linelen;
offset = lexptr - lexeme;
for (scan = lexeme; scan > lexptr_begin; scan--)
if (*scan == '\n') {
scan++;
break;
}
linelen = lexptr - scan;
if (linelen > SLOP)
linelen = SLOP;
thisline = buf + SLOP - linelen;
memcpy(thisline, scan, linelen);
lexeme = buf + SLOP - offset;
lexptr_begin = thisline;
}
n = read(fd, buf + SLOP, len);
if (n == -1)
fatal("can't read sourcefile \"%s\" (%s)",
source, strerror(errno));
if (n == 0) {
if (newfile) {
static int warned = FALSE;
if (do_lint && ! warned) {
warned = TRUE;
warning("source file `%s' is empty", source);
}
}
close(fd);
samefile = FALSE;
nextfile++;
if (lexeme)
*lexeme = '\0';
len = 0;
goto again;
}
lexptr = buf + SLOP;
lexend = lexptr + n;
return buf;
}
/* tokadd --- add a character to the token buffer */
#define tokadd(x) (*tok++ = (x), tok == tokend ? tokexpand() : tok)
/* tokexpand --- grow the token buffer */
char *
tokexpand()
{
static int toksize = 60;
int tokoffset;
tokoffset = tok - tokstart;
toksize *= 2;
if (tokstart != NULL)
erealloc(tokstart, char *, toksize, "tokexpand");
else
emalloc(tokstart, char *, toksize, "tokexpand");
tokend = tokstart + toksize;
tok = tokstart + tokoffset;
return tok;
}
/* nextc --- get the next input character */
#if DEBUG
int
nextc()
{
int c;
if (lexptr && lexptr < lexend)
c = *lexptr++;
else if (get_src_buf())
c = *lexptr++;
else
c = EOF;
return c;
}
#else
#define nextc() ((lexptr && lexptr < lexend) ? \
*lexptr++ : \
(get_src_buf() ? *lexptr++ : EOF) \
)
#endif
/* pushback --- push a character back on the input */
#define pushback() (lexptr && lexptr > lexptr_begin ? lexptr-- : lexptr)
/* allow_newline --- allow newline after &&, ||, ? and : */
static void
allow_newline()
{
int c;
for (;;) {
c = nextc();
if (c == EOF)
break;
if (c == '#') {
while ((c = nextc()) != '\n' && c != EOF)
continue;
if (c == EOF)
break;
}
if (c == '\n')
sourceline++;
if (! isspace(c)) {
pushback();
break;
}
}
}
/* yylex --- Read the input and turn it into tokens. */
static int
yylex()
{
register int c, c1;
int seen_e = FALSE; /* These are for numbers */
int seen_point = FALSE;
int esc_seen; /* for literal strings */
int low, mid, high;
static int did_newline = FALSE;
char *tokkey;
static int lasttok = 0, eof_warned = FALSE;
int inhex = FALSE;
if (nextc() == EOF) {
if (lasttok != NEWLINE) {
lasttok = NEWLINE;
if (do_lint && ! eof_warned) {
warning("source file does not end in newline");
eof_warned = TRUE;
}
return NEWLINE; /* fake it */
}
return 0;
}
pushback();
#ifdef OS2
/*
* added for OS/2's extproc feature of cmd.exe
* (like #! in BSD sh)
*/
if (strncasecmp(lexptr, "extproc ", 8) == 0) {
while (*lexptr && *lexptr != '\n')
lexptr++;
}
#endif
lexeme = lexptr;
thisline = NULL;
if (want_regexp) {
int in_brack = 0; /* count brackets, [[:alnum:]] allowed */
/*
* Counting brackets is non-trivial. [[] is ok,
* and so is [\]], with a point being that /[/]/ as a regexp
* constant has to work.
*
* Do not count [ or ] if either one is preceded by a \.
* A `[' should be counted if
* a) it is the first one so far (in_brack == 0)
* b) it is the `[' in `[:'
* A ']' should be counted if not preceded by a \, since
* it is either closing `:]' or just a plain list.
* According to POSIX, []] is how you put a ] into a set.
* Try to handle that too.
*
* The code for \ handles \[ and \].
