mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-01 12:19:28 +00:00
3bb88c3c7f
hrs@ and kuriyama@ have found that on some HP BIOS, a system will fail to boot immediately after installation with the claim that it can't work out which disk they are booting from. They tracked it down to a buffer overrun, and found that it could be alleviated by doing a dummy read before-hand. Submitted by: kuriyama MFC after: 1 week Differential Revision: https://reviews.freebsd.org/D14341
1033 lines
27 KiB
C
1033 lines
27 KiB
C
/*-
|
|
* Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
|
|
* Copyright (c) 2012 Andrey V. Elsukov <ae@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* BIOS disk device handling.
|
|
*
|
|
* Ideas and algorithms from:
|
|
*
|
|
* - NetBSD libi386/biosdisk.c
|
|
* - FreeBSD biosboot/disk.c
|
|
*
|
|
*/
|
|
|
|
#include <sys/disk.h>
|
|
#include <sys/limits.h>
|
|
#include <stand.h>
|
|
#include <machine/bootinfo.h>
|
|
#include <stdarg.h>
|
|
|
|
#include <bootstrap.h>
|
|
#include <btxv86.h>
|
|
#include <edd.h>
|
|
#include "disk.h"
|
|
#include "libi386.h"
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
#include "cons.h"
|
|
#include "drv.h"
|
|
#include "gpt.h"
|
|
#include "part.h"
|
|
#include <uuid.h>
|
|
struct pentry {
|
|
struct ptable_entry part;
|
|
uint64_t flags;
|
|
union {
|
|
uint8_t bsd;
|
|
uint8_t mbr;
|
|
uuid_t gpt;
|
|
uint16_t vtoc8;
|
|
} type;
|
|
STAILQ_ENTRY(pentry) entry;
|
|
};
|
|
struct ptable {
|
|
enum ptable_type type;
|
|
uint16_t sectorsize;
|
|
uint64_t sectors;
|
|
|
|
STAILQ_HEAD(, pentry) entries;
|
|
};
|
|
|
|
#include "geliboot.c"
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
|
|
CTASSERT(sizeof(struct i386_devdesc) >= sizeof(struct disk_devdesc));
|
|
|
|
#define BIOS_NUMDRIVES 0x475
|
|
#define BIOSDISK_SECSIZE 512
|
|
#define BUFSIZE (1 * BIOSDISK_SECSIZE)
|
|
|
|
#define DT_ATAPI 0x10 /* disk type for ATAPI floppies */
|
|
#define WDMAJOR 0 /* major numbers for devices we frontend for */
|
|
#define WFDMAJOR 1
|
|
#define FDMAJOR 2
|
|
#define DAMAJOR 4
|
|
|
|
#ifdef DISK_DEBUG
|
|
# define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args)
|
|
#else
|
|
# define DEBUG(fmt, args...)
|
|
#endif
|
|
|
|
/*
|
|
* List of BIOS devices, translation from disk unit number to
|
|
* BIOS unit number.
|
|
*/
|
|
static struct bdinfo
|
|
{
|
|
int bd_unit; /* BIOS unit number */
|
|
int bd_cyl; /* BIOS geometry */
|
|
int bd_hds;
|
|
int bd_sec;
|
|
int bd_flags;
|
|
#define BD_MODEINT13 0x0000
|
|
#define BD_MODEEDD1 0x0001
|
|
#define BD_MODEEDD3 0x0002
|
|
#define BD_MODEMASK 0x0003
|
|
#define BD_FLOPPY 0x0004
|
|
int bd_type; /* BIOS 'drive type' (floppy only) */
|
|
uint16_t bd_sectorsize; /* Sector size */
|
|
uint64_t bd_sectors; /* Disk size */
|
|
int bd_open; /* reference counter */
|
|
void *bd_bcache; /* buffer cache data */
|
|
} bdinfo [MAXBDDEV];
|
|
static int nbdinfo = 0;
|
|
|
|
#define BD(dev) (bdinfo[(dev)->dd.d_unit])
|
|
|
|
static void bd_io_workaround(struct disk_devdesc *dev);
|
|
|
|
static int bd_read(struct disk_devdesc *dev, daddr_t dblk, int blks,
|
|
caddr_t dest);
|
|
static int bd_write(struct disk_devdesc *dev, daddr_t dblk, int blks,
|
|
caddr_t dest);
|
|
static int bd_int13probe(struct bdinfo *bd);
|
|
|
|
static int bd_init(void);
|
|
static int bd_strategy(void *devdata, int flag, daddr_t dblk, size_t size,
|
|
char *buf, size_t *rsize);
|
|
static int bd_realstrategy(void *devdata, int flag, daddr_t dblk, size_t size,
|
|
char *buf, size_t *rsize);
|
|
static int bd_open(struct open_file *f, ...);
|
|
static int bd_close(struct open_file *f);
|
|
static int bd_ioctl(struct open_file *f, u_long cmd, void *data);
|
|
static int bd_print(int verbose);
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
enum isgeli {
|
|
ISGELI_UNKNOWN,
|
|
ISGELI_NO,
|
|
ISGELI_YES
|
|
};
|
|
static enum isgeli geli_status[MAXBDDEV][MAXTBLENTS];
|
|
|
|
int bios_read(void *, void *, off_t off, void *buf, size_t bytes);
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
|
|
struct devsw biosdisk = {
|
|
"disk",
|
|
DEVT_DISK,
|
|
bd_init,
|
|
bd_strategy,
|
|
bd_open,
|
|
bd_close,
|
|
bd_ioctl,
|
|
bd_print,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* Translate between BIOS device numbers and our private unit numbers.
