mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-06 13:09:50 +00:00
496 lines
17 KiB
C
496 lines
17 KiB
C
/* Definitions of floating-point access for GNU compiler.
|
||
Copyright (C) 1989, 91, 94, 96-98, 1999 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#ifndef REAL_H_INCLUDED
|
||
#define REAL_H_INCLUDED
|
||
|
||
/* Define codes for all the float formats that we know of. */
|
||
#define UNKNOWN_FLOAT_FORMAT 0
|
||
#define IEEE_FLOAT_FORMAT 1
|
||
#define VAX_FLOAT_FORMAT 2
|
||
#define IBM_FLOAT_FORMAT 3
|
||
#define C4X_FLOAT_FORMAT 4
|
||
|
||
/* Default to IEEE float if not specified. Nearly all machines use it. */
|
||
|
||
#ifndef TARGET_FLOAT_FORMAT
|
||
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
#endif
|
||
|
||
#ifndef HOST_FLOAT_FORMAT
|
||
#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
#endif
|
||
|
||
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
||
#define REAL_INFINITY
|
||
#endif
|
||
|
||
/* If FLOAT_WORDS_BIG_ENDIAN and HOST_FLOAT_WORDS_BIG_ENDIAN are not defined
|
||
in the header files, then this implies the word-endianness is the same as
|
||
for integers. */
|
||
|
||
/* This is defined 0 or 1, like WORDS_BIG_ENDIAN. */
|
||
#ifndef FLOAT_WORDS_BIG_ENDIAN
|
||
#define FLOAT_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
|
||
#endif
|
||
|
||
/* This is defined 0 or 1, unlike HOST_WORDS_BIG_ENDIAN. */
|
||
#ifndef HOST_FLOAT_WORDS_BIG_ENDIAN
|
||
#ifdef HOST_WORDS_BIG_ENDIAN
|
||
#define HOST_FLOAT_WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define HOST_FLOAT_WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
#endif
|
||
|
||
/* Defining REAL_ARITHMETIC invokes a floating point emulator
|
||
that can produce a target machine format differing by more
|
||
than just endian-ness from the host's format. The emulator
|
||
is also used to support extended real XFmode. */
|
||
#ifndef LONG_DOUBLE_TYPE_SIZE
|
||
#define LONG_DOUBLE_TYPE_SIZE 64
|
||
#endif
|
||
#if (LONG_DOUBLE_TYPE_SIZE == 96) || (LONG_DOUBLE_TYPE_SIZE == 128)
|
||
#ifndef REAL_ARITHMETIC
|
||
#define REAL_ARITHMETIC
|
||
#endif
|
||
#endif
|
||
#ifdef REAL_ARITHMETIC
|
||
/* **** Start of software floating point emulator interface macros **** */
|
||
|
||
/* Support 80-bit extended real XFmode if LONG_DOUBLE_TYPE_SIZE
|
||
has been defined to be 96 in the tm.h machine file. */
|
||
#if (LONG_DOUBLE_TYPE_SIZE == 96)
|
||
#define REAL_IS_NOT_DOUBLE
|
||
#define REAL_ARITHMETIC
|
||
typedef struct {
|
||
HOST_WIDE_INT r[(11 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
||
} realvaluetype;
|
||
#define REAL_VALUE_TYPE realvaluetype
|
||
|
||
#else /* no XFmode support */
|
||
|
||
#if (LONG_DOUBLE_TYPE_SIZE == 128)
|
||
|
||
#define REAL_IS_NOT_DOUBLE
|
||
#define REAL_ARITHMETIC
|
||
typedef struct {
|
||
HOST_WIDE_INT r[(19 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
||
} realvaluetype;
|
||
#define REAL_VALUE_TYPE realvaluetype
|
||
|
||
#else /* not TFmode */
|
||
|
||
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
||
/* If no XFmode support, then a REAL_VALUE_TYPE is 64 bits wide
|
||
but it is not necessarily a host machine double. */
|
||
#define REAL_IS_NOT_DOUBLE
|
||
typedef struct {
|
||
HOST_WIDE_INT r[(7 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
||
} realvaluetype;
|
||
#define REAL_VALUE_TYPE realvaluetype
|
||
#else
|
||
