1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/kern/kern_proc.c
Mateusz Guzik 17182b1351 session: avoid proctree lock on proc exit when possible
We can get away with the common case with only proc lock held.

Reviewed by:	kib
2016-01-20 23:33:58 +00:00

3122 lines
75 KiB
C

/*-
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_ktrace.h"
#include "opt_kstack_pages.h"
#include "opt_stack.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/elf.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/loginclass.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sysent.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/stack.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sdt.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
#ifdef COMPAT_FREEBSD32
#include <compat/freebsd32/freebsd32.h>
#include <compat/freebsd32/freebsd32_util.h>
#endif
SDT_PROVIDER_DEFINE(proc);
SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
"int");
SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
"int");
SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
"struct thread *");
SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
MALLOC_DEFINE(M_SESSION, "session", "session header");
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
static void doenterpgrp(struct proc *, struct pgrp *);
static void orphanpg(struct pgrp *pg);
static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
int preferthread);
static void pgadjustjobc(struct pgrp *pgrp, int entering);
static void pgdelete(struct pgrp *);
static int proc_ctor(void *mem, int size, void *arg, int flags);
static void proc_dtor(void *mem, int size, void *arg);
static int proc_init(void *mem, int size, int flags);
static void proc_fini(void *mem, int size);
static void pargs_free(struct pargs *pa);
static struct proc *zpfind_locked(pid_t pid);
/*
* Other process lists
*/
struct pidhashhead *pidhashtbl;
u_long pidhash;
struct pgrphashhead *pgrphashtbl;
u_long pgrphash;
struct proclist allproc;
struct proclist zombproc;
struct sx allproc_lock;
struct sx proctree_lock;
struct mtx ppeers_lock;
uma_zone_t proc_zone;
/*
* The offset of various fields in struct proc and struct thread.
* These are used by kernel debuggers to enumerate kernel threads and
* processes.
*/
const int proc_off_p_pid = offsetof(struct proc, p_pid);
const int proc_off_p_comm = offsetof(struct proc, p_comm);
const int proc_off_p_list = offsetof(struct proc, p_list);
const int proc_off_p_threads = offsetof(struct proc, p_threads);
const int thread_off_td_tid = offsetof(struct thread, td_tid);
const int thread_off_td_name = offsetof(struct thread, td_name);
const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
const int thread_off_td_plist = offsetof(struct thread, td_plist);
int kstack_pages = KSTACK_PAGES;
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
"Kernel stack size in pages");
static int vmmap_skip_res_cnt = 0;
SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
&vmmap_skip_res_cnt, 0,
"Skip calculation of the pages resident count in kern.proc.vmmap");
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
#ifdef COMPAT_FREEBSD32
CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
#endif
/*
* Initialize global process hashing structures.
*/
void
procinit()
{
sx_init(&allproc_lock, "allproc");
sx_init(&proctree_lock, "proctree");
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
LIST_INIT(&allproc);
LIST_INIT(&zombproc);
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
proc_ctor, proc_dtor, proc_init, proc_fini,
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uihashinit();
}
/*
* Prepare a proc for use.
*/
static int
proc_ctor(void *mem, int size, void *arg, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
EVENTHANDLER_INVOKE(process_ctor, p);
SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
return (0);
}
/*
* Reclaim a proc after use.
*/
static void
proc_dtor(void *mem, int size, void *arg)
{
struct proc *p;
struct thread *td;
/* INVARIANTS checks go here */
p = (struct proc *)mem;
td = FIRST_THREAD_IN_PROC(p);
SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
if (td != NULL) {
#ifdef INVARIANTS
KASSERT((p->p_numthreads == 1),
("bad number of threads in exiting process"));
KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
#endif
/* Free all OSD associated to this thread. */
osd_thread_exit(td);
}
EVENTHANDLER_INVOKE(process_dtor, p);
if (p->p_ksi != NULL)
KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
SDT_PROBE3(proc, , dtor, return, p, size, arg);
}
/*
* Initialize type-stable parts of a proc (when newly created).
*/
static int
proc_init(void *mem, int size, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE3(proc, , init, entry, p, size, flags);
p->p_sched = (struct p_sched *)&p[1];
mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
cv_init(&p->p_pwait, "ppwait");
cv_init(&p->p_dbgwait, "dbgwait");
TAILQ_INIT(&p->p_threads); /* all threads in proc */
EVENTHANDLER_INVOKE(process_init, p);
p->p_stats = pstats_alloc();
p->p_pgrp = NULL;
SDT_PROBE3(proc, , init, return, p, size, flags);
return (0);
}
/*
* UMA should ensure that this function is never called.
* Freeing a proc structure would violate type stability.
*/
static void
proc_fini(void *mem, int size)
{
#ifdef notnow
struct proc *p;
p = (struct proc *)mem;
EVENTHANDLER_INVOKE(process_fini, p);
pstats_free(p->p_stats);
thread_free(FIRST_THREAD_IN_PROC(p));
mtx_destroy(&p->p_mtx);
if (p->p_ksi != NULL)
ksiginfo_free(p->p_ksi);
#else
panic("proc reclaimed");
#endif
}
/*
* Is p an inferior of the current process?
*/
int
inferior(struct proc *p)
{
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_OWNED);
for (; p != curproc; p = proc_realparent(p)) {
if (p->p_pid == 0)
return (0);
}
return (1);
}
struct proc *
pfind_locked(pid_t pid)
{
struct proc *p;
sx_assert(&allproc_lock, SX_LOCKED);
LIST_FOREACH(p, PIDHASH(pid), p_hash) {
if (p->p_pid == pid) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
p = NULL;
}
break;
}
}
return (p);
}
/*
* Locate a process by number; return only "live" processes -- i.e., neither
* zombies nor newly born but incompletely initialized processes. By not
* returning processes in the PRS_NEW state, we allow callers to avoid
* testing for that condition to avoid dereferencing p_ucred, et al.
*/
struct proc *
pfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
p = pfind_locked(pid);
sx_sunlock(&allproc_lock);
return (p);
}
static struct proc *
pfind_tid_locked(pid_t tid)
{
struct proc *p;
struct thread *td;
sx_assert(&allproc_lock, SX_LOCKED);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
continue;
}
FOREACH_THREAD_IN_PROC(p, td) {
if (td->td_tid == tid)
goto found;
}
PROC_UNLOCK(p);
}
found:
return (p);
}
/*
* Locate a process group by number.
* The caller must hold proctree_lock.
*/
struct pgrp *
pgfind(pgid)
register pid_t pgid;
{
register struct pgrp *pgrp;
sx_assert(&proctree_lock, SX_LOCKED);
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
if (pgrp->pg_id == pgid) {
PGRP_LOCK(pgrp);
return (pgrp);
}
}
return (NULL);
}
/*
* Locate process and do additional manipulations, depending on flags.
*/
int
pget(pid_t pid, int flags, struct proc **pp)
{
struct proc *p;
int error;
sx_slock(&allproc_lock);
if (pid <= PID_MAX) {
p = pfind_locked(pid);
if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
p = zpfind_locked(pid);
} else if ((flags & PGET_NOTID) == 0) {
p = pfind_tid_locked(pid);
} else {
p = NULL;
}
sx_sunlock(&allproc_lock);
if (p == NULL)
return (ESRCH);
if ((flags & PGET_CANSEE) != 0) {
error = p_cansee(curthread, p);
if (error != 0)
goto errout;
}
if ((flags & PGET_CANDEBUG) != 0) {
error = p_candebug(curthread, p);
if (error != 0)
goto errout;
}
if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
error = EPERM;
goto errout;
}
if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
error = ESRCH;
goto errout;
}
if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
/*
* XXXRW: Not clear ESRCH is the right error during proc
* execve().
