1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-16 15:11:52 +00:00
freebsd/sys/i386/i386/identcpu.c
John Baldwin bcd6068179 Recognize the RDRAND instruction feature.
Submitted by:	Michael Fuckner  michael fuckner net
MFC after:	3 days
2012-04-09 15:20:16 +00:00

1590 lines
43 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* Copyright (c) 1997 KATO Takenori.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Id: machdep.c,v 1.193 1996/06/18 01:22:04 bde Exp
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cpu.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/power.h>
#include <machine/asmacros.h>
#include <machine/clock.h>
#include <machine/cputypes.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#define IDENTBLUE_CYRIX486 0
#define IDENTBLUE_IBMCPU 1
#define IDENTBLUE_CYRIXM2 2
/* XXX - should be in header file: */
void printcpuinfo(void);
void finishidentcpu(void);
void earlysetcpuclass(void);
#if defined(I586_CPU) && defined(CPU_WT_ALLOC)
void enable_K5_wt_alloc(void);
void enable_K6_wt_alloc(void);
void enable_K6_2_wt_alloc(void);
#endif
void panicifcpuunsupported(void);
static void identifycyrix(void);
static void init_exthigh(void);
static u_int find_cpu_vendor_id(void);
static void print_AMD_info(void);
static void print_INTEL_info(void);
static void print_INTEL_TLB(u_int data);
static void print_AMD_assoc(int i);
static void print_transmeta_info(void);
static void print_via_padlock_info(void);
int cpu_class;
u_int cpu_exthigh; /* Highest arg to extended CPUID */
u_int cyrix_did; /* Device ID of Cyrix CPU */
char machine[] = MACHINE;
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD,
machine, 0, "Machine class");
static char cpu_model[128];
SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD,
cpu_model, 0, "Machine model");
static int hw_clockrate;
SYSCTL_INT(_hw, OID_AUTO, clockrate, CTLFLAG_RD,
&hw_clockrate, 0, "CPU instruction clock rate");
static eventhandler_tag tsc_post_tag;
static char cpu_brand[48];
#define MAX_BRAND_INDEX 8
static const char *cpu_brandtable[MAX_BRAND_INDEX + 1] = {
NULL, /* No brand */
"Intel Celeron",
"Intel Pentium III",
"Intel Pentium III Xeon",
NULL,
NULL,
NULL,
NULL,
"Intel Pentium 4"
};
static struct {
char *cpu_name;
int cpu_class;
} i386_cpus[] = {
{ "Intel 80286", CPUCLASS_286 }, /* CPU_286 */
{ "i386SX", CPUCLASS_386 }, /* CPU_386SX */
{ "i386DX", CPUCLASS_386 }, /* CPU_386 */
{ "i486SX", CPUCLASS_486 }, /* CPU_486SX */
{ "i486DX", CPUCLASS_486 }, /* CPU_486 */
{ "Pentium", CPUCLASS_586 }, /* CPU_586 */
{ "Cyrix 486", CPUCLASS_486 }, /* CPU_486DLC */
{ "Pentium Pro", CPUCLASS_686 }, /* CPU_686 */
{ "Cyrix 5x86", CPUCLASS_486 }, /* CPU_M1SC */
{ "Cyrix 6x86", CPUCLASS_486 }, /* CPU_M1 */
{ "Blue Lightning", CPUCLASS_486 }, /* CPU_BLUE */
{ "Cyrix 6x86MX", CPUCLASS_686 }, /* CPU_M2 */
{ "NexGen 586", CPUCLASS_386 }, /* CPU_NX586 (XXX) */
{ "Cyrix 486S/DX", CPUCLASS_486 }, /* CPU_CY486DX */
{ "Pentium II", CPUCLASS_686 }, /* CPU_PII */
{ "Pentium III", CPUCLASS_686 }, /* CPU_PIII */
{ "Pentium 4", CPUCLASS_686 }, /* CPU_P4 */
};
static struct {
char *vendor;
u_int vendor_id;
} cpu_vendors[] = {
{ INTEL_VENDOR_ID, CPU_VENDOR_INTEL }, /* GenuineIntel */
{ AMD_VENDOR_ID, CPU_VENDOR_AMD }, /* AuthenticAMD */
{ CENTAUR_VENDOR_ID, CPU_VENDOR_CENTAUR }, /* CentaurHauls */
{ NSC_VENDOR_ID, CPU_VENDOR_NSC }, /* Geode by NSC */
{ CYRIX_VENDOR_ID, CPU_VENDOR_CYRIX }, /* CyrixInstead */
{ TRANSMETA_VENDOR_ID, CPU_VENDOR_TRANSMETA }, /* GenuineTMx86 */
{ SIS_VENDOR_ID, CPU_VENDOR_SIS }, /* SiS SiS SiS */
{ UMC_VENDOR_ID, CPU_VENDOR_UMC }, /* UMC UMC UMC */
{ NEXGEN_VENDOR_ID, CPU_VENDOR_NEXGEN }, /* NexGenDriven */
{ RISE_VENDOR_ID, CPU_VENDOR_RISE }, /* RiseRiseRise */
#if 0
/* XXX CPUID 8000_0000h and 8086_0000h, not 0000_0000h */
{ "TransmetaCPU", CPU_VENDOR_TRANSMETA },
#endif
};
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
int has_f00f_bug = 0; /* Initialized so that it can be patched. */
#endif
static void
init_exthigh(void)
{
static int done = 0;
u_int regs[4];
if (done == 0) {
if (cpu_high > 0 &&
(cpu_vendor_id == CPU_VENDOR_INTEL ||
cpu_vendor_id == CPU_VENDOR_AMD ||
cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
cpu_vendor_id == CPU_VENDOR_CENTAUR ||
cpu_vendor_id == CPU_VENDOR_NSC)) {
do_cpuid(0x80000000, regs);
if (regs[0] >= 0x80000000)
cpu_exthigh = regs[0];
}
done = 1;
}
}
void
printcpuinfo(void)
{
u_int regs[4], i;
char *brand;
cpu_class = i386_cpus[cpu].cpu_class;
printf("CPU: ");
strncpy(cpu_model, i386_cpus[cpu].cpu_name, sizeof (cpu_model));
/* Check for extended CPUID information and a processor name. */
init_exthigh();
if (cpu_exthigh >= 0x80000004) {
brand = cpu_brand;