|
|
*/
|
|
int
|
|
bd_bios2unit(int biosdev)
|
|
{
|
|
int i;
|
|
|
|
DEBUG("looking for bios device 0x%x", biosdev);
|
|
for (i = 0; i < nbdinfo; i++) {
|
|
DEBUG("bd unit %d is BIOS device 0x%x", i, bdinfo[i].bd_unit);
|
|
if (bdinfo[i].bd_unit == biosdev)
|
|
return (i);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
int
|
|
bd_unit2bios(int unit)
|
|
{
|
|
|
|
if ((unit >= 0) && (unit < nbdinfo))
|
|
return (bdinfo[unit].bd_unit);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Quiz the BIOS for disk devices, save a little info about them.
|
|
*/
|
|
static int
|
|
bd_init(void)
|
|
{
|
|
int base, unit, nfd = 0;
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
geli_init();
|
|
#endif
|
|
/* sequence 0, 0x80 */
|
|
for (base = 0; base <= 0x80; base += 0x80) {
|
|
for (unit = base; (nbdinfo < MAXBDDEV); unit++) {
|
|
#ifndef VIRTUALBOX
|
|
/*
|
|
* Check the BIOS equipment list for number
|
|
* of fixed disks.
|
|
*/
|
|
if(base == 0x80 &&
|
|
(nfd >= *(unsigned char *)PTOV(BIOS_NUMDRIVES)))
|
|
break;
|
|
#endif
|
|
bdinfo[nbdinfo].bd_open = 0;
|
|
bdinfo[nbdinfo].bd_bcache = NULL;
|
|
bdinfo[nbdinfo].bd_unit = unit;
|
|
bdinfo[nbdinfo].bd_flags = unit < 0x80 ? BD_FLOPPY: 0;
|
|
if (!bd_int13probe(&bdinfo[nbdinfo]))
|
|
break;
|
|
|
|
/* XXX we need "disk aliases" to make this simpler */
|
|
printf("BIOS drive %c: is disk%d\n", (unit < 0x80) ?
|
|
('A' + unit): ('C' + unit - 0x80), nbdinfo);
|
|
nbdinfo++;
|
|
if (base == 0x80)
|
|
nfd++;
|
|
}
|
|
}
|
|
bcache_add_dev(nbdinfo);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Try to detect a device supported by the legacy int13 BIOS
|
|
*/
|
|
static int
|
|
bd_int13probe(struct bdinfo *bd)
|
|
{
|
|
struct edd_params params;
|
|
int ret = 1; /* assume success */
|
|
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x800;
|
|
v86.edx = bd->bd_unit;
|
|
v86int();
|
|
|
|
/* Don't error out if we get bad sector number, try EDD as well */
|
|
if (V86_CY(v86.efl) || /* carry set */
|
|
(v86.edx & 0xff) <= (unsigned)(bd->bd_unit & 0x7f)) /* unit # bad */
|
|
return (0); /* skip device */
|
|
|
|
if ((v86.ecx & 0x3f) == 0) /* absurd sector number */
|
|
ret = 0; /* set error */
|
|
|
|
/* Convert max cyl # -> # of cylinders */
|
|
bd->bd_cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1;
|
|
/* Convert max head # -> # of heads */
|
|
bd->bd_hds = ((v86.edx & 0xff00) >> 8) + 1;
|
|
bd->bd_sec = v86.ecx & 0x3f;
|
|
bd->bd_type = v86.ebx & 0xff;
|
|
bd->bd_flags |= BD_MODEINT13;
|
|
|
|
/* Calculate sectors count from the geometry */
|
|
bd->bd_sectors = bd->bd_cyl * bd->bd_hds * bd->bd_sec;
|
|
bd->bd_sectorsize = BIOSDISK_SECSIZE;
|
|
DEBUG("unit 0x%x geometry %d/%d/%d", bd->bd_unit, bd->bd_cyl,
|
|
bd->bd_hds, bd->bd_sec);
|
|
|
|
/* Determine if we can use EDD with this device. */
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x4100;
|
|
v86.edx = bd->bd_unit;
|
|
v86.ebx = 0x55aa;
|
|
v86int();
|
|
if (V86_CY(v86.efl) || /* carry set */
|
|
(v86.ebx & 0xffff) != 0xaa55 || /* signature */
|
|
(v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0)
|
|
return (ret); /* return code from int13 AH=08 */
|
|
|
|
/* EDD supported */
|
|
bd->bd_flags |= BD_MODEEDD1;
|
|
if ((v86.eax & 0xff00) >= 0x3000)
|
|
bd->bd_flags |= BD_MODEEDD3;
|
|
/* Get disk params */
|
|
params.len = sizeof(struct edd_params);
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x4800;
|
|
v86.edx = bd->bd_unit;
|
|
v86.ds = VTOPSEG(¶ms);
|
|
v86.esi = VTOPOFF(¶ms);
|
|
v86int();
|
|
if (!V86_CY(v86.efl)) {
|
|
uint64_t total;
|
|
|
|
/*
|
|
* Sector size must be a multiple of 512 bytes.