*/
error = ESRCH;
goto errout;
}
if ((flags & PGET_HOLD) != 0) {
_PHOLD(p);
PROC_UNLOCK(p);
}
*pp = p;
return (0);
errout:
PROC_UNLOCK(p);
return (error);
}
/*
* Create a new process group.
* pgid must be equal to the pid of p.
* Begin a new session if required.
*/
int
enterpgrp(p, pgid, pgrp, sess)
register struct proc *p;
pid_t pgid;
struct pgrp *pgrp;
struct session *sess;
{
sx_assert(&proctree_lock, SX_XLOCKED);
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
KASSERT(p->p_pid == pgid,
("enterpgrp: new pgrp and pid != pgid"));
KASSERT(pgfind(pgid) == NULL,
("enterpgrp: pgrp with pgid exists"));
KASSERT(!SESS_LEADER(p),
("enterpgrp: session leader attempted setpgrp"));
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
if (sess != NULL) {
/*
* new session
*/
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
PROC_LOCK(p);
p->p_flag &= ~P_CONTROLT;
PROC_UNLOCK(p);
PGRP_LOCK(pgrp);
sess->s_leader = p;
sess->s_sid = p->p_pid;
refcount_init(&sess->s_count, 1);
sess->s_ttyvp = NULL;
sess->s_ttydp = NULL;
sess->s_ttyp = NULL;
bcopy(p->p_session->s_login, sess->s_login,
sizeof(sess->s_login));
pgrp->pg_session = sess;
KASSERT(p == curproc,
("enterpgrp: mksession and p != curproc"));
} else {
pgrp->pg_session = p->p_session;
sess_hold(pgrp->pg_session);
PGRP_LOCK(pgrp);
}
pgrp->pg_id = pgid;
LIST_INIT(&pgrp->pg_members);
/*
* As we have an exclusive lock of proctree_lock,
* this should not deadlock.
*/
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
pgrp->pg_jobc = 0;
SLIST_INIT(&pgrp->pg_sigiolst);
PGRP_UNLOCK(pgrp);
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to an existing process group
*/
int
enterthispgrp(p, pgrp)
register struct proc *p;
struct pgrp *pgrp;
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
KASSERT(pgrp->pg_session == p->p_session,
("%s: pgrp's session %p, p->p_session %p.\n",
__func__,
pgrp->pg_session,
p->p_session));
KASSERT(pgrp != p->p_pgrp,
("%s: p belongs to pgrp.", __func__));
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to a process group
*/
static void
doenterpgrp(p, pgrp)
struct proc *p;
struct pgrp *pgrp;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
savepgrp = p->p_pgrp;
/*
* Adjust eligibility of affected pgrps to participate in job control.
* Increment eligibility counts before decrementing, otherwise we
* could reach 0 spuriously during the first call.
*/
fixjobc(p, pgrp, 1);
fixjobc(p, p->p_pgrp, 0);
PGRP_LOCK(pgrp);
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = pgrp;
PROC_UNLOCK(p);
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
PGRP_UNLOCK(savepgrp);
PGRP_UNLOCK(pgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
}
/*
* remove process from process group
*/
int
leavepgrp(p)
register struct proc *p;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
savepgrp = p->p_pgrp;
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = NULL;
PROC_UNLOCK(p);
PGRP_UNLOCK(savepgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
return (0);
}
/*
* delete a process group
*/
static void
pgdelete(pgrp)
register struct pgrp *pgrp;
{
struct session *savesess;
struct tty *tp;
sx_assert(&proctree_lock, SX_XLOCKED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pgid.
*/
funsetownlst(&pgrp->pg_sigiolst);
PGRP_LOCK(pgrp);
tp = pgrp->pg_session->s_ttyp;
LIST_REMOVE(pgrp, pg_hash);
savesess = pgrp->pg_session;
PGRP_UNLOCK(pgrp);
/* Remove the reference to the pgrp before deallocating it. */
if (tp != NULL) {
tty_lock(tp);
tty_rel_pgrp(tp, pgrp);
}
mtx_destroy(&pgrp->pg_mtx);
free(pgrp, M_PGRP);
sess_release(savesess);
}
static void
pgadjustjobc(pgrp, entering)
struct pgrp *pgrp;
int entering;
{
PGRP_LOCK(pgrp);
if (entering)
pgrp->pg_jobc++;
else {
--pgrp->pg_jobc;
if (pgrp->pg_jobc == 0)
orphanpg(pgrp);
}
PGRP_UNLOCK(pgrp);
}
/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session). If that count reaches zero, the
* process group becomes orphaned. Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*/
void
fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
{
struct pgrp *hispgrp;
struct session *mysession;
struct proc *q;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Check p's parent to see whether p qualifies its own process
* group; if so, adjust count for p's process group.
*/
mysession = pgrp->pg_session;
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession)
pgadjustjobc(pgrp, entering);
/*
* Check this process' children to see whether they qualify
* their process groups; if so, adjust counts for children's
* process groups.
*/
LIST_FOREACH(q, &p->p_children, p_sibling) {
hispgrp = q->p_pgrp;
if (hispgrp == pgrp ||
hispgrp->pg_session != mysession)
continue;
if (q->p_state == PRS_ZOMBIE)
continue;
pgadjustjobc(hispgrp, entering);
}
}
void
killjobc(void)
{
struct session *sp;
struct tty *tp;
struct proc *p;
struct vnode *ttyvp;
p = curproc;
MPASS(p->p_flag & P_WEXIT);
/*
* Do a quick check to see if there is anything to do with the
* proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
*/
PROC_LOCK(p);
if (!SESS_LEADER(p) &&
(p->p_pgrp == p->p_pptr->p_pgrp) &&
LIST_EMPTY(&p->p_children)) {
PROC_UNLOCK(p);
return;
}
PROC_UNLOCK(p);
sx_xlock(&proctree_lock);
if (SESS_LEADER(p)) {
sp = p->p_session;
/*
* s_ttyp is not zero'd; we use this to indicate that
* the session once had a controlling terminal. (for
* logging and informational purposes)
*/
SESS_LOCK(sp);
ttyvp = sp->s_ttyvp;
tp = sp->s_ttyp;
sp->s_ttyvp = NULL;
sp->s_ttydp = NULL;
sp->s_leader = NULL;
SESS_UNLOCK(sp);
/*
* Signal foreground pgrp and revoke access to
* controlling terminal if it has not been revoked
* already.
*
* Because the TTY may have been revoked in the mean
* time and could already have a new session associated
* with it, make sure we don't send a SIGHUP to a
* foreground process group that does not belong to this
* session.
*/
if (tp != NULL) {
tty_lock(tp);
if (tp->t_session == sp)
tty_signal_pgrp(tp, SIGHUP);
tty_unlock(tp);
}
if (ttyvp != NULL) {
sx_xunlock(&proctree_lock);
if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
VOP_REVOKE(ttyvp, REVOKEALL);
VOP_UNLOCK(ttyvp, 0);
}
vrele(ttyvp);
sx_xlock(&proctree_lock);
}
}
fixjobc(p, p->p_pgrp, 0);
sx_xunlock(&proctree_lock);
}
/*
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*/
static void
orphanpg(pg)
struct pgrp *pg;
{
register struct proc *p;
PGRP_LOCK_ASSERT(pg, MA_OWNED);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
PROC_UNLOCK(p);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
kern_psignal(p, SIGHUP);
kern_psignal(p, SIGCONT);
PROC_UNLOCK(p);
}
return;
}
PROC_UNLOCK(p);
}
}
void
sess_hold(struct session *s)
{
refcount_acquire(&s->s_count);
}
void
sess_release(struct session *s)
{
if (refcount_release(&s->s_count)) {
if (s->s_ttyp != NULL) {
tty_lock(s->s_ttyp);
tty_rel_sess(s->s_ttyp, s);
}
mtx_destroy(&s->s_mtx);
free(s, M_SESSION);
}
}
#ifdef DDB
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
{
register struct pgrp *pgrp;
register struct proc *p;
register int i;
for (i = 0; i <= pgrphash; i++) {
if (!LIST_EMPTY(&pgrphashtbl[i])) {
printf("\tindx %d\n", i);
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
printf(
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
(void *)pgrp, (long)pgrp->pg_id,
(void *)pgrp->pg_session,
pgrp->pg_session->s_count,
(void *)LIST_FIRST(&pgrp->pg_members));
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
printf("\t\tpid %ld addr %p pgrp %p\n",
(long)p->p_pid, (void *)p,
(void *)p->p_pgrp);
}
}
}
}
}
#endif /* DDB */
/*
* Calculate the kinfo_proc members which contain process-wide
* informations.