for (i = 0x80000002; i < 0x80000005; i++) {
do_cpuid(i, regs);
memcpy(brand, regs, sizeof(regs));
brand += sizeof(regs);
}
}
if (cpu_vendor_id == CPU_VENDOR_INTEL) {
if ((cpu_id & 0xf00) > 0x300) {
u_int brand_index;
cpu_model[0] = '\0';
switch (cpu_id & 0x3000) {
case 0x1000:
strcpy(cpu_model, "Overdrive ");
break;
case 0x2000:
strcpy(cpu_model, "Dual ");
break;
}
switch (cpu_id & 0xf00) {
case 0x400:
strcat(cpu_model, "i486 ");
/* Check the particular flavor of 486 */
switch (cpu_id & 0xf0) {
case 0x00:
case 0x10:
strcat(cpu_model, "DX");
break;
case 0x20:
strcat(cpu_model, "SX");
break;
case 0x30:
strcat(cpu_model, "DX2");
break;
case 0x40:
strcat(cpu_model, "SL");
break;
case 0x50:
strcat(cpu_model, "SX2");
break;
case 0x70:
strcat(cpu_model,
"DX2 Write-Back Enhanced");
break;
case 0x80:
strcat(cpu_model, "DX4");
break;
}
break;
case 0x500:
/* Check the particular flavor of 586 */
strcat(cpu_model, "Pentium");
switch (cpu_id & 0xf0) {
case 0x00:
strcat(cpu_model, " A-step");
break;
case 0x10:
strcat(cpu_model, "/P5");
break;
case 0x20:
strcat(cpu_model, "/P54C");
break;
case 0x30:
strcat(cpu_model, "/P24T");
break;
case 0x40:
strcat(cpu_model, "/P55C");
break;
case 0x70:
strcat(cpu_model, "/P54C");
break;
case 0x80:
strcat(cpu_model, "/P55C (quarter-micron)");
break;
default:
/* nothing */
break;
}
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
/*
* XXX - If/when Intel fixes the bug, this
* should also check the version of the
* CPU, not just that it's a Pentium.
*/
has_f00f_bug = 1;
#endif
break;
case 0x600:
/* Check the particular flavor of 686 */
switch (cpu_id & 0xf0) {
case 0x00:
strcat(cpu_model, "Pentium Pro A-step");
break;
case 0x10:
strcat(cpu_model, "Pentium Pro");
break;
case 0x30:
case 0x50:
case 0x60:
strcat(cpu_model,
"Pentium II/Pentium II Xeon/Celeron");
cpu = CPU_PII;
break;
case 0x70:
case 0x80:
case 0xa0:
case 0xb0:
strcat(cpu_model,
"Pentium III/Pentium III Xeon/Celeron");
cpu = CPU_PIII;
break;
default:
strcat(cpu_model, "Unknown 80686");
break;
}
break;
case 0xf00:
strcat(cpu_model, "Pentium 4");
cpu = CPU_P4;
break;
default:
strcat(cpu_model, "unknown");
break;
}
/*
* If we didn't get a brand name from the extended
* CPUID, try to look it up in the brand table.
*/
if (cpu_high > 0 && *cpu_brand == '\0') {
brand_index = cpu_procinfo & CPUID_BRAND_INDEX;
if (brand_index <= MAX_BRAND_INDEX &&
cpu_brandtable[brand_index] != NULL)
strcpy(cpu_brand,
cpu_brandtable[brand_index]);
}
}
} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
/*
* Values taken from AMD Processor Recognition
* http://www.amd.com/K6/k6docs/pdf/20734g.pdf
* (also describes ``Features'' encodings.
*/
strcpy(cpu_model, "AMD ");
switch (cpu_id & 0xFF0) {
case 0x410:
strcat(cpu_model, "Standard Am486DX");
break;
case 0x430:
strcat(cpu_model, "Enhanced Am486DX2 Write-Through");
break;
case 0x470:
strcat(cpu_model, "Enhanced Am486DX2 Write-Back");
break;
case 0x480:
strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Through");
break;
case 0x490:
strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Back");
break;
case 0x4E0:
strcat(cpu_model, "Am5x86 Write-Through");
break;
case 0x4F0:
strcat(cpu_model, "Am5x86 Write-Back");
break;
case 0x500:
strcat(cpu_model, "K5 model 0");
tsc_freq = 0;
break;
case 0x510:
strcat(cpu_model, "K5 model 1");
break;
case 0x520:
strcat(cpu_model, "K5 PR166 (model 2)");
break;
case 0x530:
strcat(cpu_model, "K5 PR200 (model 3)");
break;
case 0x560:
strcat(cpu_model, "K6");
break;
case 0x570:
strcat(cpu_model, "K6 266 (model 1)");
break;
case 0x580:
strcat(cpu_model, "K6-2");
break;
case 0x590:
strcat(cpu_model, "K6-III");
break;
case 0x5a0:
strcat(cpu_model, "Geode LX");
/*
* Make sure the TSC runs through suspension,
* otherwise we can't use it as timecounter
*/
wrmsr(0x1900, rdmsr(0x1900) | 0x20ULL);
break;
default:
strcat(cpu_model, "Unknown");
break;
}
#if defined(I586_CPU) && defined(CPU_WT_ALLOC)
if ((cpu_id & 0xf00) == 0x500) {
if (((cpu_id & 0x0f0) > 0)
&& ((cpu_id & 0x0f0) < 0x60)
&& ((cpu_id & 0x00f) > 3))
enable_K5_wt_alloc();
else if (((cpu_id & 0x0f0) > 0x80)
|| (((cpu_id & 0x0f0) == 0x80)
&& (cpu_id & 0x00f) > 0x07))
enable_K6_2_wt_alloc();
else if ((cpu_id & 0x0f0) > 0x50)
enable_K6_wt_alloc();
}
#endif
} else if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
strcpy(cpu_model, "Cyrix ");
switch (cpu_id & 0xff0) {
case 0x440:
strcat(cpu_model, "MediaGX");
break;
case 0x520:
strcat(cpu_model, "6x86");
break;
case 0x540:
cpu_class = CPUCLASS_586;
strcat(cpu_model, "GXm");
break;
case 0x600:
strcat(cpu_model, "6x86MX");
break;
default:
/*
* Even though CPU supports the cpuid
* instruction, it can be disabled.
* Therefore, this routine supports all Cyrix
* CPUs.