/* If host and target formats are compatible, then a REAL_VALUE_TYPE
|
||
is actually a host machine double. */
|
||
#define REAL_VALUE_TYPE double
|
||
#endif
|
||
|
||
#endif /* no TFmode support */
|
||
#endif /* no XFmode support */
|
||
|
||
extern int significand_size PROTO((enum machine_mode));
|
||
|
||
/* If emulation has been enabled by defining REAL_ARITHMETIC or by
|
||
setting LONG_DOUBLE_TYPE_SIZE to 96 or 128, then define macros so that
|
||
they invoke emulator functions. This will succeed only if the machine
|
||
files have been updated to use these macros in place of any
|
||
references to host machine `double' or `float' types. */
|
||
#ifdef REAL_ARITHMETIC
|
||
#undef REAL_ARITHMETIC
|
||
#define REAL_ARITHMETIC(value, code, d1, d2) \
|
||
earith (&(value), (code), &(d1), &(d2))
|
||
|
||
/* Declare functions in real.c. */
|
||
extern void earith PROTO((REAL_VALUE_TYPE *, int,
|
||
REAL_VALUE_TYPE *, REAL_VALUE_TYPE *));
|
||
extern REAL_VALUE_TYPE etrunci PROTO((REAL_VALUE_TYPE));
|
||
extern REAL_VALUE_TYPE etruncui PROTO((REAL_VALUE_TYPE));
|
||
extern REAL_VALUE_TYPE ereal_atof PROTO((const char *, enum machine_mode));
|
||
extern REAL_VALUE_TYPE ereal_negate PROTO((REAL_VALUE_TYPE));
|
||
extern HOST_WIDE_INT efixi PROTO((REAL_VALUE_TYPE));
|
||
extern unsigned HOST_WIDE_INT efixui PROTO((REAL_VALUE_TYPE));
|
||
extern void ereal_from_int PROTO((REAL_VALUE_TYPE *,
|
||
HOST_WIDE_INT, HOST_WIDE_INT,
|
||
enum machine_mode));
|
||
extern void ereal_from_uint PROTO((REAL_VALUE_TYPE *,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
enum machine_mode));
|
||
extern void ereal_to_int PROTO((HOST_WIDE_INT *, HOST_WIDE_INT *,
|
||
REAL_VALUE_TYPE));
|
||
extern REAL_VALUE_TYPE ereal_ldexp PROTO((REAL_VALUE_TYPE, int));
|
||
|
||
extern void etartdouble PROTO((REAL_VALUE_TYPE, long *));
|
||
extern void etarldouble PROTO((REAL_VALUE_TYPE, long *));
|
||
extern void etardouble PROTO((REAL_VALUE_TYPE, long *));
|
||
extern long etarsingle PROTO((REAL_VALUE_TYPE));
|
||
extern void ereal_to_decimal PROTO((REAL_VALUE_TYPE, char *));
|
||
extern int ereal_cmp PROTO((REAL_VALUE_TYPE, REAL_VALUE_TYPE));
|
||
extern int ereal_isneg PROTO((REAL_VALUE_TYPE));
|
||
extern REAL_VALUE_TYPE ereal_unto_float PROTO((long));
|
||
extern REAL_VALUE_TYPE ereal_unto_double PROTO((long *));
|
||
extern REAL_VALUE_TYPE ereal_from_float PROTO((HOST_WIDE_INT));
|
||
extern REAL_VALUE_TYPE ereal_from_double PROTO((HOST_WIDE_INT *));
|
||
|
||
#define REAL_VALUES_EQUAL(x, y) (ereal_cmp ((x), (y)) == 0)
|
||
/* true if x < y : */
|
||
#define REAL_VALUES_LESS(x, y) (ereal_cmp ((x), (y)) == -1)
|
||
#define REAL_VALUE_LDEXP(x, n) ereal_ldexp (x, n)
|
||
|
||
/* These return REAL_VALUE_TYPE: */
|
||
#define REAL_VALUE_RNDZINT(x) (etrunci (x))
|
||
#define REAL_VALUE_UNSIGNED_RNDZINT(x) (etruncui (x))
|
||
extern REAL_VALUE_TYPE real_value_truncate PROTO ((enum machine_mode,
|
||
REAL_VALUE_TYPE));
|
||
#define REAL_VALUE_TRUNCATE(mode, x) real_value_truncate (mode, x)
|
||
|
||
/* These return HOST_WIDE_INT: */
|
||
/* Convert a floating-point value to integer, rounding toward zero. */
|
||
#define REAL_VALUE_FIX(x) (efixi (x))
|
||
/* Convert a floating-point value to unsigned integer, rounding
|
||
toward zero. */
|
||
#define REAL_VALUE_UNSIGNED_FIX(x) (efixui (x))
|
||
|
||
/* Convert ASCII string S to floating point in mode M.