* Must be called with the target process locked.
*/
static void
fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td;
PROC_LOCK_ASSERT(p, MA_OWNED);
kp->ki_estcpu = 0;
kp->ki_pctcpu = 0;
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
kp->ki_pctcpu += sched_pctcpu(td);
kp->ki_estcpu += td->td_estcpu;
thread_unlock(td);
}
}
/*
* Clear kinfo_proc and fill in any information that is common
* to all threads in the process.
* Must be called with the target process locked.
*/
static void
fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td0;
struct tty *tp;
struct session *sp;
struct ucred *cred;
struct sigacts *ps;
/* For proc_realparent. */
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_OWNED);
bzero(kp, sizeof(*kp));
kp->ki_structsize = sizeof(*kp);
kp->ki_paddr = p;
kp->ki_addr =/* p->p_addr; */0; /* XXX */
kp->ki_args = p->p_args;
kp->ki_textvp = p->p_textvp;
#ifdef KTRACE
kp->ki_tracep = p->p_tracevp;
kp->ki_traceflag = p->p_traceflag;
#endif
kp->ki_fd = p->p_fd;
kp->ki_vmspace = p->p_vmspace;
kp->ki_flag = p->p_flag;
kp->ki_flag2 = p->p_flag2;
cred = p->p_ucred;
if (cred) {
kp->ki_uid = cred->cr_uid;
kp->ki_ruid = cred->cr_ruid;
kp->ki_svuid = cred->cr_svuid;
kp->ki_cr_flags = 0;
if (cred->cr_flags & CRED_FLAG_CAPMODE)
kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
/* XXX bde doesn't like KI_NGROUPS */
if (cred->cr_ngroups > KI_NGROUPS) {
kp->ki_ngroups = KI_NGROUPS;
kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
} else
kp->ki_ngroups = cred->cr_ngroups;
bcopy(cred->cr_groups, kp->ki_groups,
kp->ki_ngroups * sizeof(gid_t));
kp->ki_rgid = cred->cr_rgid;
kp->ki_svgid = cred->cr_svgid;
/* If jailed(cred), emulate the old P_JAILED flag. */
if (jailed(cred)) {
kp->ki_flag |= P_JAILED;
/* If inside the jail, use 0 as a jail ID. */
if (cred->cr_prison != curthread->td_ucred->cr_prison)
kp->ki_jid = cred->cr_prison->pr_id;
}
strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
sizeof(kp->ki_loginclass));
}
ps = p->p_sigacts;
if (ps) {
mtx_lock(&ps->ps_mtx);
kp->ki_sigignore = ps->ps_sigignore;
kp->ki_sigcatch = ps->ps_sigcatch;
mtx_unlock(&ps->ps_mtx);
}
if (p->p_state != PRS_NEW &&
p->p_state != PRS_ZOMBIE &&
p->p_vmspace != NULL) {
struct vmspace *vm = p->p_vmspace;
kp->ki_size = vm->vm_map.size;
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
FOREACH_THREAD_IN_PROC(p, td0) {
if (!TD_IS_SWAPPED(td0))
kp->ki_rssize += td0->td_kstack_pages;
}
kp->ki_swrss = vm->vm_swrss;
kp->ki_tsize = vm->vm_tsize;
kp->ki_dsize = vm->vm_dsize;
kp->ki_ssize = vm->vm_ssize;
} else if (p->p_state == PRS_ZOMBIE)
kp->ki_stat = SZOMB;
if (kp->ki_flag & P_INMEM)
kp->ki_sflag = PS_INMEM;
else
kp->ki_sflag = 0;
/* Calculate legacy swtime as seconds since 'swtick'. */
kp->ki_swtime = (ticks - p->p_swtick) / hz;
kp->ki_pid = p->p_pid;
kp->ki_nice = p->p_nice;
kp->ki_fibnum = p->p_fibnum;
kp->ki_start = p->p_stats->p_start;
timevaladd(&kp->ki_start, &boottime);
PROC_STATLOCK(p);
rufetch(p, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
PROC_STATUNLOCK(p);
calccru(p, &kp->ki_childutime, &kp->ki_childstime);
/* Some callers want child times in a single value. */
kp->ki_childtime = kp->ki_childstime;
timevaladd(&kp->ki_childtime, &kp->ki_childutime);
FOREACH_THREAD_IN_PROC(p, td0)
kp->ki_cow += td0->td_cow;
tp = NULL;
if (p->p_pgrp) {
kp->ki_pgid = p->p_pgrp->pg_id;
kp->ki_jobc = p->p_pgrp->pg_jobc;
sp = p->p_pgrp->pg_session;
if (sp != NULL) {
kp->ki_sid = sp->s_sid;
SESS_LOCK(sp);
strlcpy(kp->ki_login, sp->s_login,
sizeof(kp->ki_login));
if (sp->s_ttyvp)
kp->ki_kiflag |= KI_CTTY;
if (SESS_LEADER(p))
kp->ki_kiflag |= KI_SLEADER;
/* XXX proctree_lock */
tp = sp->s_ttyp;
SESS_UNLOCK(sp);
}
}
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
kp->ki_tdev = tty_udev(tp);
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
if (tp->t_session)
kp->ki_tsid = tp->t_session->s_sid;
} else
kp->ki_tdev = NODEV;
if (p->p_comm[0] != '\0')
strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
if (p->p_sysent && p->p_sysent->sv_name != NULL &&
p->p_sysent->sv_name[0] != '\0')
strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
kp->ki_siglist = p->p_siglist;
kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
kp->ki_acflag = p->p_acflag;
kp->ki_lock = p->p_lock;
if (p->p_pptr) {
kp->ki_ppid = proc_realparent(p)->p_pid;
if (p->p_flag & P_TRACED)
kp->ki_tracer = p->p_pptr->p_pid;
}
}
/*
* Fill in information that is thread specific. Must be called with
* target process locked. If 'preferthread' is set, overwrite certain
* process-related fields that are maintained for both threads and
* processes.
*/
static void
fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
{
struct proc *p;
p = td->td_proc;
kp->ki_tdaddr = td;
PROC_LOCK_ASSERT(p, MA_OWNED);
if (preferthread)
PROC_STATLOCK(p);
thread_lock(td);
if (td->td_wmesg != NULL)
strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
else
bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
if (TD_ON_LOCK(td)) {
kp->ki_kiflag |= KI_LOCKBLOCK;
strlcpy(kp->ki_lockname, td->td_lockname,
sizeof(kp->ki_lockname));
} else {
kp->ki_kiflag &= ~KI_LOCKBLOCK;
bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
}
if (p->p_state == PRS_NORMAL) { /* approximate. */
if (TD_ON_RUNQ(td) ||
TD_CAN_RUN(td) ||
TD_IS_RUNNING(td)) {
kp->ki_stat = SRUN;
} else if (P_SHOULDSTOP(p)) {
kp->ki_stat = SSTOP;
} else if (TD_IS_SLEEPING(td)) {
kp->ki_stat = SSLEEP;
} else if (TD_ON_LOCK(td)) {
kp->ki_stat = SLOCK;
} else {
kp->ki_stat = SWAIT;
}
} else if (p->p_state == PRS_ZOMBIE) {
kp->ki_stat = SZOMB;
} else {
kp->ki_stat = SIDL;
}
/* Things in the thread */
kp->ki_wchan = td->td_wchan;
kp->ki_pri.pri_level = td->td_priority;
kp->ki_pri.pri_native = td->td_base_pri;
/*
* Note: legacy fields; clamp at the old NOCPU value and/or
* the maximum u_char CPU value.