*/
switch (cyrix_did & 0xf0) {
case 0x00:
switch (cyrix_did & 0x0f) {
case 0x00:
strcat(cpu_model, "486SLC");
break;
case 0x01:
strcat(cpu_model, "486DLC");
break;
case 0x02:
strcat(cpu_model, "486SLC2");
break;
case 0x03:
strcat(cpu_model, "486DLC2");
break;
case 0x04:
strcat(cpu_model, "486SRx");
break;
case 0x05:
strcat(cpu_model, "486DRx");
break;
case 0x06:
strcat(cpu_model, "486SRx2");
break;
case 0x07:
strcat(cpu_model, "486DRx2");
break;
case 0x08:
strcat(cpu_model, "486SRu");
break;
case 0x09:
strcat(cpu_model, "486DRu");
break;
case 0x0a:
strcat(cpu_model, "486SRu2");
break;
case 0x0b:
strcat(cpu_model, "486DRu2");
break;
default:
strcat(cpu_model, "Unknown");
break;
}
break;
case 0x10:
switch (cyrix_did & 0x0f) {
case 0x00:
strcat(cpu_model, "486S");
break;
case 0x01:
strcat(cpu_model, "486S2");
break;
case 0x02:
strcat(cpu_model, "486Se");
break;
case 0x03:
strcat(cpu_model, "486S2e");
break;
case 0x0a:
strcat(cpu_model, "486DX");
break;
case 0x0b:
strcat(cpu_model, "486DX2");
break;
case 0x0f:
strcat(cpu_model, "486DX4");
break;
default:
strcat(cpu_model, "Unknown");
break;
}
break;
case 0x20:
if ((cyrix_did & 0x0f) < 8)
strcat(cpu_model, "6x86"); /* Where did you get it? */
else
strcat(cpu_model, "5x86");
break;
case 0x30:
strcat(cpu_model, "6x86");
break;
case 0x40:
if ((cyrix_did & 0xf000) == 0x3000) {
cpu_class = CPUCLASS_586;
strcat(cpu_model, "GXm");
} else
strcat(cpu_model, "MediaGX");
break;
case 0x50:
strcat(cpu_model, "6x86MX");
break;
case 0xf0:
switch (cyrix_did & 0x0f) {
case 0x0d:
strcat(cpu_model, "Overdrive CPU");
break;
case 0x0e:
strcpy(cpu_model, "Texas Instruments 486SXL");
break;
case 0x0f:
strcat(cpu_model, "486SLC/DLC");
break;
default:
strcat(cpu_model, "Unknown");
break;
}
break;
default:
strcat(cpu_model, "Unknown");
break;
}
break;
}
} else if (cpu_vendor_id == CPU_VENDOR_RISE) {
strcpy(cpu_model, "Rise ");
switch (cpu_id & 0xff0) {
case 0x500: /* 6401 and 6441 (Kirin) */
case 0x520: /* 6510 (Lynx) */
strcat(cpu_model, "mP6");
break;
default:
strcat(cpu_model, "Unknown");
}
} else if (cpu_vendor_id == CPU_VENDOR_CENTAUR) {
switch (cpu_id & 0xff0) {
case 0x540:
strcpy(cpu_model, "IDT WinChip C6");
/*
* http://www.centtech.com/c6_data_sheet.pdf
*
* I-12 RDTSC may return incoherent values in EDX:EAX
* I-13 RDTSC hangs when certain event counters are used
*/
tsc_freq = 0;
break;
case 0x580:
strcpy(cpu_model, "IDT WinChip 2");
break;
case 0x590:
strcpy(cpu_model, "IDT WinChip 3");
break;
case 0x660:
strcpy(cpu_model, "VIA C3 Samuel");
break;
case 0x670:
if (cpu_id & 0x8)
strcpy(cpu_model, "VIA C3 Ezra");
else
strcpy(cpu_model, "VIA C3 Samuel 2");
break;
case 0x680:
strcpy(cpu_model, "VIA C3 Ezra-T");
break;
case 0x690:
strcpy(cpu_model, "VIA C3 Nehemiah");
break;
case 0x6a0:
case 0x6d0:
strcpy(cpu_model, "VIA C7 Esther");
break;
case 0x6f0:
strcpy(cpu_model, "VIA Nano");
break;
default:
strcpy(cpu_model, "VIA/IDT Unknown");
}
} else if (cpu_vendor_id == CPU_VENDOR_IBM) {
strcpy(cpu_model, "Blue Lightning CPU");
} else if (cpu_vendor_id == CPU_VENDOR_NSC) {
switch (cpu_id & 0xff0) {
case 0x540:
strcpy(cpu_model, "Geode SC1100");
cpu = CPU_GEODE1100;
if ((cpu_id & CPUID_STEPPING) == 0)
tsc_freq = 0;
break;
default:
strcpy(cpu_model, "Geode/NSC unknown");
break;
}
}
/*
* Replace cpu_model with cpu_brand minus leading spaces if
* we have one.
*/
brand = cpu_brand;
while (*brand == ' ')
++brand;
if (*brand != '\0')
strcpy(cpu_model, brand);
printf("%s (", cpu_model);
switch(cpu_class) {
case CPUCLASS_286:
printf("286");
break;
case CPUCLASS_386:
printf("386");
break;
#if defined(I486_CPU)
case CPUCLASS_486:
printf("486");
break;
#endif
#if defined(I586_CPU)
case CPUCLASS_586:
if (tsc_freq != 0) {
hw_clockrate = (tsc_freq + 5000) / 1000000;
printf("%jd.%02d-MHz ",
(intmax_t)(tsc_freq + 4999) / 1000000,
(u_int)((tsc_freq + 4999) / 10000) % 100);
}
printf("586");
break;
#endif
#if defined(I686_CPU)
case CPUCLASS_686:
if (tsc_freq != 0) {
hw_clockrate = (tsc_freq + 5000) / 1000000;
printf("%jd.%02d-MHz ",
(intmax_t)(tsc_freq + 4999) / 1000000,
(u_int)((tsc_freq + 4999) / 10000) % 100);
}
printf("686");
break;
#endif
default:
printf("Unknown"); /* will panic below... */
}
printf("-class CPU)\n");
if(*cpu_vendor)
printf(" Origin = \"%s\"",cpu_vendor);
if(cpu_id)
printf(" Id = 0x%x", cpu_id);
if (cpu_vendor_id == CPU_VENDOR_INTEL ||
cpu_vendor_id == CPU_VENDOR_AMD ||
cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
cpu_vendor_id == CPU_VENDOR_RISE ||
cpu_vendor_id == CPU_VENDOR_CENTAUR ||
cpu_vendor_id == CPU_VENDOR_NSC ||
(cpu_vendor_id == CPU_VENDOR_CYRIX &&
((cpu_id & 0xf00) > 0x500))) {
printf(" Family = %x", CPUID_TO_FAMILY(cpu_id));
printf(" Model = %x", CPUID_TO_MODEL(cpu_id));
printf(" Stepping = %u", cpu_id & CPUID_STEPPING);
if (cpu_vendor_id == CPU_VENDOR_CYRIX)
printf("\n DIR=0x%04x", cyrix_did);
/*
* AMD CPUID Specification
* http://support.amd.com/us/Embedded_TechDocs/25481.pdf
*
* Intel Processor Identification and CPUID Instruction
* http://www.intel.com/assets/pdf/appnote/241618.pdf
*/
if (cpu_high > 0) {
/*
* Here we should probably set up flags indicating
* whether or not various features are available.
