1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-28 11:57:28 +00:00
freebsd/sys/geom/vinum/geom_vinum_plex.c
Ulf Lilleengen d8d015cddc - Split up the BIO queue into a queue for new and one for completed requests.
This is necessary for two reasons:
  1) In order to avoid collisions with the use of a BIOs flags set by a consumer
     or a provider
  2) Because GV_BIO_DONE was used to mark a BIO as done, not enough flags was
     available, so the consumer flags of a BIO had to be misused in order to
     support enough flags. The new queue makes it possible to recycle the
     GV_BIO_DONE flag into GV_BIO_GROW.
  As a consequence, gvinum will now work with any other GEOM class under it or
  on top of it.

- Use bio_pflags for storing internal flags on downgoing BIOs, as the requests
  appear to come from a consumer of a gvinum volume. Use bio_cflags only for
  cloned BIOs.
- Move gv_post_bio to be used internally for maintenance requests.
- Remove some cases where flags where set without need.

PR:		kern/133604
2009-05-06 19:34:32 +00:00

1049 lines
26 KiB
C

/*-
* Copyright (c) 2004, 2007 Lukas Ertl
* Copyright (c) 2007, 2009 Ulf Lilleengen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <geom/geom.h>
#include <geom/vinum/geom_vinum_var.h>
#include <geom/vinum/geom_vinum_raid5.h>
#include <geom/vinum/geom_vinum.h>
static int gv_check_parity(struct gv_plex *, struct bio *,
struct gv_raid5_packet *);
static int gv_normal_parity(struct gv_plex *, struct bio *,
struct gv_raid5_packet *);
static void gv_plex_flush(struct gv_plex *);
static int gv_plex_offset(struct gv_plex *, off_t, off_t, off_t *, off_t *,
int *, int);
static int gv_plex_normal_request(struct gv_plex *, struct bio *, off_t,
off_t, caddr_t);
static void gv_post_bio(struct gv_softc *, struct bio *);
void
gv_plex_start(struct gv_plex *p, struct bio *bp)
{
struct bio *cbp;
struct gv_sd *s;
struct gv_raid5_packet *wp;
caddr_t addr;
off_t bcount, boff, len;
bcount = bp->bio_length;
addr = bp->bio_data;
boff = bp->bio_offset;
/* Walk over the whole length of the request, we might split it up. */
while (bcount > 0) {
wp = NULL;
/*
* RAID5 plexes need special treatment, as a single request
* might involve several read/write sub-requests.
*/
if (p->org == GV_PLEX_RAID5) {
wp = gv_raid5_start(p, bp, addr, boff, bcount);
if (wp == NULL)
return;
len = wp->length;
if (TAILQ_EMPTY(&wp->bits))
g_free(wp);
else if (wp->lockbase != -1)
TAILQ_INSERT_TAIL(&p->packets, wp, list);
/*
* Requests to concatenated and striped plexes go straight
* through.
*/
} else {
len = gv_plex_normal_request(p, bp, boff, bcount, addr);
}
if (len < 0)
return;
bcount -= len;
addr += len;
boff += len;
}
/*
* Fire off all sub-requests. We get the correct consumer (== drive)
* to send each request to via the subdisk that was stored in
* cbp->bio_caller1.
*/
cbp = bioq_takefirst(p->bqueue);
while (cbp != NULL) {
/*
* RAID5 sub-requests need to come in correct order, otherwise
* we trip over the parity, as it might be overwritten by
* another sub-request. We abuse cbp->bio_caller2 to mark
* potential overlap situations.
*/
if (cbp->bio_caller2 != NULL && gv_stripe_active(p, cbp)) {
/* Park the bio on the waiting queue. */
cbp->bio_pflags |= GV_BIO_ONHOLD;
bioq_disksort(p->wqueue, cbp);
} else {
s = cbp->bio_caller1;
g_io_request(cbp, s->drive_sc->consumer);
}
cbp = bioq_takefirst(p->bqueue);
}
}
static int
gv_plex_offset(struct gv_plex *p, off_t boff, off_t bcount, off_t *real_off,
off_t *real_len, int *sdno, int growing)
{
struct gv_sd *s;
int i, sdcount;
off_t len_left, stripeend, stripeno, stripestart;
switch (p->org) {
case GV_PLEX_CONCAT:
/*
* Find the subdisk where this request starts. The subdisks in
* this list must be ordered by plex_offset.