*/
if (td->td_lastcpu == NOCPU)
kp->ki_lastcpu_old = NOCPU_OLD;
else if (td->td_lastcpu > MAXCPU_OLD)
kp->ki_lastcpu_old = MAXCPU_OLD;
else
kp->ki_lastcpu_old = td->td_lastcpu;
if (td->td_oncpu == NOCPU)
kp->ki_oncpu_old = NOCPU_OLD;
else if (td->td_oncpu > MAXCPU_OLD)
kp->ki_oncpu_old = MAXCPU_OLD;
else
kp->ki_oncpu_old = td->td_oncpu;
kp->ki_lastcpu = td->td_lastcpu;
kp->ki_oncpu = td->td_oncpu;
kp->ki_tdflags = td->td_flags;
kp->ki_tid = td->td_tid;
kp->ki_numthreads = p->p_numthreads;
kp->ki_pcb = td->td_pcb;
kp->ki_kstack = (void *)td->td_kstack;
kp->ki_slptime = (ticks - td->td_slptick) / hz;
kp->ki_pri.pri_class = td->td_pri_class;
kp->ki_pri.pri_user = td->td_user_pri;
if (preferthread) {
rufetchtd(td, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
kp->ki_pctcpu = sched_pctcpu(td);
kp->ki_estcpu = td->td_estcpu;
kp->ki_cow = td->td_cow;
}
/* We can't get this anymore but ps etc never used it anyway. */
kp->ki_rqindex = 0;
if (preferthread)
kp->ki_siglist = td->td_siglist;
kp->ki_sigmask = td->td_sigmask;
thread_unlock(td);
if (preferthread)
PROC_STATUNLOCK(p);
}
/*
* Fill in a kinfo_proc structure for the specified process.
* Must be called with the target process locked.
*/
void
fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
{
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
fill_kinfo_proc_only(p, kp);
fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
fill_kinfo_aggregate(p, kp);
}
struct pstats *
pstats_alloc(void)
{
return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
}
/*
* Copy parts of p_stats; zero the rest of p_stats (statistics).
*/
void
pstats_fork(struct pstats *src, struct pstats *dst)
{
bzero(&dst->pstat_startzero,
__rangeof(struct pstats, pstat_startzero, pstat_endzero));
bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
__rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
}
void
pstats_free(struct pstats *ps)
{
free(ps, M_SUBPROC);
}
static struct proc *
zpfind_locked(pid_t pid)
{
struct proc *p;
sx_assert(&allproc_lock, SX_LOCKED);
LIST_FOREACH(p, &zombproc, p_list) {
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
}
return (p);
}
/*
* Locate a zombie process by number
*/
struct proc *
zpfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
p = zpfind_locked(pid);
sx_sunlock(&allproc_lock);
return (p);
}
#ifdef COMPAT_FREEBSD32
/*
* This function is typically used to copy out the kernel address, so
* it can be replaced by assignment of zero.
*/
static inline uint32_t
ptr32_trim(void *ptr)
{
uintptr_t uptr;
uptr = (uintptr_t)ptr;
return ((uptr > UINT_MAX) ? 0 : uptr);
}
#define PTRTRIM_CP(src,dst,fld) \
do { (dst).fld = ptr32_trim((src).fld); } while (0)
static void
freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
{
int i;
bzero(ki32, sizeof(struct kinfo_proc32));
ki32->ki_structsize = sizeof(struct kinfo_proc32);
CP(*ki, *ki32, ki_layout);
PTRTRIM_CP(*ki, *ki32, ki_args);
PTRTRIM_CP(*ki, *ki32, ki_paddr);
PTRTRIM_CP(*ki, *ki32, ki_addr);
PTRTRIM_CP(*ki, *ki32, ki_tracep);
PTRTRIM_CP(*ki, *ki32, ki_textvp);
PTRTRIM_CP(*ki, *ki32, ki_fd);
PTRTRIM_CP(*ki, *ki32, ki_vmspace);
PTRTRIM_CP(*ki, *ki32, ki_wchan);
CP(*ki, *ki32, ki_pid);
CP(*ki, *ki32, ki_ppid);
CP(*ki, *ki32, ki_pgid);
CP(*ki, *ki32, ki_tpgid);
CP(*ki, *ki32, ki_sid);
CP(*ki, *ki32, ki_tsid);
CP(*ki, *ki32, ki_jobc);
CP(*ki, *ki32, ki_tdev);
CP(*ki, *ki32, ki_siglist);
CP(*ki, *ki32, ki_sigmask);
CP(*ki, *ki32, ki_sigignore);
CP(*ki, *ki32, ki_sigcatch);
CP(*ki, *ki32, ki_uid);
CP(*ki, *ki32, ki_ruid);
CP(*ki, *ki32, ki_svuid);
CP(*ki, *ki32, ki_rgid);
CP(*ki, *ki32, ki_svgid);
CP(*ki, *ki32, ki_ngroups);
for (i = 0; i < KI_NGROUPS; i++)
CP(*ki, *ki32, ki_groups[i]);
CP(*ki, *ki32, ki_size);
CP(*ki, *ki32, ki_rssize);
CP(*ki, *ki32, ki_swrss);
CP(*ki, *ki32, ki_tsize);
CP(*ki, *ki32, ki_dsize);
CP(*ki, *ki32, ki_ssize);
CP(*ki, *ki32, ki_xstat);
CP(*ki, *ki32, ki_acflag);
CP(*ki, *ki32, ki_pctcpu);
CP(*ki, *ki32, ki_estcpu);
CP(*ki, *ki32, ki_slptime);
CP(*ki, *ki32, ki_swtime);
CP(*ki, *ki32, ki_cow);
CP(*ki, *ki32, ki_runtime);
TV_CP(*ki, *ki32, ki_start);
TV_CP(*ki, *ki32, ki_childtime);
CP(*ki, *ki32, ki_flag);
CP(*ki, *ki32, ki_kiflag);
CP(*ki, *ki32, ki_traceflag);
CP(*ki, *ki32, ki_stat);
CP(*ki, *ki32, ki_nice);
CP(*ki, *ki32, ki_lock);
CP(*ki, *ki32, ki_rqindex);
CP(*ki, *ki32, ki_oncpu);
CP(*ki, *ki32, ki_lastcpu);
/* XXX TODO: wrap cpu value as appropriate */
CP(*ki, *ki32, ki_oncpu_old);
CP(*ki, *ki32, ki_lastcpu_old);
bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
CP(*ki, *ki32, ki_tracer);
CP(*ki, *ki32, ki_flag2);
CP(*ki, *ki32, ki_fibnum);
CP(*ki, *ki32, ki_cr_flags);
CP(*ki, *ki32, ki_jid);
CP(*ki, *ki32, ki_numthreads);
CP(*ki, *ki32, ki_tid);
CP(*ki, *ki32, ki_pri);
freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
PTRTRIM_CP(*ki, *ki32, ki_pcb);
PTRTRIM_CP(*ki, *ki32, ki_kstack);
PTRTRIM_CP(*ki, *ki32, ki_udata);
CP(*ki, *ki32, ki_sflag);
CP(*ki, *ki32, ki_tdflags);
}
#endif
int
kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
{
struct thread *td;
struct kinfo_proc ki;
#ifdef COMPAT_FREEBSD32
struct kinfo_proc32 ki32;
#endif
int error;
PROC_LOCK_ASSERT(p, MA_OWNED);
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
error = 0;
fill_kinfo_proc(p, &ki);
if ((flags & KERN_PROC_NOTHREADS) != 0) {
#ifdef COMPAT_FREEBSD32
if ((flags & KERN_PROC_MASK32) != 0) {
freebsd32_kinfo_proc_out(&ki, &ki32);
if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
error = ENOMEM;
} else
#endif
if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
error = ENOMEM;
} else {
FOREACH_THREAD_IN_PROC(p, td) {
fill_kinfo_thread(td, &ki, 1);
#ifdef COMPAT_FREEBSD32
if ((flags & KERN_PROC_MASK32) != 0) {
freebsd32_kinfo_proc_out(&ki, &ki32);
if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
error = ENOMEM;
} else
#endif
if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
error = ENOMEM;
if (error != 0)
break;
}
}
PROC_UNLOCK(p);
return (error);
}
static int
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
int doingzomb)
{
struct sbuf sb;
struct kinfo_proc ki;
struct proc *np;
int error, error2;
pid_t pid;
pid = p->p_pid;
sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
error = kern_proc_out(p, &sb, flags);
error2 = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0)
return (error);
else if (error2 != 0)
return (error2);
if (doingzomb)
np = zpfind(pid);
else {
if (pid == 0)
return (0);
np = pfind(pid);
}
if (np == NULL)
return (ESRCH);
if (np != p) {
PROC_UNLOCK(np);
return (ESRCH);
}
PROC_UNLOCK(np);
return (0);
}