|
||
Decimal input uses ATOF. Hexadecimal uses HTOF. */
|
||
#define REAL_VALUE_ATOF ereal_atof
|
||
#define REAL_VALUE_HTOF ereal_atof
|
||
|
||
#define REAL_VALUE_NEGATE ereal_negate
|
||
|
||
#define REAL_VALUE_MINUS_ZERO(x) \
|
||
((ereal_cmp (x, dconst0) == 0) && (ereal_isneg (x) != 0 ))
|
||
|
||
#define REAL_VALUE_TO_INT ereal_to_int
|
||
|
||
/* Here the cast to HOST_WIDE_INT sign-extends arguments such as ~0. */
|
||
#define REAL_VALUE_FROM_INT(d, lo, hi, mode) \
|
||
ereal_from_int (&d, (HOST_WIDE_INT) (lo), (HOST_WIDE_INT) (hi), mode)
|
||
|
||
#define REAL_VALUE_FROM_UNSIGNED_INT(d, lo, hi, mode) \
|
||
ereal_from_uint (&d, lo, hi, mode)
|
||
|
||
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
||
#if LONG_DOUBLE_TYPE_SIZE == 96
|
||
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etarldouble ((IN), (OUT)))
|
||
#else
|
||
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etartdouble ((IN), (OUT)))
|
||
#endif
|
||
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) (etardouble ((IN), (OUT)))
|
||
|
||
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
||
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) ((OUT) = etarsingle ((IN)))
|
||
|
||
/* Inverse of REAL_VALUE_TO_TARGET_DOUBLE. */
|
||
#define REAL_VALUE_UNTO_TARGET_DOUBLE(d) (ereal_unto_double (d))
|
||
|
||
/* Inverse of REAL_VALUE_TO_TARGET_SINGLE. */
|
||
#define REAL_VALUE_UNTO_TARGET_SINGLE(f) (ereal_unto_float (f))
|
||
|
||
/* d is an array of HOST_WIDE_INT that holds a double precision
|
||
value in the target computer's floating point format. */
|
||
#define REAL_VALUE_FROM_TARGET_DOUBLE(d) (ereal_from_double (d))
|
||
|
||
/* f is a HOST_WIDE_INT containing a single precision target float value. */
|
||
#define REAL_VALUE_FROM_TARGET_SINGLE(f) (ereal_from_float (f))
|
||
|
||
/* Conversions to decimal ASCII string. */
|
||
#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (ereal_to_decimal (r, s))
|
||
|
||
#endif /* REAL_ARITHMETIC defined */
|
||
|
||
/* **** End of software floating point emulator interface macros **** */
|
||
#else /* No XFmode or TFmode and REAL_ARITHMETIC not defined */
|
||
|
||
/* old interface */
|
||
#ifdef REAL_ARITHMETIC
|
||
/* Defining REAL_IS_NOT_DOUBLE breaks certain initializations
|
||
when REAL_ARITHMETIC etc. are not defined. */
|
||
|
||
/* Now see if the host and target machines use the same format.
|
||
If not, define REAL_IS_NOT_DOUBLE (even if we end up representing
|
||
reals as doubles because we have no better way in this cross compiler.)
|
||
This turns off various optimizations that can happen when we know the
|
||
compiler's float format matches the target's float format.