* The interesting ones are probably VME, PSE, PAE,
* and PGE. The code already assumes without bothering
* to check that all CPUs >= Pentium have a TSC and
* MSRs.
*/
printf("\n Features=0x%b", cpu_feature,
"\020"
"\001FPU" /* Integral FPU */
"\002VME" /* Extended VM86 mode support */
"\003DE" /* Debugging Extensions (CR4.DE) */
"\004PSE" /* 4MByte page tables */
"\005TSC" /* Timestamp counter */
"\006MSR" /* Machine specific registers */
"\007PAE" /* Physical address extension */
"\010MCE" /* Machine Check support */
"\011CX8" /* CMPEXCH8 instruction */
"\012APIC" /* SMP local APIC */
"\013oldMTRR" /* Previous implementation of MTRR */
"\014SEP" /* Fast System Call */
"\015MTRR" /* Memory Type Range Registers */
"\016PGE" /* PG_G (global bit) support */
"\017MCA" /* Machine Check Architecture */
"\020CMOV" /* CMOV instruction */
"\021PAT" /* Page attributes table */
"\022PSE36" /* 36 bit address space support */
"\023PN" /* Processor Serial number */
"\024CLFLUSH" /* Has the CLFLUSH instruction */
"\025<b20>"
"\026DTS" /* Debug Trace Store */
"\027ACPI" /* ACPI support */
"\030MMX" /* MMX instructions */
"\031FXSR" /* FXSAVE/FXRSTOR */
"\032SSE" /* Streaming SIMD Extensions */
"\033SSE2" /* Streaming SIMD Extensions #2 */
"\034SS" /* Self snoop */
"\035HTT" /* Hyperthreading (see EBX bit 16-23) */
"\036TM" /* Thermal Monitor clock slowdown */
"\037IA64" /* CPU can execute IA64 instructions */
"\040PBE" /* Pending Break Enable */
);
if (cpu_feature2 != 0) {
printf("\n Features2=0x%b", cpu_feature2,
"\020"
"\001SSE3" /* SSE3 */
"\002PCLMULQDQ" /* Carry-Less Mul Quadword */
"\003DTES64" /* 64-bit Debug Trace */
"\004MON" /* MONITOR/MWAIT Instructions */
"\005DS_CPL" /* CPL Qualified Debug Store */
"\006VMX" /* Virtual Machine Extensions */
"\007SMX" /* Safer Mode Extensions */
"\010EST" /* Enhanced SpeedStep */
"\011TM2" /* Thermal Monitor 2 */
"\012SSSE3" /* SSSE3 */
"\013CNXT-ID" /* L1 context ID available */
"\014<b11>"
"\015FMA" /* Fused Multiply Add */
"\016CX16" /* CMPXCHG16B Instruction */
"\017xTPR" /* Send Task Priority Messages*/
"\020PDCM" /* Perf/Debug Capability MSR */
"\021<b16>"
"\022PCID" /* Process-context Identifiers*/
"\023DCA" /* Direct Cache Access */
"\024SSE4.1" /* SSE 4.1 */
"\025SSE4.2" /* SSE 4.2 */
"\026x2APIC" /* xAPIC Extensions */
"\027MOVBE" /* MOVBE Instruction */
"\030POPCNT" /* POPCNT Instruction */
"\031TSCDLT" /* TSC-Deadline Timer */
"\032AESNI" /* AES Crypto */
"\033XSAVE" /* XSAVE/XRSTOR States */
"\034OSXSAVE" /* OS-Enabled State Management*/
"\035AVX" /* Advanced Vector Extensions */
"\036F16C" /* Half-precision conversions */
"\037RDRAND" /* RDRAND Instruction */
"\040HV" /* Hypervisor */
);
}
if (amd_feature != 0) {
printf("\n AMD Features=0x%b", amd_feature,
"\020" /* in hex */
"\001<s0>" /* Same */
"\002<s1>" /* Same */
"\003<s2>" /* Same */
"\004<s3>" /* Same */
"\005<s4>" /* Same */
"\006<s5>" /* Same */
"\007<s6>" /* Same */
"\010<s7>" /* Same */
"\011<s8>" /* Same */
"\012<s9>" /* Same */
"\013<b10>" /* Undefined */
"\014SYSCALL" /* Have SYSCALL/SYSRET */
"\015<s12>" /* Same */
"\016<s13>" /* Same */
"\017<s14>" /* Same */
"\020<s15>" /* Same */
"\021<s16>" /* Same */
"\022<s17>" /* Same */
"\023<b18>" /* Reserved, unknown */
"\024MP" /* Multiprocessor Capable */
"\025NX" /* Has EFER.NXE, NX */
"\026<b21>" /* Undefined */
"\027MMX+" /* AMD MMX Extensions */
"\030<s23>" /* Same */
"\031<s24>" /* Same */
"\032FFXSR" /* Fast FXSAVE/FXRSTOR */
"\033Page1GB" /* 1-GB large page support */
"\034RDTSCP" /* RDTSCP */
"\035<b28>" /* Undefined */
"\036LM" /* 64 bit long mode */
"\0373DNow!+" /* AMD 3DNow! Extensions */
"\0403DNow!" /* AMD 3DNow! */
);
}
if (amd_feature2 != 0) {
printf("\n AMD Features2=0x%b", amd_feature2,
"\020"
"\001LAHF" /* LAHF/SAHF in long mode */
"\002CMP" /* CMP legacy */
"\003SVM" /* Secure Virtual Mode */
"\004ExtAPIC" /* Extended APIC register */
"\005CR8" /* CR8 in legacy mode */
"\006ABM" /* LZCNT instruction */
"\007SSE4A" /* SSE4A */
"\010MAS" /* Misaligned SSE mode */
"\011Prefetch" /* 3DNow! Prefetch/PrefetchW */
"\012OSVW" /* OS visible workaround */
"\013IBS" /* Instruction based sampling */
"\014XOP" /* XOP extended instructions */
"\015SKINIT" /* SKINIT/STGI */
"\016WDT" /* Watchdog timer */
"\017<b14>"
"\020LWP" /* Lightweight Profiling */
"\021FMA4" /* 4-operand FMA instructions */
"\022<b17>"
"\023<b18>"
"\024NodeId" /* NodeId MSR support */
"\025<b20>"
"\026TBM" /* Trailing Bit Manipulation */
"\027Topology" /* Topology Extensions */
"\030<b23>"
"\031<b24>"
"\032<b25>"
"\033<b26>"
"\034<b27>"
"\035<b28>"
"\036<b29>"
"\037<b30>"
"\040<b31>"
);
}
if (via_feature_rng != 0 || via_feature_xcrypt != 0)
print_via_padlock_info();
if ((cpu_feature & CPUID_HTT) &&
cpu_vendor_id == CPU_VENDOR_AMD)
cpu_feature &= ~CPUID_HTT;
/*
* If this CPU supports P-state invariant TSC then
* mention the capability.