|
|
* An alternate test would be to check power of 2,
|
|
* powerof2(params.sector_size).
|
|
*/
|
|
if (params.sector_size % BIOSDISK_SECSIZE)
|
|
bd->bd_sectorsize = BIOSDISK_SECSIZE;
|
|
else
|
|
bd->bd_sectorsize = params.sector_size;
|
|
|
|
total = bd->bd_sectorsize * params.sectors;
|
|
if (params.sectors != 0) {
|
|
/* Only update if we did not overflow. */
|
|
if (total > params.sectors)
|
|
bd->bd_sectors = params.sectors;
|
|
}
|
|
|
|
total = (uint64_t)params.cylinders *
|
|
params.heads * params.sectors_per_track;
|
|
if (bd->bd_sectors < total)
|
|
bd->bd_sectors = total;
|
|
|
|
ret = 1;
|
|
}
|
|
DEBUG("unit 0x%x flags %x, sectors %llu, sectorsize %u",
|
|
bd->bd_unit, bd->bd_flags, bd->bd_sectors, bd->bd_sectorsize);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Print information about disks
|
|
*/
|
|
static int
|
|
bd_print(int verbose)
|
|
{
|
|
static char line[80];
|
|
struct disk_devdesc dev;
|
|
int i, ret = 0;
|
|
|
|
if (nbdinfo == 0)
|
|
return (0);
|
|
|
|
printf("%s devices:", biosdisk.dv_name);
|
|
if ((ret = pager_output("\n")) != 0)
|
|
return (ret);
|
|
|
|
for (i = 0; i < nbdinfo; i++) {
|
|
snprintf(line, sizeof(line),
|
|
" disk%d: BIOS drive %c (%ju X %u):\n", i,
|
|
(bdinfo[i].bd_unit < 0x80) ? ('A' + bdinfo[i].bd_unit):
|
|
('C' + bdinfo[i].bd_unit - 0x80),
|
|
(uintmax_t)bdinfo[i].bd_sectors,
|
|
bdinfo[i].bd_sectorsize);
|
|
if ((ret = pager_output(line)) != 0)
|
|
break;
|
|
dev.dd.d_dev = &biosdisk;
|
|
dev.dd.d_unit = i;
|
|
dev.d_slice = -1;
|
|
dev.d_partition = -1;
|
|
if (disk_open(&dev,
|
|
bdinfo[i].bd_sectorsize * bdinfo[i].bd_sectors,
|
|
bdinfo[i].bd_sectorsize) == 0) {
|
|
snprintf(line, sizeof(line), " disk%d", i);
|
|
ret = disk_print(&dev, line, verbose);
|
|
disk_close(&dev);
|
|
if (ret != 0)
|
|
return (ret);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Attempt to open the disk described by (dev) for use by (f).
|
|
*
|
|
* Note that the philosophy here is "give them exactly what
|
|
* they ask for". This is necessary because being too "smart"
|
|
* about what the user might want leads to complications.
|
|
* (eg. given no slice or partition value, with a disk that is
|
|
* sliced - are they after the first BSD slice, or the DOS
|
|
* slice before it?)
|
|
*/
|
|
static int
|
|
bd_open(struct open_file *f, ...)
|
|
{
|
|
struct disk_devdesc *dev, rdev;
|
|
struct disk_devdesc disk;
|
|
int err, g_err;
|
|
va_list ap;
|
|
uint64_t size;
|
|
|
|
va_start(ap, f);
|
|
dev = va_arg(ap, struct disk_devdesc *);
|
|
va_end(ap);
|
|
|
|
if (dev->dd.d_unit < 0 || dev->dd.d_unit >= nbdinfo)
|
|
return (EIO);
|
|
BD(dev).bd_open++;
|
|
if (BD(dev).bd_bcache == NULL)
|
|
BD(dev).bd_bcache = bcache_allocate();
|
|
|
|
/*
|
|
* Read disk size from partition.
|
|
* This is needed to work around buggy BIOS systems returning
|
|
* wrong (truncated) disk media size.
|
|
* During bd_probe() we tested if the mulitplication of bd_sectors
|
|
* would overflow so it should be safe to perform here.