*/
i = 0;
LIST_FOREACH(s, &p->subdisks, in_plex) {
if (s->plex_offset <= boff &&
s->plex_offset + s->size > boff) {
*sdno = i;
break;
}
i++;
}
if (s == NULL || s->drive_sc == NULL)
return (GV_ERR_NOTFOUND);
/* Calculate corresponding offsets on disk. */
*real_off = boff - s->plex_offset;
len_left = s->size - (*real_off);
KASSERT(len_left >= 0, ("gv_plex_offset: len_left < 0"));
*real_len = (bcount > len_left) ? len_left : bcount;
break;
case GV_PLEX_STRIPED:
/* The number of the stripe where the request starts. */
stripeno = boff / p->stripesize;
KASSERT(stripeno >= 0, ("gv_plex_offset: stripeno < 0"));
/* Take growing subdisks into account when calculating. */
sdcount = gv_sdcount(p, (boff >= p->synced));
if (!(boff + bcount <= p->synced) &&
(p->flags & GV_PLEX_GROWING) &&
!growing)
return (GV_ERR_ISBUSY);
*sdno = stripeno % sdcount;
KASSERT(sdno >= 0, ("gv_plex_offset: sdno < 0"));
stripestart = (stripeno / sdcount) *
p->stripesize;
KASSERT(stripestart >= 0, ("gv_plex_offset: stripestart < 0"));
stripeend = stripestart + p->stripesize;
*real_off = boff - (stripeno * p->stripesize) +
stripestart;
len_left = stripeend - *real_off;
KASSERT(len_left >= 0, ("gv_plex_offset: len_left < 0"));
*real_len = (bcount <= len_left) ? bcount : len_left;
break;
default:
return (GV_ERR_PLEXORG);
}
return (0);
}
/*
* Prepare a normal plex request.
*/
static int
gv_plex_normal_request(struct gv_plex *p, struct bio *bp, off_t boff,
off_t bcount, caddr_t addr)
{
struct gv_sd *s;
struct bio *cbp;
off_t real_len, real_off;
int i, err, sdno;
s = NULL;
sdno = -1;
real_len = real_off = 0;
err = ENXIO;
if (p == NULL || LIST_EMPTY(&p->subdisks))
goto bad;
err = gv_plex_offset(p, boff, bcount, &real_off,
&real_len, &sdno, (bp->bio_pflags & GV_BIO_GROW));
/* If the request was blocked, put it into wait. */
if (err == GV_ERR_ISBUSY) {
bioq_disksort(p->rqueue, bp);
return (-1); /* "Fail", and delay request. */
}
if (err) {
err = ENXIO;
goto bad;
}
err = ENXIO;
/* Find the right subdisk. */
i = 0;
LIST_FOREACH(s, &p->subdisks, in_plex) {
if (i == sdno)
break;
i++;
}
/* Subdisk not found. */
if (s == NULL || s->drive_sc == NULL)
goto bad;
/* Now check if we can handle the request on this subdisk. */
switch (s->state) {
case GV_SD_UP:
/* If the subdisk is up, just continue. */
break;
case GV_SD_DOWN:
if (bp->bio_pflags & GV_BIO_INTERNAL)
G_VINUM_DEBUG(0, "subdisk must be in the stale state in"
" order to perform administrative requests");
goto bad;
case GV_SD_STALE:
if (!(bp->bio_pflags & GV_BIO_SYNCREQ)) {
G_VINUM_DEBUG(0, "subdisk stale, unable to perform "
"regular requests");
goto bad;
}
G_VINUM_DEBUG(1, "sd %s is initializing", s->name);
gv_set_sd_state(s, GV_SD_INITIALIZING, GV_SETSTATE_FORCE);
break;
case GV_SD_INITIALIZING:
if (bp->bio_cmd == BIO_READ)