*/
if (tsc_is_invariant) {
printf("\n TSC: P-state invariant");
if (tsc_perf_stat)
printf(", performance statistics");
}
}
} else if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
printf(" DIR=0x%04x", cyrix_did);
printf(" Stepping=%u", (cyrix_did & 0xf000) >> 12);
printf(" Revision=%u", (cyrix_did & 0x0f00) >> 8);
#ifndef CYRIX_CACHE_REALLY_WORKS
if (cpu == CPU_M1 && (cyrix_did & 0xff00) < 0x1700)
printf("\n CPU cache: write-through mode");
#endif
}
/* Avoid ugly blank lines: only print newline when we have to. */
if (*cpu_vendor || cpu_id)
printf("\n");
if (!bootverbose)
return;
if (cpu_vendor_id == CPU_VENDOR_AMD)
print_AMD_info();
else if (cpu_vendor_id == CPU_VENDOR_INTEL)
print_INTEL_info();
else if (cpu_vendor_id == CPU_VENDOR_TRANSMETA)
print_transmeta_info();
}
void
panicifcpuunsupported(void)
{
#if !defined(lint)
#if !defined(I486_CPU) && !defined(I586_CPU) && !defined(I686_CPU)
#error This kernel is not configured for one of the supported CPUs
#endif
#else /* lint */
#endif /* lint */
/*
* Now that we have told the user what they have,
* let them know if that machine type isn't configured.
*/
switch (cpu_class) {
case CPUCLASS_286: /* a 286 should not make it this far, anyway */
case CPUCLASS_386:
#if !defined(I486_CPU)
case CPUCLASS_486:
#endif
#if !defined(I586_CPU)
case CPUCLASS_586:
#endif
#if !defined(I686_CPU)
case CPUCLASS_686:
#endif
panic("CPU class not configured");
default:
break;
}
}
static volatile u_int trap_by_rdmsr;
/*
* Special exception 6 handler.
* The rdmsr instruction generates invalid opcodes fault on 486-class
* Cyrix CPU. Stacked eip register points the rdmsr instruction in the
* function identblue() when this handler is called. Stacked eip should
* be advanced.
*/
inthand_t bluetrap6;
#ifdef __GNUCLIKE_ASM
__asm
(" \n\
.text \n\
.p2align 2,0x90 \n\
.type " __XSTRING(CNAME(bluetrap6)) ",@function \n\
" __XSTRING(CNAME(bluetrap6)) ": \n\
ss \n\
movl $0xa8c1d," __XSTRING(CNAME(trap_by_rdmsr)) " \n\
addl $2, (%esp) /* rdmsr is a 2-byte instruction */ \n\
iret \n\
");
#endif
/*
* Special exception 13 handler.
* Accessing non-existent MSR generates general protection fault.
*/
inthand_t bluetrap13;
#ifdef __GNUCLIKE_ASM
__asm
(" \n\
.text \n\
.p2align 2,0x90 \n\
.type " __XSTRING(CNAME(bluetrap13)) ",@function \n\
" __XSTRING(CNAME(bluetrap13)) ": \n\
ss \n\
movl $0xa89c4," __XSTRING(CNAME(trap_by_rdmsr)) " \n\
popl %eax /* discard error code */ \n\
addl $2, (%esp) /* rdmsr is a 2-byte instruction */ \n\
iret \n\
");
#endif
/*
* Distinguish IBM Blue Lightning CPU from Cyrix CPUs that does not
* support cpuid instruction. This function should be called after
* loading interrupt descriptor table register.
*
* I don't like this method that handles fault, but I couldn't get
* information for any other methods. Does blue giant know?
*/
static int
identblue(void)
{
trap_by_rdmsr = 0;
/*
* Cyrix 486-class CPU does not support rdmsr instruction.
* The rdmsr instruction generates invalid opcode fault, and exception
* will be trapped by bluetrap6() on Cyrix 486-class CPU. The
* bluetrap6() set the magic number to trap_by_rdmsr.
*/
setidt(IDT_UD, bluetrap6, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
/*
* Certain BIOS disables cpuid instruction of Cyrix 6x86MX CPU.
* In this case, rdmsr generates general protection fault, and
* exception will be trapped by bluetrap13().