|
|
*/
|
|
disk.dd.d_dev = dev->dd.d_dev;
|
|
disk.dd.d_unit = dev->dd.d_unit;
|
|
disk.d_slice = -1;
|
|
disk.d_partition = -1;
|
|
disk.d_offset = 0;
|
|
if (disk_open(&disk, BD(dev).bd_sectors * BD(dev).bd_sectorsize,
|
|
BD(dev).bd_sectorsize) == 0) {
|
|
|
|
if (disk_ioctl(&disk, DIOCGMEDIASIZE, &size) == 0) {
|
|
size /= BD(dev).bd_sectorsize;
|
|
if (size > BD(dev).bd_sectors)
|
|
BD(dev).bd_sectors = size;
|
|
}
|
|
disk_close(&disk);
|
|
}
|
|
|
|
err = disk_open(dev, BD(dev).bd_sectors * BD(dev).bd_sectorsize,
|
|
BD(dev).bd_sectorsize);
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
static char gelipw[GELI_PW_MAXLEN];
|
|
char *passphrase;
|
|
|
|
if (err)
|
|
return (err);
|
|
|
|
/* if we already know there is no GELI, skip the rest */
|
|
if (geli_status[dev->dd.d_unit][dev->d_slice] != ISGELI_UNKNOWN)
|
|
return (err);
|
|
|
|
struct dsk dskp;
|
|
struct ptable *table = NULL;
|
|
struct ptable_entry part;
|
|
struct pentry *entry;
|
|
int geli_part = 0;
|
|
|
|
dskp.drive = bd_unit2bios(dev->dd.d_unit);
|
|
dskp.type = dev->dd.d_dev->dv_type;
|
|
dskp.unit = dev->dd.d_unit;
|
|
dskp.slice = dev->d_slice;
|
|
dskp.part = dev->d_partition;
|
|
dskp.start = dev->d_offset;
|
|
|
|
memcpy(&rdev, dev, sizeof(rdev));
|
|
/* to read the GPT table, we need to read the first sector */
|
|
rdev.d_offset = 0;
|
|
/* We need the LBA of the end of the partition */
|
|
table = ptable_open(&rdev, BD(dev).bd_sectors,
|
|
BD(dev).bd_sectorsize, ptblread);
|
|
if (table == NULL) {
|
|
DEBUG("Can't read partition table");
|
|
/* soft failure, return the exit status of disk_open */
|
|
return (err);
|
|
}
|
|
|
|
if (table->type == PTABLE_GPT)
|
|
dskp.part = 255;
|
|
|
|
STAILQ_FOREACH(entry, &table->entries, entry) {
|
|
dskp.slice = entry->part.index;
|
|
dskp.start = entry->part.start;
|
|
if (is_geli(&dskp) == 0) {
|
|
geli_status[dev->dd.d_unit][dskp.slice] = ISGELI_YES;
|
|
return (0);
|
|
}
|
|
if (geli_taste(bios_read, &dskp,
|
|
entry->part.end - entry->part.start) == 0) {
|
|
if (geli_havekey(&dskp) == 0) {
|
|
geli_status[dev->dd.d_unit][dskp.slice] = ISGELI_YES;
|
|
geli_part++;
|
|
continue;
|
|
}
|
|
if ((passphrase = getenv("kern.geom.eli.passphrase"))
|
|
!= NULL) {
|
|
/* Use the cached passphrase */
|
|
bcopy(passphrase, &gelipw, GELI_PW_MAXLEN);
|
|
}
|
|
if (geli_passphrase(gelipw, dskp.unit, 'p',
|
|
(dskp.slice > 0 ? dskp.slice : dskp.part),
|
|
&dskp) == 0) {
|
|
setenv("kern.geom.eli.passphrase", gelipw, 1);
|
|
bzero(gelipw, sizeof(gelipw));
|
|
geli_status[dev->dd.d_unit][dskp.slice] = ISGELI_YES;
|
|
geli_part++;
|
|
continue;
|
|
}
|
|
} else
|
|
geli_status[dev->dd.d_unit][dskp.slice] = ISGELI_NO;
|
|
}
|
|
|
|
/* none of the partitions on this disk have GELI */
|
|
if (geli_part == 0) {
|
|
/* found no GELI */
|
|
geli_status[dev->dd.d_unit][dev->d_slice] = ISGELI_NO;
|
|
}
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
bd_close(struct open_file *f)
|
|
{
|
|
struct disk_devdesc *dev;
|
|
|
|
dev = (struct disk_devdesc *)f->f_devdata;
|
|
BD(dev).bd_open--;
|
|
if (BD(dev).bd_open == 0) {
|
|
bcache_free(BD(dev).bd_bcache);
|
|
BD(dev).bd_bcache = NULL;
|
|
}
|
|
return (disk_close(dev));
|
|
}
|
|
|
|
static int
|
|
bd_ioctl(struct open_file *f, u_long cmd, void *data)
|
|
{
|
|
struct disk_devdesc *dev;
|
|
int rc;
|
|
|
|
dev = (struct disk_devdesc *)f->f_devdata;
|
|
|
|
rc = disk_ioctl(dev, cmd, data);
|
|
if (rc != ENOTTY)
|
|
return (rc);
|
|
|
|
switch (cmd) {
|
|
case DIOCGSECTORSIZE:
|
|
*(u_int *)data = BD(dev).bd_sectorsize;
|
|
break;
|
|