static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int flags, doingzomb, oid_number;
int error = 0;
oid_number = oidp->oid_number;
if (oid_number != KERN_PROC_ALL &&
(oid_number & KERN_PROC_INC_THREAD) == 0)
flags = KERN_PROC_NOTHREADS;
else {
flags = 0;
oid_number &= ~KERN_PROC_INC_THREAD;
}
#ifdef COMPAT_FREEBSD32
if (req->flags & SCTL_MASK32)
flags |= KERN_PROC_MASK32;
#endif
if (oid_number == KERN_PROC_PID) {
if (namelen != 1)
return (EINVAL);
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
sx_slock(&proctree_lock);
error = pget((pid_t)name[0], PGET_CANSEE, &p);
if (error == 0)
error = sysctl_out_proc(p, req, flags, 0);
sx_sunlock(&proctree_lock);
return (error);
}
switch (oid_number) {
case KERN_PROC_ALL:
if (namelen != 0)
return (EINVAL);
break;
case KERN_PROC_PROC:
if (namelen != 0 && namelen != 1)
return (EINVAL);
break;
default:
if (namelen != 1)
return (EINVAL);
break;
}
if (!req->oldptr) {
/* overestimate by 5 procs */
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
if (error)
return (error);
}
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sx_slock(&proctree_lock);
sx_slock(&allproc_lock);
for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
if (!doingzomb)
p = LIST_FIRST(&allproc);
else
p = LIST_FIRST(&zombproc);
for (; p != 0; p = LIST_NEXT(p, p_list)) {
/*
* Skip embryonic processes.
*/
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
continue;
}
KASSERT(p->p_ucred != NULL,
("process credential is NULL for non-NEW proc"));
/*
* Show a user only appropriate processes.
*/
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (oid_number) {
case KERN_PROC_GID:
if (p->p_ucred->cr_gid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp == NULL ||
p->p_pgrp->pg_id != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RGID:
if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_SESSION:
if (p->p_session == NULL ||
p->p_session->s_sid != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_TTY:
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session == NULL) {
PROC_UNLOCK(p);
continue;
}
/* XXX proctree_lock */
SESS_LOCK(p->p_session);
if (p->p_session->s_ttyp == NULL ||
tty_udev(p->p_session->s_ttyp) !=
(dev_t)name[0]) {
SESS_UNLOCK(p->p_session);
PROC_UNLOCK(p);
continue;
}
SESS_UNLOCK(p->p_session);
break;
case KERN_PROC_UID:
if (p->p_ucred->cr_uid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RUID:
if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PROC:
break;
default:
break;
}
error = sysctl_out_proc(p, req, flags, doingzomb);
if (error) {
sx_sunlock(&allproc_lock);
sx_sunlock(&proctree_lock);
return (error);
}
}
}
sx_sunlock(&allproc_lock);
sx_sunlock(&proctree_lock);
return (0);
}
struct pargs *
pargs_alloc(int len)
{
struct pargs *pa;
pa = malloc(sizeof(struct pargs) + len, M_PARGS,
M_WAITOK);
refcount_init(&pa->ar_ref, 1);
pa->ar_length = len;
return (pa);
}
static void
pargs_free(struct pargs *pa)
{
free(pa, M_PARGS);
}
void
pargs_hold(struct pargs *pa)
{
if (pa == NULL)
return;
refcount_acquire(&pa->ar_ref);
}
void
pargs_drop(struct pargs *pa)
{
if (pa == NULL)
return;
if (refcount_release(&pa->ar_ref))
pargs_free(pa);
}
static int
proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
size_t len)
{
ssize_t n;
/*
* This may return a short read if the string is shorter than the chunk
* and is aligned at the end of the page, and the following page is not
* mapped.
*/
n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
if (n <= 0)
return (ENOMEM);
return (0);
}
#define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
enum proc_vector_type {
PROC_ARG,
PROC_ENV,
PROC_AUX,
};
#ifdef COMPAT_FREEBSD32
static int
get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
size_t *vsizep, enum proc_vector_type type)
{
struct freebsd32_ps_strings pss;
Elf32_Auxinfo aux;
vm_offset_t vptr, ptr;
uint32_t *proc_vector32;
char **proc_vector;
size_t vsize, size;
int i, error;
error = 0;
if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
sizeof(pss)) != sizeof(pss))
return (ENOMEM);
switch (type) {
case PROC_ARG:
vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
vsize = pss.ps_nargvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(int32_t);
break;
case PROC_ENV:
vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
vsize = pss.ps_nenvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(int32_t);
break;
case PROC_AUX:
vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
(pss.ps_nenvstr + 1) * sizeof(int32_t);
if (vptr % 4 != 0)
return (ENOEXEC);
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
sizeof(aux))
return (ENOMEM);
if (aux.a_type == AT_NULL)
break;
ptr += sizeof(aux);
}
if (aux.a_type != AT_NULL)
return (ENOEXEC);
vsize = i + 1;
size = vsize * sizeof(aux);
break;
default:
KASSERT(0, ("Wrong proc vector type: %d", type));
return (EINVAL);
}
proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
error = ENOMEM;
goto done;
}
if (type == PROC_AUX) {
*proc_vectorp = (char **)proc_vector32;
*vsizep = vsize;
return (0);
}
proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
for (i = 0; i < (int)vsize; i++)
proc_vector[i] = PTRIN(proc_vector32[i]);
*proc_vectorp = proc_vector;
*vsizep = vsize;
done:
free(proc_vector32, M_TEMP);
return (error);
}
#endif
static int
get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
size_t *vsizep, enum proc_vector_type type)
{
struct ps_strings pss;
Elf_Auxinfo aux;
vm_offset_t vptr, ptr;
char **proc_vector;
size_t vsize, size;
int i;
#ifdef COMPAT_FREEBSD32
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
#endif
if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
sizeof(pss)) != sizeof(pss))
return (ENOMEM);
switch (type) {
case PROC_ARG:
vptr = (vm_offset_t)pss.ps_argvstr;
vsize = pss.ps_nargvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(char *);
break;
case PROC_ENV:
vptr = (vm_offset_t)pss.ps_envstr;
vsize = pss.ps_nenvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(char *);
break;
case PROC_AUX:
/*
* The aux array is just above env array on the stack. Check
* that the address is naturally aligned.
*/
vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
* sizeof(char *);
#if __ELF_WORD_SIZE == 64
if (vptr % sizeof(uint64_t) != 0)
#else
if (vptr % sizeof(uint32_t) != 0)
#endif
return (ENOEXEC);
/*
* We count the array size reading the aux vectors from the
* stack until AT_NULL vector is returned. So (to keep the code
* simple) we read the process stack twice: the first time here
* to find the size and the second time when copying the vectors
* to the allocated proc_vector.