|
||
*/
|
||
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
||
#define REAL_IS_NOT_DOUBLE
|
||
#ifndef REAL_VALUE_TYPE
|
||
typedef struct {
|
||
HOST_WIDE_INT r[sizeof (double)/sizeof (HOST_WIDE_INT)];
|
||
} realvaluetype;
|
||
#define REAL_VALUE_TYPE realvaluetype
|
||
#endif /* no REAL_VALUE_TYPE */
|
||
#endif /* formats differ */
|
||
#endif /* 0 */
|
||
|
||
#endif /* emulator not used */
|
||
|
||
/* If we are not cross-compiling, use a `double' to represent the
|
||
floating-point value. Otherwise, use some other type
|
||
(probably a struct containing an array of longs). */
|
||
#ifndef REAL_VALUE_TYPE
|
||
#define REAL_VALUE_TYPE double
|
||
#else
|
||
#define REAL_IS_NOT_DOUBLE
|
||
#endif
|
||
|
||
#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
|
||
/* Convert a type `double' value in host format first to a type `float'
|
||
value in host format and then to a single type `long' value which
|
||
is the bitwise equivalent of the `float' value. */
|
||
#ifndef REAL_VALUE_TO_TARGET_SINGLE
|
||
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
|
||
do { \
|
||
union { \
|
||
float f; \
|
||
HOST_WIDE_INT l; \
|
||
} u; \
|
||
if (sizeof(HOST_WIDE_INT) < sizeof(float)) \
|
||
abort(); \
|
||
u.l = 0; \
|
||
u.f = (IN); \
|
||
(OUT) = u.l; \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* Convert a type `double' value in host format to a pair of type `long'
|
||
values which is its bitwise equivalent, but put the two words into
|
||
proper word order for the target. */
|
||
#ifndef REAL_VALUE_TO_TARGET_DOUBLE
|
||
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
|
||
do { \
|
||
union { \
|
||
REAL_VALUE_TYPE f; \
|
||
HOST_WIDE_INT l[2]; \
|
||
} u; \
|
||
if (sizeof(HOST_WIDE_INT) * 2 < sizeof(REAL_VALUE_TYPE)) \
|
||
abort(); \
|
||
u.l[0] = u.l[1] = 0; \
|
||
u.f = (IN); \
|
||
if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \
|
||
(OUT)[0] = u.l[0], (OUT)[1] = u.l[1]; \
|
||
else \
|
||
(OUT)[1] = u.l[0], (OUT)[0] = u.l[1]; \
|
||
} while (0)
|
||
#endif
|
||
#endif /* HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT */
|
||
|
||
/* In this configuration, double and long double are the same. */
|
||
#ifndef REAL_VALUE_TO_TARGET_LONG_DOUBLE
|
||
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(a, b) REAL_VALUE_TO_TARGET_DOUBLE (a, b)
|
||
#endif
|
||
|
||
/* Compare two floating-point objects for bitwise identity.