case DIOCGMEDIASIZE:
|
|
*(uint64_t *)data = BD(dev).bd_sectors * BD(dev).bd_sectorsize;
|
|
break;
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bd_strategy(void *devdata, int rw, daddr_t dblk, size_t size,
|
|
char *buf, size_t *rsize)
|
|
{
|
|
struct bcache_devdata bcd;
|
|
struct disk_devdesc *dev;
|
|
|
|
dev = (struct disk_devdesc *)devdata;
|
|
bcd.dv_strategy = bd_realstrategy;
|
|
bcd.dv_devdata = devdata;
|
|
bcd.dv_cache = BD(dev).bd_bcache;
|
|
return (bcache_strategy(&bcd, rw, dblk + dev->d_offset,
|
|
size, buf, rsize));
|
|
}
|
|
|
|
static int
|
|
bd_realstrategy(void *devdata, int rw, daddr_t dblk, size_t size,
|
|
char *buf, size_t *rsize)
|
|
{
|
|
struct disk_devdesc *dev = (struct disk_devdesc *)devdata;
|
|
uint64_t disk_blocks;
|
|
int blks, rc;
|
|
#ifdef BD_SUPPORT_FRAGS /* XXX: sector size */
|
|
char fragbuf[BIOSDISK_SECSIZE];
|
|
size_t fragsize;
|
|
|
|
fragsize = size % BIOSDISK_SECSIZE;
|
|
#else
|
|
if (size % BD(dev).bd_sectorsize)
|
|
panic("bd_strategy: %d bytes I/O not multiple of block size", size);
|
|
#endif
|
|
|
|
DEBUG("open_disk %p", dev);
|
|
|
|
/*
|
|
* Check the value of the size argument. We do have quite small
|
|
* heap (64MB), but we do not know good upper limit, so we check against
|
|
* INT_MAX here. This will also protect us against possible overflows
|
|
* while translating block count to bytes.
|
|
*/
|
|
if (size > INT_MAX) {
|
|
DEBUG("too large read: %zu bytes", size);
|
|
return (EIO);
|
|
}
|
|
|
|
blks = size / BD(dev).bd_sectorsize;
|
|
if (dblk > dblk + blks)
|
|
return (EIO);
|
|
|
|
if (rsize)
|
|
*rsize = 0;
|
|
|
|
/* Get disk blocks, this value is either for whole disk or for partition */
|
|
if (disk_ioctl(dev, DIOCGMEDIASIZE, &disk_blocks)) {
|
|
/* DIOCGMEDIASIZE does return bytes. */
|
|
disk_blocks /= BD(dev).bd_sectorsize;
|
|
} else {
|
|
/* We should not get here. Just try to survive. */
|
|
disk_blocks = BD(dev).bd_sectors - dev->d_offset;
|
|
}
|
|
|
|
/* Validate source block address. */
|
|
if (dblk < dev->d_offset || dblk >= dev->d_offset + disk_blocks)
|
|
return (EIO);
|
|
|
|
/*
|
|
* Truncate if we are crossing disk or partition end.
|
|
*/
|
|
if (dblk + blks >= dev->d_offset + disk_blocks) {
|
|
blks = dev->d_offset + disk_blocks - dblk;
|
|
size = blks * BD(dev).bd_sectorsize;
|
|
DEBUG("short read %d", blks);
|
|
}
|
|
|
|
switch (rw & F_MASK) {
|
|
case F_READ:
|
|
DEBUG("read %d from %lld to %p", blks, dblk, buf);
|
|
|
|
if (blks && (rc = bd_read(dev, dblk, blks, buf))) {
|
|
/* Filter out floppy controller errors */
|
|
if (BD(dev).bd_flags != BD_FLOPPY || rc != 0x20) {
|
|
printf("read %d from %lld to %p, error: 0x%x", blks, dblk,
|
|
buf, rc);
|
|
}
|
|
return (EIO);
|
|
}
|
|
#ifdef BD_SUPPORT_FRAGS /* XXX: sector size */
|
|
DEBUG("bd_strategy: frag read %d from %d+%d to %p",
|
|
fragsize, dblk, blks, buf + (blks * BIOSDISK_SECSIZE));
|
|
if (fragsize && bd_read(od, dblk + blks, 1, fragsize)) {
|
|
DEBUG("frag read error");
|
|
return(EIO);
|
|
}
|
|
bcopy(fragbuf, buf + (blks * BIOSDISK_SECSIZE), fragsize);
|
|
#endif
|
|
break;
|
|
case F_WRITE :
|
|
DEBUG("write %d from %d to %p", blks, dblk, buf);
|
|
|
|
if (blks && bd_write(dev, dblk, blks, buf)) {
|
|
DEBUG("write error");
|
|
return (EIO);
|
|
}
|
|
#ifdef BD_SUPPORT_FRAGS
|
|
if(fragsize) {
|
|
DEBUG("Attempted to write a frag");
|
|
return (EIO);
|
|
}
|
|
#endif
|
|
break;
|
|
default:
|
|
/* DO NOTHING */
|
|
return (EROFS);
|
|
}
|
|
|
|
if (rsize)
|
|
*rsize = size;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bd_edd_io(struct disk_devdesc *dev, daddr_t dblk, int blks, caddr_t dest,