*/
want_regexp = FALSE;
tok = tokstart;
for (;;) {
c = nextc();
switch (c) {
case '[':
/* one day check for `.' and `=' too */
if ((c1 = nextc()) == ':' || in_brack == 0)
in_brack++;
pushback();
break;
case ']':
if (tokstart[0] == '['
&& (tok == tokstart + 1
|| (tok == tokstart + 2
&& tokstart[1] == '^')))
/* do nothing */;
else
in_brack--;
break;
case '\\':
if ((c = nextc()) == EOF) {
yyerror("unterminated regexp ends with \\ at end of file");
return lasttok = REGEXP; /* kludge */
} else if (c == '\n') {
sourceline++;
continue;
} else {
tokadd('\\');
tokadd(c);
continue;
}
break;
case '/': /* end of the regexp */
if (in_brack > 0)
break;
pushback();
tokadd('\0');
yylval.sval = tokstart;
return lasttok = REGEXP;
case '\n':
pushback();
yyerror("unterminated regexp");
return lasttok = REGEXP; /* kludge */
case EOF:
yyerror("unterminated regexp at end of file");
return lasttok = REGEXP; /* kludge */
}
tokadd(c);
}
}
retry:
while ((c = nextc()) == ' ' || c == '\t')
continue;
lexeme = lexptr ? lexptr - 1 : lexptr;
thisline = NULL;
tok = tokstart;
yylval.nodetypeval = Node_illegal;
switch (c) {
case EOF:
if (lasttok != NEWLINE) {
lasttok = NEWLINE;
if (do_lint && ! eof_warned) {
warning("source file does not end in newline");
eof_warned = TRUE;
}
return NEWLINE; /* fake it */
}
return 0;
case '\n':
sourceline++;
return lasttok = NEWLINE;
case '#': /* it's a comment */
while ((c = nextc()) != '\n') {
if (c == EOF) {
if (lasttok != NEWLINE) {
lasttok = NEWLINE;
if (do_lint && ! eof_warned) {
warning(
"source file does not end in newline");
eof_warned = TRUE;
}
return NEWLINE; /* fake it */
}
return 0;
}
}
sourceline++;
return lasttok = NEWLINE;
case '\\':
#ifdef RELAXED_CONTINUATION
/*
* This code puports to allow comments and/or whitespace
* after the `\' at the end of a line used for continuation.
* Use it at your own risk. We think it's a bad idea, which
* is why it's not on by default.
*/
if (! do_traditional) {
/* strip trailing white-space and/or comment */
while ((c = nextc()) == ' ' || c == '\t')
continue;
if (c == '#') {
if (do_lint)
warning(
"use of `\\ #...' line continuation is not portable");
while ((c = nextc()) != '\n')
if (c == EOF)
break;
}
pushback();
}
#endif /* RELAXED_CONTINUATION */
if (nextc() == '\n') {
sourceline++;
goto retry;
} else {
yyerror("backslash not last character on line");
exit(1);
}
break;
case '$':
want_assign = TRUE;
return lasttok = '$';
case ':':
case '?':
allow_newline();
/* fall through */
case ')':
case ']':
case '(':
case '[':
case ';':
case '{':
case ',':
return lasttok = c;
case '*':
if ((c = nextc()) == '=') {
yylval.nodetypeval = Node_assign_times;
return lasttok = ASSIGNOP;
} else if (do_posix) {
pushback();
return lasttok = '*';
} else if (c == '*') {
/* make ** and **= aliases for ^ and ^= */
static int did_warn_op = FALSE, did_warn_assgn = FALSE;
if (nextc() == '=') {
if (do_lint && ! did_warn_assgn) {
did_warn_assgn = TRUE;
warning("**= is not allowed by POSIX");
warning("operator `**=' is not supported in old awk");
}
yylval.nodetypeval = Node_assign_exp;
return ASSIGNOP;
} else {
pushback();
if (do_lint && ! did_warn_op) {
did_warn_op = TRUE;
warning("** is not allowed by POSIX");
warning("operator `**' is not supported in old awk");
}
return lasttok = '^';
}
}
pushback();
return lasttok = '*';
case '/':
if (want_assign) {
if (nextc() == '=') {
yylval.nodetypeval = Node_assign_quotient;
return lasttok = ASSIGNOP;
}
pushback();
}
return lasttok = '/';
case '%':
if (nextc() == '=') {
yylval.nodetypeval = Node_assign_mod;
return lasttok = ASSIGNOP;
}
pushback();
return lasttok = '%';