*/
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
sizeof(aux))
return (ENOMEM);
if (aux.a_type == AT_NULL)
break;
ptr += sizeof(aux);
}
/*
* If the PROC_AUXV_MAX entries are iterated over, and we have
* not reached AT_NULL, it is most likely we are reading wrong
* data: either the process doesn't have auxv array or data has
* been modified. Return the error in this case.
*/
if (aux.a_type != AT_NULL)
return (ENOEXEC);
vsize = i + 1;
size = vsize * sizeof(aux);
break;
default:
KASSERT(0, ("Wrong proc vector type: %d", type));
return (EINVAL); /* In case we are built without INVARIANTS. */
}
proc_vector = malloc(size, M_TEMP, M_WAITOK);
if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
free(proc_vector, M_TEMP);
return (ENOMEM);
}
*proc_vectorp = proc_vector;
*vsizep = vsize;
return (0);
}
#define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
static int
get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
enum proc_vector_type type)
{
size_t done, len, nchr, vsize;
int error, i;
char **proc_vector, *sptr;
char pss_string[GET_PS_STRINGS_CHUNK_SZ];
PROC_ASSERT_HELD(p);
/*
* We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
*/
nchr = 2 * (PATH_MAX + ARG_MAX);
error = get_proc_vector(td, p, &proc_vector, &vsize, type);
if (error != 0)
return (error);
for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
/*
* The program may have scribbled into its argv array, e.g. to
* remove some arguments. If that has happened, break out
* before trying to read from NULL.
*/
if (proc_vector[i] == NULL)
break;
for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
error = proc_read_string(td, p, sptr, pss_string,
sizeof(pss_string));
if (error != 0)
goto done;
len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
if (done + len >= nchr)
len = nchr - done - 1;
sbuf_bcat(sb, pss_string, len);
if (len != GET_PS_STRINGS_CHUNK_SZ)
break;
done += GET_PS_STRINGS_CHUNK_SZ;
}
sbuf_bcat(sb, "", 1);
done += len + 1;
}
done:
free(proc_vector, M_TEMP);
return (error);
}
int
proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
{
return (get_ps_strings(curthread, p, sb, PROC_ARG));
}
int
proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
{
return (get_ps_strings(curthread, p, sb, PROC_ENV));
}
int
proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
{
size_t vsize, size;
char **auxv;
int error;
error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
if (error == 0) {
#ifdef COMPAT_FREEBSD32
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
size = vsize * sizeof(Elf32_Auxinfo);
else
#endif
size = vsize * sizeof(Elf_Auxinfo);
if (sbuf_bcat(sb, auxv, size) != 0)
error = ENOMEM;
free(auxv, M_TEMP);
}
return (error);
}
/*
* This sysctl allows a process to retrieve the argument list or process
* title for another process without groping around in the address space
* of the other process. It also allow a process to set its own "process
* title to a string of its own choice.
*/
static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct pargs *newpa, *pa;
struct proc *p;
struct sbuf sb;
int flags, error = 0, error2;
if (namelen != 1)
return (EINVAL);
flags = PGET_CANSEE;
if (req->newptr != NULL)
flags |= PGET_ISCURRENT;
error = pget((pid_t)name[0], flags, &p);
if (error)
return (error);
pa = p->p_args;
if (pa != NULL) {
pargs_hold(pa);
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
pargs_drop(pa);
} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
_PHOLD(p);
PROC_UNLOCK(p);
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
error = proc_getargv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
if (error == 0 && error2 != 0)
error = error2;
} else {
PROC_UNLOCK(p);
}
if (error != 0 || req->newptr == NULL)
return (error);
if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
return (ENOMEM);
newpa = pargs_alloc(req->newlen);
error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
if (error != 0) {
pargs_free(newpa);
return (error);
}
PROC_LOCK(p);
pa = p->p_args;
p->p_args = newpa;
PROC_UNLOCK(p);
pargs_drop(pa);
return (0);
}
/*
* This sysctl allows a process to retrieve environment of another process.
*/
static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
struct sbuf sb;
int error, error2;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
if ((p->p_flag & P_SYSTEM) != 0) {
PRELE(p);
return (0);
}
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
error = proc_getenvv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
/*
* This sysctl allows a process to retrieve ELF auxiliary vector of
* another process.
*/
static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
struct sbuf sb;
int error, error2;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
if ((p->p_flag & P_SYSTEM) != 0) {
PRELE(p);
return (0);
}
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
error = proc_getauxv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
/*
* This sysctl allows a process to retrieve the path of the executable for
* itself or another process.
*/
static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct vnode *vp;
char *retbuf, *freebuf;
int error;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
} else {
error = pget(*pidp, PGET_CANSEE, &p);
if (error != 0)
return (error);
}
vp = p->p_textvp;
if (vp == NULL) {
if (*pidp != -1)
PROC_UNLOCK(p);
return (0);
}
vref(vp);
if (*pidp != -1)
PROC_UNLOCK(p);
error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
vrele(vp);
if (error)
return (error);
error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
free(freebuf, M_TEMP);
return (error);
}
static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
{
struct proc *p;
char *sv_name;
int *name;
int namelen;
int error;
namelen = arg2;
if (namelen != 1)
return (EINVAL);
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_CANSEE, &p);
if (error != 0)
return (error);
sv_name = p->p_sysent->sv_name;
PROC_UNLOCK(p);
return (sysctl_handle_string(oidp, sv_name, 0, req));
}
#ifdef KINFO_OVMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
#endif
#ifdef COMPAT_FREEBSD7
static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
{
vm_map_entry_t entry, tmp_entry;
unsigned int last_timestamp;
char *fullpath, *freepath;
struct kinfo_ovmentry *kve;
struct vattr va;
struct ucred *cred;
int error, *name;
struct vnode *vp;
struct proc *p;
vm_map_t map;
struct vmspace *vm;
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
map = &vm->vm_map;
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
vm_object_t obj, tobj, lobj;
vm_offset_t addr;
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
bzero(kve, sizeof(*kve));
kve->kve_structsize = sizeof(*kve);
kve->kve_private_resident = 0;
obj = entry->object.vm_object;
if (obj != NULL) {
VM_OBJECT_RLOCK(obj);
if (obj->shadow_count == 1)
kve->kve_private_resident =
obj->resident_page_count;
}
kve->kve_resident = 0;
addr = entry->start;
while (addr < entry->end) {
if (pmap_extract(map->pmap, addr))
kve->kve_resident++;
addr += PAGE_SIZE;
}
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
if (tobj != obj)
VM_OBJECT_RLOCK(tobj);
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
lobj = tobj;
}
kve->kve_start = (void*)entry->start;
kve->kve_end = (void*)entry->end;
kve->kve_offset = (off_t)entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
kve->kve_fileid = 0;
kve->kve_fsid = 0;
freepath = NULL;
fullpath = "";
if (lobj) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
kve->kve_type = KVME_TYPE_VNODE;
if ((lobj->flags & OBJ_TMPFS) != 0) {
vp = lobj->un_pager.swp.swp_tmpfs;
vref(vp);
}
} else {
kve->kve_type = KVME_TYPE_SWAP;
}
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_RUNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
cred = curthread->td_ucred;
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_fileid = va.va_fileid;
kve->kve_fsid = va.va_fsid;
}
vput(vp);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
error = SYSCTL_OUT(req, kve, sizeof(*kve));
vm_map_lock_read(map);
if (error)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
#endif /* COMPAT_FREEBSD7 */
#ifdef KINFO_VMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
#endif
static void
kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
struct kinfo_vmentry *kve)
{
vm_object_t obj, tobj;
vm_page_t m, m_adv;
vm_offset_t addr;
vm_paddr_t locked_pa;
vm_pindex_t pi, pi_adv, pindex;
locked_pa = 0;
obj = entry->object.vm_object;
addr = entry->start;
m_adv = NULL;
pi = OFF_TO_IDX(entry->offset);
for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
if (m_adv != NULL) {
m = m_adv;
} else {
pi_adv = OFF_TO_IDX(entry->end - addr);
pindex = pi;
for (tobj = obj;; tobj = tobj->backing_object) {
m = vm_page_find_least(tobj, pindex);
if (m != NULL) {
if (m->pindex == pindex)
break;
if (pi_adv > m->pindex - pindex) {
pi_adv = m->pindex - pindex;
m_adv = m;
}
}
if (tobj->backing_object == NULL)
goto next;
pindex += OFF_TO_IDX(tobj->
backing_object_offset);
}
}
m_adv = NULL;
if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
(addr & (pagesizes[1] - 1)) == 0 &&
(pmap_mincore(map->pmap, addr, &locked_pa) &
MINCORE_SUPER) != 0) {
kve->kve_flags |= KVME_FLAG_SUPER;
pi_adv = OFF_TO_IDX(pagesizes[1]);
} else {
/*
* We do not test the found page on validity.