*/
setidt(IDT_GP, bluetrap13, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
rdmsr(0x1002); /* Cyrix CPU generates fault. */
if (trap_by_rdmsr == 0xa8c1d)
return IDENTBLUE_CYRIX486;
else if (trap_by_rdmsr == 0xa89c4)
return IDENTBLUE_CYRIXM2;
return IDENTBLUE_IBMCPU;
}
/*
* identifycyrix() set lower 16 bits of cyrix_did as follows:
*
* F E D C B A 9 8 7 6 5 4 3 2 1 0
* +-------+-------+---------------+
* | SID | RID | Device ID |
* | (DIR 1) | (DIR 0) |
* +-------+-------+---------------+
*/
static void
identifycyrix(void)
{
register_t saveintr;
int ccr2_test = 0, dir_test = 0;
u_char ccr2, ccr3;
saveintr = intr_disable();
ccr2 = read_cyrix_reg(CCR2);
write_cyrix_reg(CCR2, ccr2 ^ CCR2_LOCK_NW);
read_cyrix_reg(CCR2);
if (read_cyrix_reg(CCR2) != ccr2)
ccr2_test = 1;
write_cyrix_reg(CCR2, ccr2);
ccr3 = read_cyrix_reg(CCR3);
write_cyrix_reg(CCR3, ccr3 ^ CCR3_MAPEN3);
read_cyrix_reg(CCR3);
if (read_cyrix_reg(CCR3) != ccr3)
dir_test = 1; /* CPU supports DIRs. */
write_cyrix_reg(CCR3, ccr3);
if (dir_test) {
/* Device ID registers are available. */
cyrix_did = read_cyrix_reg(DIR1) << 8;
cyrix_did += read_cyrix_reg(DIR0);
} else if (ccr2_test)
cyrix_did = 0x0010; /* 486S A-step */
else
cyrix_did = 0x00ff; /* Old 486SLC/DLC and TI486SXLC/SXL */
intr_restore(saveintr);
}
/* Update TSC freq with the value indicated by the caller. */
static void
tsc_freq_changed(void *arg __unused, const struct cf_level *level, int status)
{
/* If there was an error during the transition, don't do anything. */
if (status != 0)
return;
/* Total setting for this level gives the new frequency in MHz. */
hw_clockrate = level->total_set.freq;
}
static void
hook_tsc_freq(void *arg __unused)
{
if (tsc_is_invariant)
return;
tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
tsc_freq_changed, NULL, EVENTHANDLER_PRI_ANY);
}
SYSINIT(hook_tsc_freq, SI_SUB_CONFIGURE, SI_ORDER_ANY, hook_tsc_freq, NULL);
/*
* Final stage of CPU identification. -- Should I check TI?
*/
void
finishidentcpu(void)
{
int isblue = 0;
u_char ccr3;
u_int regs[4];
cpu_vendor_id = find_cpu_vendor_id();
/*
* Clear "Limit CPUID Maxval" bit and get the largest standard CPUID
* function number again if it is set from BIOS. It is necessary
* for probing correct CPU topology later.
* XXX This is only done on the BSP package.
*/
if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_high > 0 && cpu_high < 4 &&
((CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x3) ||
(CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) >= 0xe))) {
uint64_t msr;
msr = rdmsr(MSR_IA32_MISC_ENABLE);
if ((msr & 0x400000ULL) != 0) {
wrmsr(MSR_IA32_MISC_ENABLE, msr & ~0x400000ULL);
do_cpuid(0, regs);
cpu_high = regs[0];
}
}
/* Detect AMD features (PTE no-execute bit, 3dnow, 64 bit mode etc) */
if (cpu_vendor_id == CPU_VENDOR_INTEL ||
cpu_vendor_id == CPU_VENDOR_AMD) {
init_exthigh();
if (cpu_exthigh >= 0x80000001) {
do_cpuid(0x80000001, regs);
amd_feature = regs[3] & ~(cpu_feature & 0x0183f3ff);
amd_feature2 = regs[2];
}
if (cpu_exthigh >= 0x80000007) {
do_cpuid(0x80000007, regs);
amd_pminfo = regs[3];
}
if (cpu_exthigh >= 0x80000008) {
do_cpuid(0x80000008, regs);
cpu_procinfo2 = regs[2];
}
} else if (cpu_vendor_id == CPU_VENDOR_CENTAUR) {
init_exthigh();
if (cpu_exthigh >= 0x80000001) {
do_cpuid(0x80000001, regs);
amd_feature = regs[3] & ~(cpu_feature & 0x0183f3ff);
}
} else if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
if (cpu == CPU_486) {
/*
* These conditions are equivalent to:
* - CPU does not support cpuid instruction.
* - Cyrix/IBM CPU is detected.
*/
isblue = identblue();
if (isblue == IDENTBLUE_IBMCPU) {
strcpy(cpu_vendor, "IBM");
cpu_vendor_id = CPU_VENDOR_IBM;
cpu = CPU_BLUE;
return;
}
}
switch (cpu_id & 0xf00) {
case 0x600:
/*
* Cyrix's datasheet does not describe DIRs.
* Therefor, I assume it does not have them
* and use the result of the cpuid instruction.
* XXX they seem to have it for now at least. -Peter
*/
identifycyrix();
cpu = CPU_M2;
break;
default:
identifycyrix();
/*
* This routine contains a trick.
* Don't check (cpu_id & 0x00f0) == 0x50 to detect M2, now.
*/
switch (cyrix_did & 0x00f0) {
case 0x00:
case 0xf0:
cpu = CPU_486DLC;
break;
case 0x10:
cpu = CPU_CY486DX;
break;
case 0x20:
if ((cyrix_did & 0x000f) < 8)
cpu = CPU_M1;
else
cpu = CPU_M1SC;
break;
case 0x30:
cpu = CPU_M1;
break;
case 0x40:
/* MediaGX CPU */
cpu = CPU_M1SC;
break;
default:
/* M2 and later CPUs are treated as M2. */
cpu = CPU_M2;
/*
* enable cpuid instruction.
*/
ccr3 = read_cyrix_reg(CCR3);
write_cyrix_reg(CCR3, CCR3_MAPEN0);
write_cyrix_reg(CCR4, read_cyrix_reg(CCR4) | CCR4_CPUID);
write_cyrix_reg(CCR3, ccr3);
do_cpuid(0, regs);
cpu_high = regs[0]; /* eax */
do_cpuid(1, regs);
cpu_id = regs[0]; /* eax */
cpu_feature = regs[3]; /* edx */
break;
}
}
} else if (cpu == CPU_486 && *cpu_vendor == '\0') {
/*
* There are BlueLightning CPUs that do not change
* undefined flags by dividing 5 by 2. In this case,
* the CPU identification routine in locore.s leaves
* cpu_vendor null string and puts CPU_486 into the
* cpu.