goto bad;
break;
default:
/* All other subdisk states mean it's not accessible. */
goto bad;
}
/* Clone the bio and adjust the offsets and sizes. */
cbp = g_clone_bio(bp);
if (cbp == NULL) {
err = ENOMEM;
goto bad;
}
cbp->bio_offset = real_off + s->drive_offset;
cbp->bio_length = real_len;
cbp->bio_data = addr;
cbp->bio_done = gv_done;
cbp->bio_caller1 = s;
/* Store the sub-requests now and let others issue them. */
bioq_insert_tail(p->bqueue, cbp);
return (real_len);
bad:
G_VINUM_LOGREQ(0, bp, "plex request failed.");
/* Building the sub-request failed. If internal BIO, do not deliver. */
if (bp->bio_pflags & GV_BIO_INTERNAL) {
if (bp->bio_pflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
g_destroy_bio(bp);
p->flags &= ~(GV_PLEX_SYNCING | GV_PLEX_REBUILDING |
GV_PLEX_GROWING);
return (-1);
}
g_io_deliver(bp, err);
return (-1);
}
/*
* Handle a completed request to a striped or concatenated plex.
*/
void
gv_plex_normal_done(struct gv_plex *p, struct bio *bp)
{
struct bio *pbp;
pbp = bp->bio_parent;
if (pbp->bio_error == 0)
pbp->bio_error = bp->bio_error;
g_destroy_bio(bp);
pbp->bio_inbed++;
if (pbp->bio_children == pbp->bio_inbed) {
/* Just set it to length since multiple plexes will
* screw things up. */
pbp->bio_completed = pbp->bio_length;
if (pbp->bio_pflags & GV_BIO_SYNCREQ)
gv_sync_complete(p, pbp);
else if (pbp->bio_pflags & GV_BIO_GROW)
gv_grow_complete(p, pbp);
else
g_io_deliver(pbp, pbp->bio_error);
}
}
/*
* Handle a completed request to a RAID-5 plex.
*/
void
gv_plex_raid5_done(struct gv_plex *p, struct bio *bp)
{
struct gv_softc *sc;
struct bio *cbp, *pbp;
struct gv_bioq *bq, *bq2;
struct gv_raid5_packet *wp;
off_t completed;
int i;
completed = 0;
sc = p->vinumconf;
wp = bp->bio_caller2;
switch (bp->bio_parent->bio_cmd) {
case BIO_READ:
if (wp == NULL) {
completed = bp->bio_completed;
break;
}
TAILQ_FOREACH_SAFE(bq, &wp->bits, queue, bq2) {
if (bq->bp != bp)
continue;
TAILQ_REMOVE(&wp->bits, bq, queue);
g_free(bq);
for (i = 0; i < wp->length; i++)
wp->data[i] ^= bp->bio_data[i];
break;
}
if (TAILQ_EMPTY(&wp->bits)) {
completed = wp->length;
if (wp->lockbase != -1) {
TAILQ_REMOVE(&p->packets, wp, list);
/* Bring the waiting bios back into the game. */
pbp = bioq_takefirst(p->wqueue);
while (pbp != NULL) {
gv_post_bio(sc, pbp);
pbp = bioq_takefirst(p->wqueue);
}
}
g_free(wp);
}
break;
case BIO_WRITE:
/* XXX can this ever happen? */
if (wp == NULL) {
completed = bp->bio_completed;
break;
}
/* Check if we need to handle parity data. */
TAILQ_FOREACH_SAFE(bq, &wp->bits, queue, bq2) {
if (bq->bp != bp)
continue;
TAILQ_REMOVE(&wp->bits, bq, queue);
g_free(bq);
cbp = wp->parity;
if (cbp != NULL) {
for (i = 0; i < wp->length; i++)
cbp->bio_data[i] ^= bp->bio_data[i];
}
break;
}
/* Handle parity data. */
if (TAILQ_EMPTY(&wp->bits)) {