|
|
int write)
|
|
{
|
|
static struct edd_packet packet;
|
|
|
|
packet.len = sizeof(struct edd_packet);
|
|
packet.count = blks;
|
|
packet.off = VTOPOFF(dest);
|
|
packet.seg = VTOPSEG(dest);
|
|
packet.lba = dblk;
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
if (write)
|
|
/* Should we Write with verify ?? 0x4302 ? */
|
|
v86.eax = 0x4300;
|
|
else
|
|
v86.eax = 0x4200;
|
|
v86.edx = BD(dev).bd_unit;
|
|
v86.ds = VTOPSEG(&packet);
|
|
v86.esi = VTOPOFF(&packet);
|
|
v86int();
|
|
if (V86_CY(v86.efl))
|
|
return (v86.eax >> 8);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
bd_chs_io(struct disk_devdesc *dev, daddr_t dblk, int blks, caddr_t dest,
|
|
int write)
|
|
{
|
|
u_int x, bpc, cyl, hd, sec;
|
|
|
|
bpc = BD(dev).bd_sec * BD(dev).bd_hds; /* blocks per cylinder */
|
|
x = dblk;
|
|
cyl = x / bpc; /* block # / blocks per cylinder */
|
|
x %= bpc; /* block offset into cylinder */
|
|
hd = x / BD(dev).bd_sec; /* offset / blocks per track */
|
|
sec = x % BD(dev).bd_sec; /* offset into track */
|
|
|
|
/* correct sector number for 1-based BIOS numbering */
|
|
sec++;
|
|
|
|
if (cyl > 1023)
|
|
/* CHS doesn't support cylinders > 1023. */
|
|
return (1);
|
|
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
if (write)
|
|
v86.eax = 0x300 | blks;
|
|
else
|
|
v86.eax = 0x200 | blks;
|
|
v86.ecx = ((cyl & 0xff) << 8) | ((cyl & 0x300) >> 2) | sec;
|
|
v86.edx = (hd << 8) | BD(dev).bd_unit;
|
|
v86.es = VTOPSEG(dest);
|
|
v86.ebx = VTOPOFF(dest);
|
|
v86int();
|
|
if (V86_CY(v86.efl))
|
|
return (v86.eax >> 8);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bd_io_workaround(struct disk_devdesc *dev)
|
|
{
|
|
uint8_t buf[8 * 1024];
|
|
|
|
bd_edd_io(dev, 0xffffffff, 1, (caddr_t)buf, 0);
|
|
}
|
|
|
|
|
|
static int
|
|
bd_io(struct disk_devdesc *dev, daddr_t dblk, int blks, caddr_t dest, int write)
|
|
{
|
|
u_int x, sec, result, resid, retry, maxfer;
|
|
caddr_t p, xp, bbuf;
|
|
|
|
/* Just in case some idiot actually tries to read/write -1 blocks... */
|
|
if (blks < 0)
|
|
return (-1);
|
|
|
|
resid = blks;
|
|
p = dest;
|
|
|
|
/*
|
|
* Workaround for a problem with some HP ProLiant BIOS failing to work out
|
|
* the boot disk after installation. hrs and kuriyama discovered this
|
|
* problem with an HP ProLiant DL320e Gen 8 with a 3TB HDD, and discovered
|
|
* that an int13h call seems to cause a buffer overrun in the bios. The
|
|
* problem is alleviated by doing an extra read before the buggy read. It
|
|
* is not immediately known whether other models are similarly affected.
|
|
*/
|
|
if (dblk >= 0x100000000)
|
|
bd_io_workaround(dev);
|
|
|
|
/* Decide whether we have to bounce */
|
|
if (VTOP(dest) >> 20 != 0 || (BD(dev).bd_unit < 0x80 &&
|
|
(VTOP(dest) >> 16) != (VTOP(dest +
|
|
blks * BD(dev).bd_sectorsize) >> 16))) {
|
|
|
|
/*
|
|
* There is a 64k physical boundary somewhere in the
|
|
* destination buffer, or the destination buffer is above
|
|
* first 1MB of physical memory so we have to arrange a
|
|
* suitable bounce buffer. Allocate a buffer twice as large
|
|
* as we need to. Use the bottom half unless there is a break
|
|
* there, in which case we use the top half.
|
|
*/
|
|
x = V86_IO_BUFFER_SIZE / BD(dev).bd_sectorsize;
|
|
x = min(x, (unsigned)blks);
|
|
bbuf = PTOV(V86_IO_BUFFER);
|
|
maxfer = x; /* limit transfers to bounce region size */
|
|
} else {
|
|
bbuf = NULL;
|
|
maxfer = 0;
|
|
}
|
|
|
|
while (resid > 0) {
|
|
/*
|
|
* Play it safe and don't cross track boundaries.