*/
isblue = identblue();
if (isblue == IDENTBLUE_IBMCPU) {
strcpy(cpu_vendor, "IBM");
cpu_vendor_id = CPU_VENDOR_IBM;
cpu = CPU_BLUE;
return;
}
}
}
static u_int
find_cpu_vendor_id(void)
{
int i;
for (i = 0; i < sizeof(cpu_vendors) / sizeof(cpu_vendors[0]); i++)
if (strcmp(cpu_vendor, cpu_vendors[i].vendor) == 0)
return (cpu_vendors[i].vendor_id);
return (0);
}
static void
print_AMD_assoc(int i)
{
if (i == 255)
printf(", fully associative\n");
else
printf(", %d-way associative\n", i);
}
static void
print_AMD_info(void)
{
quad_t amd_whcr;
if (cpu_exthigh >= 0x80000005) {
u_int regs[4];
do_cpuid(0x80000005, regs);
printf("Data TLB: %d entries", (regs[1] >> 16) & 0xff);
print_AMD_assoc(regs[1] >> 24);
printf("Instruction TLB: %d entries", regs[1] & 0xff);
print_AMD_assoc((regs[1] >> 8) & 0xff);
printf("L1 data cache: %d kbytes", regs[2] >> 24);
printf(", %d bytes/line", regs[2] & 0xff);
printf(", %d lines/tag", (regs[2] >> 8) & 0xff);
print_AMD_assoc((regs[2] >> 16) & 0xff);
printf("L1 instruction cache: %d kbytes", regs[3] >> 24);
printf(", %d bytes/line", regs[3] & 0xff);
printf(", %d lines/tag", (regs[3] >> 8) & 0xff);
print_AMD_assoc((regs[3] >> 16) & 0xff);
if (cpu_exthigh >= 0x80000006) { /* K6-III only */
do_cpuid(0x80000006, regs);
printf("L2 internal cache: %d kbytes", regs[2] >> 16);
printf(", %d bytes/line", regs[2] & 0xff);
printf(", %d lines/tag", (regs[2] >> 8) & 0x0f);
print_AMD_assoc((regs[2] >> 12) & 0x0f);
}
}
if (((cpu_id & 0xf00) == 0x500)
&& (((cpu_id & 0x0f0) > 0x80)
|| (((cpu_id & 0x0f0) == 0x80)
&& (cpu_id & 0x00f) > 0x07))) {
/* K6-2(new core [Stepping 8-F]), K6-III or later */
amd_whcr = rdmsr(0xc0000082);
if (!(amd_whcr & (0x3ff << 22))) {
printf("Write Allocate Disable\n");
} else {
printf("Write Allocate Enable Limit: %dM bytes\n",
(u_int32_t)((amd_whcr & (0x3ff << 22)) >> 22) * 4);
printf("Write Allocate 15-16M bytes: %s\n",
(amd_whcr & (1 << 16)) ? "Enable" : "Disable");
}
} else if (((cpu_id & 0xf00) == 0x500)
&& ((cpu_id & 0x0f0) > 0x50)) {
/* K6, K6-2(old core) */
amd_whcr = rdmsr(0xc0000082);
if (!(amd_whcr & (0x7f << 1))) {
printf("Write Allocate Disable\n");
} else {
printf("Write Allocate Enable Limit: %dM bytes\n",
(u_int32_t)((amd_whcr & (0x7f << 1)) >> 1) * 4);
printf("Write Allocate 15-16M bytes: %s\n",
(amd_whcr & 0x0001) ? "Enable" : "Disable");
printf("Hardware Write Allocate Control: %s\n",
(amd_whcr & 0x0100) ? "Enable" : "Disable");
}
}
/*
* Opteron Rev E shows a bug as in very rare occasions a read memory
* barrier is not performed as expected if it is followed by a
* non-atomic read-modify-write instruction.
* As long as that bug pops up very rarely (intensive machine usage
* on other operating systems generally generates one unexplainable
* crash any 2 months) and as long as a model specific fix would be
* impratical at this stage, print out a warning string if the broken
* model and family are identified.
*/
if (CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x20 &&
CPUID_TO_MODEL(cpu_id) <= 0x3f)
printf("WARNING: This architecture revision has known SMP "
"hardware bugs which may cause random instability\n");
}
static void
print_INTEL_info(void)
{
u_int regs[4];
u_int rounds, regnum;
u_int nwaycode, nway;
if (cpu_high >= 2) {
rounds = 0;
do {
do_cpuid(0x2, regs);
if (rounds == 0 && (rounds = (regs[0] & 0xff)) == 0)
break; /* we have a buggy CPU */
for (regnum = 0; regnum <= 3; ++regnum) {
if (regs[regnum] & (1<<31))
continue;
if (regnum != 0)
print_INTEL_TLB(regs[regnum] & 0xff);
print_INTEL_TLB((regs[regnum] >> 8) & 0xff);
print_INTEL_TLB((regs[regnum] >> 16) & 0xff);
print_INTEL_TLB((regs[regnum] >> 24) & 0xff);
}
} while (--rounds > 0);
}
if (cpu_exthigh >= 0x80000006) {
do_cpuid(0x80000006, regs);
nwaycode = (regs[2] >> 12) & 0x0f;
if (nwaycode >= 0x02 && nwaycode <= 0x08)
nway = 1 << (nwaycode / 2);
else
nway = 0;
printf("\nL2 cache: %u kbytes, %u-way associative, %u bytes/line",
(regs[2] >> 16) & 0xffff, nway, regs[2] & 0xff);
}
printf("\n");
}
static void
print_INTEL_TLB(u_int data)
{
switch (data) {
case 0x0:
case 0x40:
default:
break;
case 0x1:
printf("\nInstruction TLB: 4 KB pages, 4-way set associative, 32 entries");
break;
case 0x2:
printf("\nInstruction TLB: 4 MB pages, fully associative, 2 entries");
break;
case 0x3:
printf("\nData TLB: 4 KB pages, 4-way set associative, 64 entries");
break;
case 0x4:
printf("\nData TLB: 4 MB Pages, 4-way set associative, 8 entries");
break;
case 0x6:
printf("\n1st-level instruction cache: 8 KB, 4-way set associative, 32 byte line size");
break;
case 0x8:
printf("\n1st-level instruction cache: 16 KB, 4-way set associative, 32 byte line size");
break;
case 0xa:
printf("\n1st-level data cache: 8 KB, 2-way set associative, 32 byte line size");
break;
case 0xc:
printf("\n1st-level data cache: 16 KB, 4-way set associative, 32 byte line size");
break;
case 0x22:
printf("\n3rd-level cache: 512 KB, 4-way set associative, sectored cache, 64 byte line size");
break;
case 0x23:
printf("\n3rd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x25:
printf("\n3rd-level cache: 2 MB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x29:
printf("\n3rd-level cache: 4 MB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x2c:
printf("\n1st-level data cache: 32 KB, 8-way set associative, 64 byte line size");
break;
case 0x30:
printf("\n1st-level instruction cache: 32 KB, 8-way set associative, 64 byte line size");
break;
case 0x39:
printf("\n2nd-level cache: 128 KB, 4-way set associative, sectored cache, 64 byte line size");
break;
case 0x3b:
printf("\n2nd-level cache: 128 KB, 2-way set associative, sectored cache, 64 byte line size");
break;
case 0x3c:
printf("\n2nd-level cache: 256 KB, 4-way set associative, sectored cache, 64 byte line size");
break;
case 0x41:
printf("\n2nd-level cache: 128 KB, 4-way set associative, 32 byte line size");
break;
case 0x42:
printf("\n2nd-level cache: 256 KB, 4-way set associative, 32 byte line size");
break;
case 0x43:
printf("\n2nd-level cache: 512 KB, 4-way set associative, 32 byte line size");
break;
case 0x44:
printf("\n2nd-level cache: 1 MB, 4-way set associative, 32 byte line size");
break;
case 0x45:
printf("\n2nd-level cache: 2 MB, 4-way set associative, 32 byte line size");
break;
case 0x46:
printf("\n3rd-level cache: 4 MB, 4-way set associative, 64 byte line size");
break;
case 0x47:
printf("\n3rd-level cache: 8 MB, 8-way set associative, 64 byte line size");
break;
case 0x50:
printf("\nInstruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 64 entries");
break;
case 0x51:
printf("\nInstruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 128 entries");
break;
case 0x52:
printf("\nInstruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 256 entries");
break;
case 0x5b:
printf("\nData TLB: 4 KB or 4 MB pages, fully associative, 64 entries");
break;
case 0x5c:
printf("\nData TLB: 4 KB or 4 MB pages, fully associative, 128 entries");
break;
case 0x5d:
printf("\nData TLB: 4 KB or 4 MB pages, fully associative, 256 entries");
break;
case 0x60:
printf("\n1st-level data cache: 16 KB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x66:
printf("\n1st-level data cache: 8 KB, 4-way set associative, sectored cache, 64 byte line size");
break;
case 0x67:
printf("\n1st-level data cache: 16 KB, 4-way set associative, sectored cache, 64 byte line size");
break;
case 0x68:
printf("\n1st-level data cache: 32 KB, 4 way set associative, sectored cache, 64 byte line size");
break;
case 0x70:
printf("\nTrace cache: 12K-uops, 8-way set associative");
break;
case 0x71:
printf("\nTrace cache: 16K-uops, 8-way set associative");
break;
case 0x72:
printf("\nTrace cache: 32K-uops, 8-way set associative");
break;
case 0x78:
printf("\n2nd-level cache: 1 MB, 4-way set associative, 64-byte line size");
break;
case 0x79:
printf("\n2nd-level cache: 128 KB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x7a:
printf("\n2nd-level cache: 256 KB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x7b:
printf("\n2nd-level cache: 512 KB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x7c:
printf("\n2nd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size");
break;
case 0x7d:
printf("\n2nd-level cache: 2-MB, 8-way set associative, 64-byte line size");
break;
case 0x7f:
printf("\n2nd-level cache: 512-KB, 2-way set associative, 64-byte line size");
break;
case 0x82:
printf("\n2nd-level cache: 256 KB, 8-way set associative, 32 byte line size");
break;
case 0x83:
printf("\n2nd-level cache: 512 KB, 8-way set associative, 32 byte line size");
break;
case 0x84:
printf("\n2nd-level cache: 1 MB, 8-way set associative, 32 byte line size");
break;
case 0x85:
printf("\n2nd-level cache: 2 MB, 8-way set associative, 32 byte line size");
break;
case 0x86:
printf("\n2nd-level cache: 512 KB, 4-way set associative, 64 byte line size");
break;
case 0x87:
printf("\n2nd-level cache: 1 MB, 8-way set associative, 64 byte line size");
break;
case 0xb0:
printf("\nInstruction TLB: 4 KB Pages, 4-way set associative, 128 entries");
break;
case 0xb3:
printf("\nData TLB: 4 KB Pages, 4-way set associative, 128 entries");
break;
}
}
static void
print_transmeta_info(void)
{
u_int regs[4], nreg = 0;
do_cpuid(0x80860000, regs);
nreg = regs[0];
if (nreg >= 0x80860001) {
do_cpuid(0x80860001, regs);
printf(" Processor revision %u.%u.%u.%u\n",
(regs[1] >> 24) & 0xff,
(regs[1] >> 16) & 0xff,
(regs[1] >> 8) & 0xff,
regs[1] & 0xff);
}
if (nreg >= 0x80860002) {
do_cpuid(0x80860002, regs);
printf(" Code Morphing Software revision %u.%u.%u-%u-%u\n",
(regs[1] >> 24) & 0xff,
(regs[1] >> 16) & 0xff,
(regs[1] >> 8) & 0xff,
regs[1] & 0xff,
regs[2]);
}
if (nreg >= 0x80860006) {
char info[65];
do_cpuid(0x80860003, (u_int*) &info[0]);
do_cpuid(0x80860004, (u_int*) &info[16]);
do_cpuid(0x80860005, (u_int*) &info[32]);
do_cpuid(0x80860006, (u_int*) &info[48]);
info[64] = 0;
printf(" %s\n", info);
}
}
static void
print_via_padlock_info(void)
{
u_int regs[4];
do_cpuid(0xc0000001, regs);
printf("\n VIA Padlock Features=0x%b", regs[3],
"\020"
"\003RNG" /* RNG */
"\007AES" /* ACE */
"\011AES-CTR" /* ACE2 */
"\013SHA1,SHA256" /* PHE */
"\015RSA" /* PMM */
);
}