* Either the page is busy and being paged in,
* or it was invalidated. The first case
* should be counted as resident, the second
* is not so clear; we do account both.
*/
pi_adv = 1;
}
kve->kve_resident += pi_adv;
next:;
}
PA_UNLOCK_COND(locked_pa);
}
/*
* Must be called with the process locked and will return unlocked.
*/
int
kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
{
vm_map_entry_t entry, tmp_entry;
struct vattr va;
vm_map_t map;
vm_object_t obj, tobj, lobj;
char *fullpath, *freepath;
struct kinfo_vmentry *kve;
struct ucred *cred;
struct vnode *vp;
struct vmspace *vm;
vm_offset_t addr;
unsigned int last_timestamp;
int error;
PROC_LOCK_ASSERT(p, MA_OWNED);
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
error = 0;
map = &vm->vm_map;
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
addr = entry->end;
bzero(kve, sizeof(*kve));
obj = entry->object.vm_object;
if (obj != NULL) {
for (tobj = obj; tobj != NULL;
tobj = tobj->backing_object) {
VM_OBJECT_RLOCK(tobj);
lobj = tobj;
}
if (obj->backing_object == NULL)
kve->kve_private_resident =
obj->resident_page_count;
if (!vmmap_skip_res_cnt)
kern_proc_vmmap_resident(map, entry, kve);
for (tobj = obj; tobj != NULL;
tobj = tobj->backing_object) {
if (tobj != obj && tobj != lobj)
VM_OBJECT_RUNLOCK(tobj);
}
} else {
lobj = NULL;
}
kve->kve_start = entry->start;
kve->kve_end = entry->end;
kve->kve_offset = entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
if (entry->eflags & MAP_ENTRY_GROWS_UP)
kve->kve_flags |= KVME_FLAG_GROWS_UP;
if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
freepath = NULL;
fullpath = "";
if (lobj != NULL) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
kve->kve_type = KVME_TYPE_VNODE;
if ((lobj->flags & OBJ_TMPFS) != 0) {
vp = lobj->un_pager.swp.swp_tmpfs;
vref(vp);
}
} else {
kve->kve_type = KVME_TYPE_SWAP;
}
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
case OBJT_MGTDEVICE:
kve->kve_type = KVME_TYPE_MGTDEVICE;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_RUNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
cred = curthread->td_ucred;
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_vn_fileid = va.va_fileid;
kve->kve_vn_fsid = va.va_fsid;
kve->kve_vn_mode =
MAKEIMODE(va.va_type, va.va_mode);
kve->kve_vn_size = va.va_size;
kve->kve_vn_rdev = va.va_rdev;
kve->kve_status = KF_ATTR_VALID;
}
vput(vp);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
/* Pack record size down */
if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
kve->kve_structsize =
offsetof(struct kinfo_vmentry, kve_path) +
strlen(kve->kve_path) + 1;
else
kve->kve_structsize = sizeof(*kve);
kve->kve_structsize = roundup(kve->kve_structsize,
sizeof(uint64_t));
/* Halt filling and truncate rather than exceeding maxlen */
if (maxlen != -1 && maxlen < kve->kve_structsize) {
error = 0;
vm_map_lock_read(map);
break;
} else if (maxlen != -1)
maxlen -= kve->kve_structsize;
if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
error = ENOMEM;
vm_map_lock_read(map);
if (error != 0)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
{
struct proc *p;
struct sbuf sb;
int error, error2, *name;
name = (int *)arg1;
sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
if (error != 0) {
sbuf_delete(&sb);
return (error);
}
error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
error2 = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
#if defined(STACK) || defined(DDB)
static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
{
struct kinfo_kstack *kkstp;
int error, i, *name, numthreads;
lwpid_t *lwpidarray;
struct thread *td;
struct stack *st;
struct sbuf sb;
struct proc *p;
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
if (error != 0)
return (error);
kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
st = stack_create();
lwpidarray = NULL;
numthreads = 0;
PROC_LOCK(p);
repeat:
if (numthreads < p->p_numthreads) {
if (lwpidarray != NULL) {
free(lwpidarray, M_TEMP);
lwpidarray = NULL;
}
numthreads = p->p_numthreads;
PROC_UNLOCK(p);
lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
M_WAITOK | M_ZERO);
PROC_LOCK(p);
goto repeat;
}
i = 0;
/*
* XXXRW: During the below loop, execve(2) and countless other sorts
* of changes could have taken place. Should we check to see if the
* vmspace has been replaced, or the like, in order to prevent
* giving a snapshot that spans, say, execve(2), with some threads
* before and some after? Among other things, the credentials could
* have changed, in which case the right to extract debug info might
* no longer be assured.
*/
FOREACH_THREAD_IN_PROC(p, td) {
KASSERT(i < numthreads,
("sysctl_kern_proc_kstack: numthreads"));
lwpidarray[i] = td->td_tid;
i++;
}
numthreads = i;
for (i = 0; i < numthreads; i++) {
td = thread_find(p, lwpidarray[i]);
if (td == NULL) {
continue;
}
bzero(kkstp, sizeof(*kkstp));
(void)sbuf_new(&sb, kkstp->kkst_trace,
sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
thread_lock(td);
kkstp->kkst_tid = td->td_tid;
if (TD_IS_SWAPPED(td)) {
kkstp->kkst_state = KKST_STATE_SWAPPED;
} else if (TD_IS_RUNNING(td)) {
if (stack_save_td_running(st, td) == 0)
kkstp->kkst_state = KKST_STATE_STACKOK;
else
kkstp->kkst_state = KKST_STATE_RUNNING;
} else {
kkstp->kkst_state = KKST_STATE_STACKOK;
stack_save_td(st, td);
}
thread_unlock(td);
PROC_UNLOCK(p);
stack_sbuf_print(&sb, st);
sbuf_finish(&sb);
sbuf_delete(&sb);
error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
PROC_LOCK(p);
if (error)
break;
}
_PRELE(p);
PROC_UNLOCK(p);
if (lwpidarray != NULL)
free(lwpidarray, M_TEMP);
stack_destroy(st);
free(kkstp, M_TEMP);
return (error);
}
#endif
/*
* This sysctl allows a process to retrieve the full list of groups from
* itself or another process.
*/
static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct ucred *cred;
int error;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
PROC_LOCK(p);
} else {
error = pget(*pidp, PGET_CANSEE, &p);
if (error != 0)
return (error);
}
cred = crhold(p->p_ucred);
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, cred->cr_groups,
cred->cr_ngroups * sizeof(gid_t));
crfree(cred);
return (error);
}
/*
* This sysctl allows a process to retrieve or/and set the resource limit for
* another process.