|
|
* (XXX this is probably unnecessary)
|
|
*/
|
|
sec = dblk % BD(dev).bd_sec; /* offset into track */
|
|
x = min(BD(dev).bd_sec - sec, resid);
|
|
if (maxfer > 0)
|
|
x = min(x, maxfer); /* fit bounce buffer */
|
|
|
|
/* where do we transfer to? */
|
|
xp = bbuf == NULL ? p : bbuf;
|
|
|
|
/*
|
|
* Put your Data In, Put your Data out,
|
|
* Put your Data In, and shake it all about
|
|
*/
|
|
if (write && bbuf != NULL)
|
|
bcopy(p, bbuf, x * BD(dev).bd_sectorsize);
|
|
|
|
/*
|
|
* Loop retrying the operation a couple of times. The BIOS
|
|
* may also retry.
|
|
*/
|
|
for (retry = 0; retry < 3; retry++) {
|
|
/* if retrying, reset the drive */
|
|
if (retry > 0) {
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0;
|
|
v86.edx = BD(dev).bd_unit;
|
|
v86int();
|
|
}
|
|
|
|
if (BD(dev).bd_flags & BD_MODEEDD1)
|
|
result = bd_edd_io(dev, dblk, x, xp, write);
|
|
else
|
|
result = bd_chs_io(dev, dblk, x, xp, write);
|
|
if (result == 0)
|
|
break;
|
|
}
|
|
|
|
if (write)
|
|
DEBUG("Write %d sector(s) from %p (0x%x) to %lld %s", x,
|
|
p, VTOP(p), dblk, result ? "failed" : "ok");
|
|
else
|
|
DEBUG("Read %d sector(s) from %lld to %p (0x%x) %s", x,
|
|
dblk, p, VTOP(p), result ? "failed" : "ok");
|
|
if (result) {
|
|
return (result);
|
|
}
|
|
if (!write && bbuf != NULL)
|
|
bcopy(bbuf, p, x * BD(dev).bd_sectorsize);
|
|
p += (x * BD(dev).bd_sectorsize);
|
|
dblk += x;
|
|
resid -= x;
|
|
}
|
|
|
|
/* hexdump(dest, (blks * BD(dev).bd_sectorsize)); */
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
bd_read(struct disk_devdesc *dev, daddr_t dblk, int blks, caddr_t dest)
|
|
{
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
struct dsk dskp;
|
|
off_t p_off, diff;
|
|
daddr_t alignlba;
|
|
int err, n, alignblks;
|
|
char *tmpbuf;
|
|
|
|
/* if we already know there is no GELI, skip the rest */
|
|
if (geli_status[dev->dd.d_unit][dev->d_slice] != ISGELI_YES)
|
|
return (bd_io(dev, dblk, blks, dest, 0));
|
|
|
|
if (geli_status[dev->dd.d_unit][dev->d_slice] == ISGELI_YES) {
|
|
/*
|
|
* Align reads to DEV_GELIBOOT_BSIZE bytes because partial
|
|
* sectors cannot be decrypted. Round the requested LBA down to
|
|
* nearest multiple of DEV_GELIBOOT_BSIZE bytes.
|
|
*/
|
|
alignlba = rounddown2(dblk * BD(dev).bd_sectorsize,
|
|
DEV_GELIBOOT_BSIZE) / BD(dev).bd_sectorsize;
|
|
/*
|
|
* Round number of blocks to read up to nearest multiple of
|
|
* DEV_GELIBOOT_BSIZE
|
|
*/
|
|
diff = (dblk - alignlba) * BD(dev).bd_sectorsize;
|
|
alignblks = roundup2(blks * BD(dev).bd_sectorsize + diff,
|
|
DEV_GELIBOOT_BSIZE) / BD(dev).bd_sectorsize;
|
|
|
|
/*
|
|
* If the read is rounded up to a larger size, use a temporary
|
|
* buffer here because the buffer provided by the caller may be
|
|
* too small.
|
|
*/
|
|
if (diff == 0) {
|
|
tmpbuf = dest;
|
|
} else {
|
|
tmpbuf = malloc(alignblks * BD(dev).bd_sectorsize);
|
|
if (tmpbuf == NULL) {
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
err = bd_io(dev, alignlba, alignblks, tmpbuf, 0);
|
|
if (err)
|
|
return (err);
|
|
|
|
dskp.drive = bd_unit2bios(dev->dd.d_unit);
|
|
dskp.type = dev->dd.d_dev->dv_type;
|
|
dskp.unit = dev->dd.d_unit;
|
|
dskp.slice = dev->d_slice;
|
|
dskp.part = dev->d_partition;
|
|
dskp.start = dev->d_offset;
|
|
|
|
/* GELI needs the offset relative to the partition start */
|
|
p_off = alignlba - dskp.start;
|
|
|
|
err = geli_read(&dskp, p_off * BD(dev).bd_sectorsize, (u_char *)tmpbuf,
|
|
alignblks * BD(dev).bd_sectorsize);
|
|
if (err)
|
|
return (err);
|
|
|
|
if (tmpbuf != dest) {
|
|
bcopy(tmpbuf + diff, dest, blks * BD(dev).bd_sectorsize);
|
|
free(tmpbuf);
|
|
}
|
|
return (0);
|
|
}
|
|
#endif /* LOADER_GELI_SUPPORT */
|
|
|
|
return (bd_io(dev, dblk, blks, dest, 0));
|
|
}
|
|
|
|
static int
|
|
bd_write(struct disk_devdesc *dev, daddr_t dblk, int blks, caddr_t dest)
|
|
{
|
|
|
|
return (bd_io(dev, dblk, blks, dest, 1));
|
|
}
|
|
|
|
/*
|
|
* Return the BIOS geometry of a given "fixed drive" in a format
|
|
* suitable for the legacy bootinfo structure. Since the kernel is
|
|
* expecting raw int 0x13/0x8 values for N_BIOS_GEOM drives, we
|
|
* prefer to get the information directly, rather than rely on being
|
|
* able to put it together from information already maintained for
|
|
* different purposes and for a probably different number of drives.