case '^':
{
static int did_warn_op = FALSE, did_warn_assgn = FALSE;
if (nextc() == '=') {
if (do_lint && ! did_warn_assgn) {
did_warn_assgn = TRUE;
warning("operator `^=' is not supported in old awk");
}
yylval.nodetypeval = Node_assign_exp;
return lasttok = ASSIGNOP;
}
pushback();
if (do_lint && ! did_warn_op) {
did_warn_op = TRUE;
warning("operator `^' is not supported in old awk");
}
return lasttok = '^';
}
case '+':
if ((c = nextc()) == '=') {
yylval.nodetypeval = Node_assign_plus;
return lasttok = ASSIGNOP;
}
if (c == '+')
return lasttok = INCREMENT;
pushback();
return lasttok = '+';
case '!':
if ((c = nextc()) == '=') {
yylval.nodetypeval = Node_notequal;
return lasttok = RELOP;
}
if (c == '~') {
yylval.nodetypeval = Node_nomatch;
want_assign = FALSE;
return lasttok = MATCHOP;
}
pushback();
return lasttok = '!';
case '<':
if (nextc() == '=') {
yylval.nodetypeval = Node_leq;
return lasttok = RELOP;
}
yylval.nodetypeval = Node_less;
pushback();
return lasttok = '<';
case '=':
if (nextc() == '=') {
yylval.nodetypeval = Node_equal;
return lasttok = RELOP;
}
yylval.nodetypeval = Node_assign;
pushback();
return lasttok = ASSIGNOP;
case '>':
if ((c = nextc()) == '=') {
yylval.nodetypeval = Node_geq;
return lasttok = RELOP;
} else if (c == '>') {
yylval.nodetypeval = Node_redirect_append;
return lasttok = APPEND_OP;
}
yylval.nodetypeval = Node_greater;
pushback();
return lasttok = '>';
case '~':
yylval.nodetypeval = Node_match;
want_assign = FALSE;
return lasttok = MATCHOP;
case '}':
/*
* Added did newline stuff. Easier than
* hacking the grammar.
*/
if (did_newline) {
did_newline = FALSE;
return lasttok = c;
}
did_newline++;
--lexptr; /* pick up } next time */
return lasttok = NEWLINE;
case '"':
esc_seen = FALSE;
while ((c = nextc()) != '"') {
if (c == '\n') {
pushback();
yyerror("unterminated string");
exit(1);
}
if (c == '\\') {
c = nextc();
if (c == '\n') {
sourceline++;
continue;
}
esc_seen = TRUE;
tokadd('\\');
}
if (c == EOF) {
pushback();
yyerror("unterminated string");
exit(1);
}
tokadd(c);
}
yylval.nodeval = make_str_node(tokstart,
tok - tokstart, esc_seen ? SCAN : 0);
yylval.nodeval->flags |= PERM;
return lasttok = YSTRING;
case '-':
if ((c = nextc()) == '=') {
yylval.nodetypeval = Node_assign_minus;
return lasttok = ASSIGNOP;
}
if (c == '-')
return lasttok = DECREMENT;
pushback();
return lasttok = '-';
case '.':
c = nextc();
pushback();
if (! isdigit(c))
return lasttok = '.';
else
c = '.';
/* FALL THROUGH */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/* It's a number */
for (;;) {
int gotnumber = FALSE;
tokadd(c);
switch (c) {
#ifdef BITOPS
case 'x':
case 'X':
if (do_traditional)
goto done;
if (tok == tokstart + 2)
inhex = TRUE;
break;
#endif /* BITOTS */
case '.':
if (seen_point) {
gotnumber = TRUE;
break;
}
seen_point = TRUE;
break;
case 'e':
case 'E':
if (inhex)
break;
if (seen_e) {
gotnumber = TRUE;
break;
}
seen_e = TRUE;
if ((c = nextc()) == '-' || c == '+')
tokadd(c);
else
pushback();
break;
#ifdef BITOPS
case 'a':
case 'A':
case 'b':
case 'B':
case 'c':
case 'C':
case 'D':
case 'd':
case 'f':
case 'F':
if (do_traditional || ! inhex)
goto done;
/* fall through */
#endif
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
break;
default:
done:
gotnumber = TRUE;
}
if (gotnumber)
break;
c = nextc();
}
if (c != EOF)
pushback();
else if (do_lint && ! eof_warned) {
warning("source file does not end in newline");
eof_warned = TRUE;
}
tokadd('\0');
#ifdef BITOPS
if (! do_traditional && isnondecimal(tokstart))
yylval.nodeval = make_number(nondec2awknum(tokstart, strlen(tokstart)));
else
#endif /* BITOPS */