|
||
This is not the same as comparing for equality on IEEE hosts:
|
||
-0.0 equals 0.0 but they are not identical, and conversely
|
||
two NaNs might be identical but they cannot be equal. */
|
||
#define REAL_VALUES_IDENTICAL(x, y) \
|
||
(!bcmp ((char *) &(x), (char *) &(y), sizeof (REAL_VALUE_TYPE)))
|
||
|
||
/* Compare two floating-point values for equality. */
|
||
#ifndef REAL_VALUES_EQUAL
|
||
#define REAL_VALUES_EQUAL(x, y) ((x) == (y))
|
||
#endif
|
||
|
||
/* Compare two floating-point values for less than. */
|
||
#ifndef REAL_VALUES_LESS
|
||
#define REAL_VALUES_LESS(x, y) ((x) < (y))
|
||
#endif
|
||
|
||
/* Truncate toward zero to an integer floating-point value. */
|
||
#ifndef REAL_VALUE_RNDZINT
|
||
#define REAL_VALUE_RNDZINT(x) ((double) ((int) (x)))
|
||
#endif
|
||
|
||
/* Truncate toward zero to an unsigned integer floating-point value. */
|
||
#ifndef REAL_VALUE_UNSIGNED_RNDZINT
|
||
#define REAL_VALUE_UNSIGNED_RNDZINT(x) ((double) ((unsigned int) (x)))
|
||
#endif
|
||
|
||
/* Convert a floating-point value to integer, rounding toward zero. */
|
||
#ifndef REAL_VALUE_FIX
|
||
#define REAL_VALUE_FIX(x) ((int) (x))
|
||
#endif
|
||
|
||
/* Convert a floating-point value to unsigned integer, rounding
|
||
toward zero. */
|
||
#ifndef REAL_VALUE_UNSIGNED_FIX
|
||
#define REAL_VALUE_UNSIGNED_FIX(x) ((unsigned int) (x))
|
||
#endif
|
||
|
||
/* Scale X by Y powers of 2. */
|
||
#ifndef REAL_VALUE_LDEXP
|
||
#define REAL_VALUE_LDEXP(x, y) ldexp (x, y)
|
||
extern double ldexp ();
|
||
#endif
|
||
|
||
/* Convert the string X to a floating-point value. */
|
||
#ifndef REAL_VALUE_ATOF
|
||
#if 1
|
||
/* Use real.c to convert decimal numbers to binary, ... */
|
||
REAL_VALUE_TYPE ereal_atof ();
|
||
#define REAL_VALUE_ATOF(x, s) ereal_atof (x, s)
|
||
/* Could use ereal_atof here for hexadecimal floats too, but real_hex_to_f
|
||
is OK and it uses faster native fp arithmetic. */
|
||
/* #define REAL_VALUE_HTOF(x, s) ereal_atof (x, s) */
|
||
#else
|
||
/* ... or, if you like the host computer's atof, go ahead and use it: */
|
||
#define REAL_VALUE_ATOF(x, s) atof (x)
|
||
#if defined (MIPSEL) || defined (MIPSEB)
|
||
/* MIPS compiler can't handle parens around the function name.
|
||
This problem *does not* appear to be connected with any
|
||
macro definition for atof. It does not seem there is one. */
|
||
extern double atof ();
|
||
#else
|
||
extern double (atof) ();
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
/* Hexadecimal floating constant input for use with host computer's
|
||
fp arithmetic. */
|
||
#ifndef REAL_VALUE_HTOF
|
||
extern REAL_VALUE_TYPE real_hex_to_f PROTO((char *, enum machine_mode));
|
||
#define REAL_VALUE_HTOF(s,m) real_hex_to_f(s,m)
|
||
#endif
|
||
|
||
/* Negate the floating-point value X. */
|
||
#ifndef REAL_VALUE_NEGATE
|
||
#define REAL_VALUE_NEGATE(x) (- (x))
|
||
#endif
|
||
|
||
/* Truncate the floating-point value X to mode MODE. This is correct only
|
||
for the most common case where the host and target have objects of the same
|
||
size and where `float' is SFmode. */
|
||
|
||
/* Don't use REAL_VALUE_TRUNCATE directly--always call real_value_truncate. */
|
||
extern REAL_VALUE_TYPE real_value_truncate PROTO((enum machine_mode, REAL_VALUE_TYPE));
|
||
|
||
#ifndef REAL_VALUE_TRUNCATE
|
||
#define REAL_VALUE_TRUNCATE(mode, x) \
|
||
(GET_MODE_BITSIZE (mode) == sizeof (float) * HOST_BITS_PER_CHAR \
|
||
? (float) (x) : (x))
|
||
#endif
|
||
|
||
/* Determine whether a floating-point value X is infinite. */