|
|
*
|
|
* For valid drives, the geometry is expected in the format (31..0)
|
|
* "000000cc cccccccc hhhhhhhh 00ssssss"; and invalid drives are
|
|
* indicated by returning the geometry of a "1.2M" PC-format floppy
|
|
* disk. And, incidentally, what is returned is not the geometry as
|
|
* such but the highest valid cylinder, head, and sector numbers.
|
|
*/
|
|
uint32_t
|
|
bd_getbigeom(int bunit)
|
|
{
|
|
|
|
v86.ctl = V86_FLAGS;
|
|
v86.addr = 0x13;
|
|
v86.eax = 0x800;
|
|
v86.edx = 0x80 + bunit;
|
|
v86int();
|
|
if (V86_CY(v86.efl))
|
|
return 0x4f010f;
|
|
return ((v86.ecx & 0xc0) << 18) | ((v86.ecx & 0xff00) << 8) |
|
|
(v86.edx & 0xff00) | (v86.ecx & 0x3f);
|
|
}
|
|
|
|
/*
|
|
* Return a suitable dev_t value for (dev).
|
|
*
|
|
* In the case where it looks like (dev) is a SCSI disk, we allow the number of
|
|
* IDE disks to be specified in $num_ide_disks. There should be a Better Way.
|
|
*/
|
|
int
|
|
bd_getdev(struct i386_devdesc *d)
|
|
{
|
|
struct disk_devdesc *dev;
|
|
int biosdev;
|
|
int major;
|
|
int rootdev;
|
|
char *nip, *cp;
|
|
int i, unit;
|
|
|
|
dev = (struct disk_devdesc *)d;
|
|
biosdev = bd_unit2bios(dev->dd.d_unit);
|
|
DEBUG("unit %d BIOS device %d", dev->dd.d_unit, biosdev);
|
|
if (biosdev == -1) /* not a BIOS device */
|
|
return(-1);
|
|
if (disk_open(dev, BD(dev).bd_sectors * BD(dev).bd_sectorsize,
|
|
BD(dev).bd_sectorsize) != 0) /* oops, not a viable device */
|
|
return (-1);
|
|
else
|
|
disk_close(dev);
|
|
|
|
if (biosdev < 0x80) {
|
|
/* floppy (or emulated floppy) or ATAPI device */
|
|
if (bdinfo[dev->dd.d_unit].bd_type == DT_ATAPI) {
|
|
/* is an ATAPI disk */
|
|
major = WFDMAJOR;
|
|
} else {
|
|
/* is a floppy disk */
|
|
major = FDMAJOR;
|
|
}
|
|
} else {
|
|
/* assume an IDE disk */
|
|
major = WDMAJOR;
|
|
}
|
|
/* default root disk unit number */
|
|
unit = biosdev & 0x7f;
|
|
|
|
/* XXX a better kludge to set the root disk unit number */
|
|
if ((nip = getenv("root_disk_unit")) != NULL) {
|
|
i = strtol(nip, &cp, 0);
|
|
/* check for parse error */
|
|
if ((cp != nip) && (*cp == 0))
|
|
unit = i;
|
|
}
|
|
|
|
rootdev = MAKEBOOTDEV(major, dev->d_slice + 1, unit, dev->d_partition);
|
|
DEBUG("dev is 0x%x\n", rootdev);
|
|
return(rootdev);
|
|
}
|
|
|
|
#ifdef LOADER_GELI_SUPPORT
|
|
int
|
|
bios_read(void *vdev __unused, void *xpriv, off_t off, void *buf, size_t bytes)
|
|
{
|
|
struct disk_devdesc dev;
|
|
struct dsk *priv = xpriv;
|
|
|
|
dev.dd.d_dev = &biosdisk;
|
|
dev.dd.d_unit = priv->unit;
|
|
dev.d_slice = priv->slice;
|
|
dev.d_partition = priv->part;
|
|
dev.d_offset = priv->start;
|
|
|
|
off = off / BD(&dev).bd_sectorsize;
|
|
/* GELI gives us the offset relative to the partition start */
|
|
off += dev.d_offset;
|
|
bytes = bytes / BD(&dev).bd_sectorsize;
|
|
|
|
return (bd_io(&dev, off, bytes, buf, 0));
|
|
}
|
|
#endif /* LOADER_GELI_SUPPORT */
|