yylval.nodeval = make_number(atof(tokstart));
yylval.nodeval->flags |= PERM;
return lasttok = YNUMBER;
case '&':
if ((c = nextc()) == '&') {
yylval.nodetypeval = Node_and;
allow_newline();
want_assign = FALSE;
return lasttok = LEX_AND;
}
pushback();
return lasttok = '&';
case '|':
if ((c = nextc()) == '|') {
yylval.nodetypeval = Node_or;
allow_newline();
want_assign = FALSE;
return lasttok = LEX_OR;
}
pushback();
return lasttok = '|';
}
if (c != '_' && ! isalpha(c)) {
yyerror("Invalid char '%c' in expression\n", c);
exit(1);
}
/* it's some type of name-type-thing. Find its length. */
tok = tokstart;
while (is_identchar(c)) {
tokadd(c);
c = nextc();
}
tokadd('\0');
emalloc(tokkey, char *, tok - tokstart, "yylex");
memcpy(tokkey, tokstart, tok - tokstart);
if (c != EOF)
pushback();
else if (do_lint && ! eof_warned) {
warning("source file does not end in newline");
eof_warned = TRUE;
}
/* See if it is a special token. */
low = 0;
high = (sizeof(tokentab) / sizeof(tokentab[0])) - 1;
while (low <= high) {
int i;
mid = (low + high) / 2;
c = *tokstart - tokentab[mid].operator[0];
i = c ? c : strcmp(tokstart, tokentab[mid].operator);
if (i < 0) /* token < mid */
high = mid - 1;
else if (i > 0) /* token > mid */
low = mid + 1;
else {
if (do_lint) {
if (tokentab[mid].flags & GAWKX)
warning("%s() is a gawk extension",
tokentab[mid].operator);
if (tokentab[mid].flags & RESX)
warning("%s() is a Bell Labs extension",
tokentab[mid].operator);
if (tokentab[mid].flags & NOT_POSIX)
warning("POSIX does not allow %s",
tokentab[mid].operator);
}
if (do_lint_old && (tokentab[mid].flags & NOT_OLD))
warning("%s is not supported in old awk",
tokentab[mid].operator);
if ((do_traditional && (tokentab[mid].flags & GAWKX))
|| (do_posix && (tokentab[mid].flags & NOT_POSIX)))
break;
if (tokentab[mid].class == LEX_BUILTIN
|| tokentab[mid].class == LEX_LENGTH
)
yylval.lval = mid;
else
yylval.nodetypeval = tokentab[mid].value;
free(tokkey);
return lasttok = tokentab[mid].class;
}
}
yylval.sval = tokkey;
if (*lexptr == '(')
return lasttok = FUNC_CALL;
else {
want_assign = TRUE;
return lasttok = NAME;
}
}
/* node_common --- common code for allocating a new node */
static NODE *
node_common(op)
NODETYPE op;
{
register NODE *r;
getnode(r);
r->type = op;
r->flags = MALLOC;
/* if lookahead is NL, lineno is 1 too high */
if (lexeme && *lexeme == '\n')
r->source_line = sourceline - 1;
else
r->source_line = sourceline;
r->source_file = source;
return r;
}
/* node --- allocates a node with defined lnode and rnode. */
NODE *
node(left, op, right)
NODE *left, *right;
NODETYPE op;
{
register NODE *r;
r = node_common(op);
r->lnode = left;
r->rnode = right;
return r;
}
/* snode --- allocate a node with defined subnode and proc for builtin
functions. Checks for arg. count and supplies defaults where
possible. */
static NODE *
snode(subn, op, idx)
NODETYPE op;
int idx;
NODE *subn;
{
register NODE *r;
register NODE *n;
int nexp = 0;
int args_allowed;
r = node_common(op);
/* traverse expression list to see how many args. given */
for (n = subn; n != NULL; n = n->rnode) {
nexp++;
if (nexp > 3)
break;
}
/* check against how many args. are allowed for this builtin */
args_allowed = tokentab[idx].flags & ARGS;
if (args_allowed && (args_allowed & A(nexp)) == 0)
fatal("%s() cannot have %d argument%c",
tokentab[idx].operator, nexp, nexp == 1 ? ' ' : 's');
r->proc = tokentab[idx].ptr;
/* special case processing for a few builtins */
/*
* FIXME: go through these to make sure that everything done
* here is really right. Move anything that's not into
* the corresponding routine.