*/
static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct rlimit rlim;
struct proc *p;
u_int which;
int flags, error;
if (namelen != 2)
return (EINVAL);
which = (u_int)name[1];
if (which >= RLIM_NLIMITS)
return (EINVAL);
if (req->newptr != NULL && req->newlen != sizeof(rlim))
return (EINVAL);
flags = PGET_HOLD | PGET_NOTWEXIT;
if (req->newptr != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
error = pget((pid_t)name[0], flags, &p);
if (error != 0)
return (error);
/*
* Retrieve limit.
*/
if (req->oldptr != NULL) {
PROC_LOCK(p);
lim_rlimit_proc(p, which, &rlim);
PROC_UNLOCK(p);
}
error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
if (error != 0)
goto errout;
/*
* Set limit.
*/
if (req->newptr != NULL) {
error = SYSCTL_IN(req, &rlim, sizeof(rlim));
if (error == 0)
error = kern_proc_setrlimit(curthread, p, which, &rlim);
}
errout:
PRELE(p);
return (error);
}
/*
* This sysctl allows a process to retrieve ps_strings structure location of
* another process.
*/
static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
vm_offset_t ps_strings;
int error;
#ifdef COMPAT_FREEBSD32
uint32_t ps_strings32;
#endif
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
if (error != 0)
return (error);
#ifdef COMPAT_FREEBSD32
if ((req->flags & SCTL_MASK32) != 0) {
/*
* We return 0 if the 32 bit emulation request is for a 64 bit
* process.
*/
ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
PTROUT(p->p_sysent->sv_psstrings) : 0;
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
return (error);
}
#endif
ps_strings = p->p_sysent->sv_psstrings;
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
return (error);
}
/*
* This sysctl allows a process to retrieve umask of another process.
*/
static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int error;
u_short fd_cmask;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
FILEDESC_SLOCK(p->p_fd);
fd_cmask = p->p_fd->fd_cmask;
FILEDESC_SUNLOCK(p->p_fd);
PRELE(p);
error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
return (error);
}
/*
* This sysctl allows a process to set and retrieve binary osreldate of
* another process.
*/
static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int flags, error, osrel;
if (namelen != 1)
return (EINVAL);
if (req->newptr != NULL && req->newlen != sizeof(osrel))
return (EINVAL);
flags = PGET_HOLD | PGET_NOTWEXIT;
if (req->newptr != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
error = pget((pid_t)name[0], flags, &p);
if (error != 0)
return (error);
error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
if (error != 0)
goto errout;
if (req->newptr != NULL) {
error = SYSCTL_IN(req, &osrel, sizeof(osrel));
if (error != 0)
goto errout;
if (osrel < 0) {
error = EINVAL;
goto errout;
}
p->p_osrel = osrel;
}
errout:
PRELE(p);
return (error);
}
static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
struct kinfo_sigtramp kst;
const struct sysentvec *sv;
int error;
#ifdef COMPAT_FREEBSD32
struct kinfo_sigtramp32 kst32;
#endif
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
if (error != 0)
return (error);
sv = p->p_sysent;
#ifdef COMPAT_FREEBSD32
if ((req->flags & SCTL_MASK32) != 0) {
bzero(&kst32, sizeof(kst32));
if (SV_PROC_FLAG(p, SV_ILP32)) {
if (sv->sv_sigcode_base != 0) {
kst32.ksigtramp_start = sv->sv_sigcode_base;
kst32.ksigtramp_end = sv->sv_sigcode_base +
*sv->sv_szsigcode;
} else {
kst32.ksigtramp_start = sv->sv_psstrings -
*sv->sv_szsigcode;
kst32.ksigtramp_end = sv->sv_psstrings;
}
}
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
return (error);
}
#endif
bzero(&kst, sizeof(kst));
if (sv->sv_sigcode_base != 0) {
kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
*sv->sv_szsigcode;
} else {
kst.ksigtramp_start = (char *)sv->sv_psstrings -
*sv->sv_szsigcode;
kst.ksigtramp_end = (char *)sv->sv_psstrings;
}
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &kst, sizeof(kst));
return (error);
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
"Return entire process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Return process table, no threads");
static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
sysctl_kern_proc_args, "Process argument list");
static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc_env, "Process environment");
static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
"Process syscall vector name (ABI type)");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
"Return process table, no threads");
#ifdef COMPAT_FREEBSD7
static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
#if defined(STACK) || defined(DDB)
static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
"Process resource limits");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
"Process ps_strings location");
static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
"Process binary osreldate");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
"Process signal trampoline location");
int allproc_gen;
void
stop_all_proc(void)
{
struct proc *cp, *p;
int r, gen;
bool restart, seen_stopped, seen_exiting, stopped_some;
cp = curproc;
/*
* stop_all_proc() assumes that all process which have
* usermode must be stopped, except current process, for
* obvious reasons. Since other threads in the process
* establishing global stop could unstop something, disable
* calls from multithreaded processes as precaution. The
* service must not be user-callable anyway.
*/
KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
(cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
allproc_loop:
sx_xlock(&allproc_lock);
gen = allproc_gen;
seen_exiting = seen_stopped = stopped_some = restart = false;
LIST_REMOVE(cp, p_list);
LIST_INSERT_HEAD(&allproc, cp, p_list);
for (;;) {
p = LIST_NEXT(cp, p_list);
if (p == NULL)
break;
LIST_REMOVE(cp, p_list);
LIST_INSERT_AFTER(p, cp, p_list);
PROC_LOCK(p);
if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
P_TOTAL_STOP)) != 0) {
PROC_UNLOCK(p);
continue;
}
if ((p->p_flag & P_WEXIT) != 0) {
seen_exiting = true;
PROC_UNLOCK(p);
continue;
}
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
/*
* Stopped processes are tolerated when there
* are no other processes which might continue
* them. P_STOPPED_SINGLE but not
* P_TOTAL_STOP process still has at least one
* thread running.
*/
seen_stopped = true;
PROC_UNLOCK(p);
continue;
}
_PHOLD(p);
sx_xunlock(&allproc_lock);
r = thread_single(p, SINGLE_ALLPROC);
if (r != 0)
restart = true;
else
stopped_some = true;
_PRELE(p);
PROC_UNLOCK(p);
sx_xlock(&allproc_lock);
}
/* Catch forked children we did not see in iteration. */
if (gen != allproc_gen)
restart = true;
sx_xunlock(&allproc_lock);
if (restart || stopped_some || seen_exiting || seen_stopped) {
kern_yield(PRI_USER);
goto allproc_loop;
}
}
void
resume_all_proc(void)
{
struct proc *cp, *p;
cp = curproc;
sx_xlock(&allproc_lock);
LIST_REMOVE(cp, p_list);
LIST_INSERT_HEAD(&allproc, cp, p_list);
for (;;) {
p = LIST_NEXT(cp, p_list);
if (p == NULL)
break;
LIST_REMOVE(cp, p_list);
LIST_INSERT_AFTER(p, cp, p_list);
PROC_LOCK(p);
if ((p->p_flag & P_TOTAL_STOP) != 0) {
sx_xunlock(&allproc_lock);
_PHOLD(p);
thread_single_end(p, SINGLE_ALLPROC);
_PRELE(p);
PROC_UNLOCK(p);
sx_xlock(&allproc_lock);
} else {
PROC_UNLOCK(p);
}
}
sx_xunlock(&allproc_lock);
}
#define TOTAL_STOP_DEBUG 1
#ifdef TOTAL_STOP_DEBUG
volatile static int ap_resume;
#include <sys/mount.h>
static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
{
int error, val;
val = 0;
ap_resume = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val != 0) {
stop_all_proc();
syncer_suspend();
while (ap_resume == 0)
;
syncer_resume();
resume_all_proc();
}
return (0);
}
SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
sysctl_debug_stop_all_proc, "I",
"");
#endif