|
||
#ifndef REAL_VALUE_ISINF
|
||
#define REAL_VALUE_ISINF(x) (target_isinf (x))
|
||
#endif
|
||
|
||
/* Determine whether a floating-point value X is a NaN. */
|
||
#ifndef REAL_VALUE_ISNAN
|
||
#define REAL_VALUE_ISNAN(x) (target_isnan (x))
|
||
#endif
|
||
|
||
/* Determine whether a floating-point value X is negative. */
|
||
#ifndef REAL_VALUE_NEGATIVE
|
||
#define REAL_VALUE_NEGATIVE(x) (target_negative (x))
|
||
#endif
|
||
|
||
extern int target_isnan PROTO ((REAL_VALUE_TYPE));
|
||
extern int target_isinf PROTO ((REAL_VALUE_TYPE));
|
||
extern int target_negative PROTO ((REAL_VALUE_TYPE));
|
||
|
||
/* Determine whether a floating-point value X is minus 0. */
|
||
#ifndef REAL_VALUE_MINUS_ZERO
|
||
#define REAL_VALUE_MINUS_ZERO(x) ((x) == 0 && REAL_VALUE_NEGATIVE (x))
|
||
#endif
|
||
|
||
/* Constant real values 0, 1, 2, and -1. */
|
||
|
||
extern REAL_VALUE_TYPE dconst0;
|
||
extern REAL_VALUE_TYPE dconst1;
|
||
extern REAL_VALUE_TYPE dconst2;
|
||
extern REAL_VALUE_TYPE dconstm1;
|
||
|
||
/* Union type used for extracting real values from CONST_DOUBLEs
|
||
or putting them in. */
|
||
|
||
union real_extract
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
HOST_WIDE_INT i[sizeof (REAL_VALUE_TYPE) / sizeof (HOST_WIDE_INT)];
|
||
};
|
||
|
||
/* For a CONST_DOUBLE:
|
||
The usual two ints that hold the value.
|
||
For a DImode, that is all there are;
|
||
and CONST_DOUBLE_LOW is the low-order word and ..._HIGH the high-order.
|
||
For a float, the number of ints varies,
|
||
and CONST_DOUBLE_LOW is the one that should come first *in memory*.
|
||
So use &CONST_DOUBLE_LOW(r) as the address of an array of ints. */
|
||
#define CONST_DOUBLE_LOW(r) XWINT (r, 2)
|
||
#define CONST_DOUBLE_HIGH(r) XWINT (r, 3)
|
||
|
||
/* Link for chain of all CONST_DOUBLEs in use in current function. */
|
||
#define CONST_DOUBLE_CHAIN(r) XEXP (r, 1)
|
||
/* The MEM which represents this CONST_DOUBLE's value in memory,
|
||
or const0_rtx if no MEM has been made for it yet,
|
||
or cc0_rtx if it is not on the chain. */
|
||
#define CONST_DOUBLE_MEM(r) XEXP (r, 0)
|
||
|
||
/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */
|
||
/* Function to return a real value (not a tree node)
|
||
from a given integer constant. */
|
||
union tree_node;
|
||
REAL_VALUE_TYPE real_value_from_int_cst PROTO ((union tree_node *,
|
||
union tree_node *));
|
||
|
||
#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
|
||
do { union real_extract u; \
|
||
bcopy ((char *) &CONST_DOUBLE_LOW ((from)), (char *) &u, sizeof u); \
|
||
to = u.d; } while (0)
|
||
|
||
/* Return a CONST_DOUBLE with value R and mode M. */
|
||
|
||
#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) immed_real_const_1 (r, m)
|
||
extern struct rtx_def *immed_real_const_1 PROTO((REAL_VALUE_TYPE,
|
||
enum machine_mode));
|
||
|
||
|
||
/* Convert a floating point value `r', that can be interpreted
|
||
as a host machine float or double, to a decimal ASCII string `s'
|
||
using printf format string `fmt'. */
|
||
#ifndef REAL_VALUE_TO_DECIMAL
|
||
#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (sprintf (s, fmt, r))
|
||
#endif
|
||
|
||
/* Replace R by 1/R in the given machine mode, if the result is exact. */
|
||
extern int exact_real_inverse PROTO((enum machine_mode, REAL_VALUE_TYPE *));
|
||
|
||
extern void debug_real PROTO ((REAL_VALUE_TYPE));
|
||
|
||
/* In varasm.c */
|
||
extern void assemble_real PROTO ((REAL_VALUE_TYPE,
|
||
enum machine_mode));
|
||
#endif /* Not REAL_H_INCLUDED */
|