*/
if (nexp == 0 && r->proc == do_length) {
subn = node(node(make_number(0.0), Node_field_spec, (NODE *) NULL),
Node_expression_list,
(NODE *) NULL);
} else if (r->proc == do_match) {
if (subn->rnode->lnode->type != Node_regex)
subn->rnode->lnode = mk_rexp(subn->rnode->lnode);
} else if (r->proc == do_sub || r->proc == do_gsub) {
if (subn->lnode->type != Node_regex)
subn->lnode = mk_rexp(subn->lnode);
if (nexp == 2)
append_right(subn, node(node(make_number(0.0),
Node_field_spec,
(NODE *) NULL),
Node_expression_list,
(NODE *) NULL));
else if (subn->rnode->rnode->lnode->type == Node_val) {
if (do_lint)
warning("string literal as last arg of substitute");
} else if (! isassignable(subn->rnode->rnode->lnode))
yyerror("%s third parameter is not a changeable object",
r->proc == do_sub ? "sub" : "gsub");
} else if (r->proc == do_gensub) {
if (subn->lnode->type != Node_regex)
subn->lnode = mk_rexp(subn->lnode);
if (nexp == 3)
append_right(subn, node(node(make_number(0.0),
Node_field_spec,
(NODE *) NULL),
Node_expression_list,
(NODE *) NULL));
} else if (r->proc == do_split) {
if (nexp == 2)
append_right(subn,
node(FS_node, Node_expression_list, (NODE *) NULL));
n = subn->rnode->rnode->lnode;
if (n->type != Node_regex)
subn->rnode->rnode->lnode = mk_rexp(n);
if (nexp == 2)
subn->rnode->rnode->lnode->re_flags |= FS_DFLT;
}
r->subnode = subn;
return r;
}
/*
* mkrangenode:
* This allocates a Node_line_range node with defined condpair and
* zeroes the trigger word to avoid the temptation of assuming that calling
* 'node( foo, Node_line_range, 0)' will properly initialize 'triggered'.
* Otherwise like node().
*/
static NODE *
mkrangenode(cpair)
NODE *cpair;
{
register NODE *r;
getnode(r);
r->type = Node_line_range;
r->condpair = cpair;
r->triggered = FALSE;
return r;
}
/* make_for_loop --- build a for loop */
static NODE *
make_for_loop(init, cond, incr)
NODE *init, *cond, *incr;
{
register FOR_LOOP_HEADER *r;
NODE *n;
emalloc(r, FOR_LOOP_HEADER *, sizeof(FOR_LOOP_HEADER), "make_for_loop");
getnode(n);
n->type = Node_illegal;
r->init = init;
r->cond = cond;
r->incr = incr;
n->sub.nodep.r.hd = r;
return n;
}
/* dup_parms --- return TRUE if there are duplicate parameters */
static int
dup_parms(func)
NODE *func;
{
register NODE *np;
char *fname, **names;
int count, i, j, dups;
NODE *params;
if (func == NULL) /* error earlier */
return TRUE;
fname = func->param;
count = func->param_cnt;
params = func->rnode;
if (count == 0) /* no args, no problem */
return FALSE;
if (params == NULL) /* error earlier */
return TRUE;
emalloc(names, char **, count * sizeof(char *), "dup_parms");
i = 0;
for (np = params; np != NULL; np = np->rnode) {
if (np->param == NULL) { /* error earlier, give up, go home */
free(names);
return TRUE;
}
names[i++] = np->param;
}
dups = 0;
for (i = 1; i < count; i++) {
for (j = 0; j < i; j++) {
if (strcmp(names[i], names[j]) == 0) {
dups++;
error(
"function `%s': parameter #%d, `%s', duplicates parameter #%d",
fname, i+1, names[j], j+1);
}
}
}
free(names);
return (dups > 0 ? TRUE : FALSE);
}
/*
* install:
* Install a name in the symbol table, even if it is already there.
* Caller must check against redefinition if that is desired.
*/
NODE *
install(name, value)
char *name;
NODE *value;
{
register NODE *hp;
register size_t len;
register int bucket;
len = strlen(name);
bucket = hash(name, len, (unsigned long) HASHSIZE);
getnode(hp);
hp->type = Node_hashnode;
hp->hnext = variables[bucket];
variables[bucket] = hp;
hp->hlength = len;
hp->hvalue = value;
hp->hname = name;
hp->hvalue->vname = name;
return hp->hvalue;
}
/* lookup --- find the most recent hash node for name installed by install */
NODE *
lookup(name)
const char *name;
{
register NODE *bucket;
register size_t len;
len = strlen(name);
for (bucket = variables[hash(name, len, (unsigned long) HASHSIZE)];
bucket != NULL; bucket = bucket->hnext)
if (bucket->hlength == len && STREQN(bucket->hname, name, len))
return bucket->hvalue;
return NULL;
}
/*
* append_right:
* Add new to the rightmost branch of LIST. This uses n^2 time, so we make
* a simple attempt at optimizing it.
*/
static NODE *
append_right(list, new)
NODE *list, *new;
{
register NODE *oldlist;
static NODE *savefront = NULL, *savetail = NULL;
oldlist = list;
if (savefront == oldlist) {
savetail = savetail->rnode = new;
return oldlist;
} else
savefront = oldlist;
while (list->rnode != NULL)
list = list->rnode;
savetail = list->rnode = new;
return oldlist;
}
/*
* func_install:
* check if name is already installed; if so, it had better have Null value,
* in which case def is added as the value. Otherwise, install name with def
* as value.
*/
static void
func_install(params, def)
NODE *params;
NODE *def;
{
NODE *r;
pop_params(params->rnode);
pop_var(params, FALSE);
r = lookup(params->param);
if (r != NULL) {
fatal("function name `%s' previously defined", params->param);
} else
(void) install(params->param, node(params, Node_func, def));
func_use(params->param, FUNC_DEFINE);
}
/* pop_var --- remove a variable from the symbol table */
static void
pop_var(np, freeit)
NODE *np;
int freeit;
{
register NODE *bucket, **save;
register size_t len;
char *name;
name = np->param;
len = strlen(name);
save = &(variables[hash(name, len, (unsigned long) HASHSIZE)]);
for (bucket = *save; bucket != NULL; bucket = bucket->hnext) {
if (len == bucket->hlength && STREQN(bucket->hname, name, len)) {
*save = bucket->hnext;
freenode(bucket);
if (freeit)
free(np->param);
return;
}
save = &(bucket->hnext);
}
}
/* pop_params --- remove list of function parameters from symbol table */
/*
* pop parameters out of the symbol table. do this in reverse order to
* avoid reading freed memory if there were duplicated parameters.
*/
static void
pop_params(params)
NODE *params;
{
if (params == NULL)
return;
pop_params(params->rnode);
pop_var(params, TRUE);
}
/* make_param --- make NAME into a function parameter */
static NODE *
make_param(name)
char *name;
{
NODE *r;
getnode(r);
r->type = Node_param_list;
r->rnode = NULL;
r->param = name;
r->param_cnt = param_counter++;
return (install(name, r));
}
static struct fdesc {
char *name;
short used;
short defined;
struct fdesc *next;
} *ftable[HASHSIZE];
/* func_use --- track uses and definitions of functions */
static void
func_use(name, how)
char *name;
enum defref how;
{
struct fdesc *fp;
int len;
int ind;
len = strlen(name);
ind = hash(name, len, HASHSIZE);
for (fp = ftable[ind]; fp != NULL; fp = fp->next) {
if (strcmp(fp->name, name) == 0) {
if (how == FUNC_DEFINE)
fp->defined++;
else
fp->used++;
return;
}
}
/* not in the table, fall through to allocate a new one */
emalloc(fp, struct fdesc *, sizeof(struct fdesc), "func_use");
memset(fp, '\0', sizeof(struct fdesc));
emalloc(fp->name, char *, len + 1, "func_use");
strcpy(fp->name, name);
if (how == FUNC_DEFINE)
fp->defined++;
else
fp->used++;
fp->next = ftable[ind];
ftable[ind] = fp;
}
/* check_funcs --- verify functions that are called but not defined */
static void
check_funcs()
{
struct fdesc *fp, *next;
int i;
for (i = 0; i < HASHSIZE; i++) {
for (fp = ftable[i]; fp != NULL; fp = fp->next) {
#ifdef REALLYMEAN
/* making this the default breaks old code. sigh. */
if (fp->defined == 0) {
error(
"function `%s' called but never defined", fp->name);
errcount++;
}
#else
if (do_lint && fp->defined == 0)
warning(
"function `%s' called but never defined", fp->name);
#endif
if (do_lint && fp->used == 0) {
warning("function `%s' defined but never called",
fp->name);
}
}
}
/* now let's free all the memory */
for (i = 0; i < HASHSIZE; i++) {
for (fp = ftable[i]; fp != NULL; fp = next) {
next = fp->next;
free(fp->name);
free(fp);
}
}
}
/* param_sanity --- look for parameters that are regexp constants */
static void
param_sanity(arglist)
NODE *arglist;
{
NODE *argp, *arg;
int i;
for (i = 1, argp = arglist; argp != NULL; argp = argp->rnode, i++) {
arg = argp->lnode;
if (arg->type == Node_regex)
warning("regexp constant for parameter #%d yields boolean value", i);
}
}
/* variable --- make sure NAME is in the symbol table */
NODE *
variable(name, can_free, type)
char *name;
int can_free;
NODETYPE type;
{
register NODE *r;
static int env_loaded = FALSE;
if (! env_loaded && STREQ(name, "ENVIRON")) {
load_environ();
env_loaded = TRUE;
}
if ((r = lookup(name)) == NULL)
r = install(name, node(Nnull_string, type, (NODE *) NULL));
else if (can_free)
free(name);
return r;
}
/* mk_rexp --- make a regular expression constant */
static NODE *
mk_rexp(exp)
NODE *exp;
{
NODE *n;
if (exp->type == Node_regex)
return exp;
getnode(n);
n->type = Node_regex;
n->re_exp = exp;
n->re_text = NULL;
n->re_reg = NULL;
n->re_flags = 0;
n->re_cnt = 1;
return n;
}
/* isnoeffect --- when used as a statement, has no side effects */
/*
* To be completely general, we should recursively walk the parse
* tree, to make sure that all the subexpressions also have no effect.
* Instead, we just weaken the actual warning that's printed, up above
* in the grammar.
*/
static int
isnoeffect(type)
NODETYPE type;
{
switch (type) {
case Node_times:
case Node_quotient:
case Node_mod:
case Node_plus:
case Node_minus:
case Node_subscript:
case Node_concat:
case Node_exp:
case Node_unary_minus:
case Node_field_spec:
case Node_and:
case Node_or:
case Node_equal:
case Node_notequal:
case Node_less:
case Node_greater:
case Node_leq:
case Node_geq:
case Node_match:
case Node_nomatch:
case Node_not:
case Node_val:
case Node_in_array:
case Node_NF:
case Node_NR:
case Node_FNR:
case Node_FS:
case Node_RS:
case Node_FIELDWIDTHS:
case Node_IGNORECASE:
case Node_OFS:
case Node_ORS:
case Node_OFMT:
case Node_CONVFMT:
return TRUE;
default:
break; /* keeps gcc -Wall happy */
}
return FALSE;
}
/* isassignable --- can this node be assigned to? */
static int
isassignable(n)
register NODE *n;
{
switch (n->type) {
case Node_var:
case Node_FIELDWIDTHS:
case Node_RS:
case Node_FS:
case Node_FNR:
case Node_NR:
case Node_NF:
case Node_IGNORECASE:
case Node_OFMT:
case Node_CONVFMT:
case Node_ORS:
case Node_OFS:
case Node_field_spec:
case Node_subscript:
return TRUE;
case Node_param_list:
return ((n->flags & FUNC) == 0); /* ok if not func name */
default:
break; /* keeps gcc -Wall happy */
}
return FALSE;
}