if (bp->bio_parent->bio_pflags & GV_BIO_CHECK)
i = gv_check_parity(p, bp, wp);
else
i = gv_normal_parity(p, bp, wp);
/* All of our sub-requests have finished. */
if (i) {
completed = wp->length;
TAILQ_REMOVE(&p->packets, wp, list);
/* Bring the waiting bios back into the game. */
pbp = bioq_takefirst(p->wqueue);
while (pbp != NULL) {
gv_post_bio(sc, pbp);
pbp = bioq_takefirst(p->wqueue);
}
g_free(wp);
}
}
break;
}
pbp = bp->bio_parent;
if (pbp->bio_error == 0)
pbp->bio_error = bp->bio_error;
pbp->bio_completed += completed;
/* When the original request is finished, we deliver it. */
pbp->bio_inbed++;
if (pbp->bio_inbed == pbp->bio_children) {
/* Hand it over for checking or delivery. */
if (pbp->bio_cmd == BIO_WRITE &&
(pbp->bio_pflags & GV_BIO_CHECK)) {
gv_parity_complete(p, pbp);
} else if (pbp->bio_cmd == BIO_WRITE &&
(pbp->bio_pflags & GV_BIO_REBUILD)) {
gv_rebuild_complete(p, pbp);
} else if (pbp->bio_pflags & GV_BIO_INIT) {
gv_init_complete(p, pbp);
} else if (pbp->bio_pflags & GV_BIO_SYNCREQ) {
gv_sync_complete(p, pbp);
} else if (pbp->bio_pflags & GV_BIO_GROW) {
gv_grow_complete(p, pbp);
} else {
g_io_deliver(pbp, pbp->bio_error);
}
}
/* Clean up what we allocated. */
if (bp->bio_cflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
g_destroy_bio(bp);
}
static int
gv_check_parity(struct gv_plex *p, struct bio *bp, struct gv_raid5_packet *wp)
{
struct bio *pbp;
struct gv_sd *s;
int err, finished, i;
err = 0;
finished = 1;
if (wp->waiting != NULL) {
pbp = wp->waiting;
wp->waiting = NULL;
s = pbp->bio_caller1;
g_io_request(pbp, s->drive_sc->consumer);
finished = 0;
} else if (wp->parity != NULL) {
pbp = wp->parity;
wp->parity = NULL;
/* Check if the parity is correct. */
for (i = 0; i < wp->length; i++) {
if (bp->bio_data[i] != pbp->bio_data[i]) {
err = 1;
break;
}
}
/* The parity is not correct... */
if (err) {
bp->bio_parent->bio_error = EAGAIN;
/* ... but we rebuild it. */
if (bp->bio_parent->bio_pflags & GV_BIO_PARITY) {
s = pbp->bio_caller1;
g_io_request(pbp, s->drive_sc->consumer);
finished = 0;
}
}
/*
* Clean up the BIO we would have used for rebuilding the
* parity.
*/
if (finished) {
bp->bio_parent->bio_inbed++;
g_destroy_bio(pbp);
}
}
return (finished);
}
static int
gv_normal_parity(struct gv_plex *p, struct bio *bp, struct gv_raid5_packet *wp)
{
struct bio *cbp, *pbp;
struct gv_sd *s;
int finished, i;
finished = 1;
if (wp->waiting != NULL) {
pbp = wp->waiting;
wp->waiting = NULL;
cbp = wp->parity;
for (i = 0; i < wp->length; i++)
cbp->bio_data[i] ^= pbp->bio_data[i];
s = pbp->bio_caller1;
g_io_request(pbp, s->drive_sc->consumer);
finished = 0;
} else if (wp->parity != NULL) {
cbp = wp->parity;
wp->parity = NULL;
s = cbp->bio_caller1;
g_io_request(cbp, s->drive_sc->consumer);
finished = 0;
}
return (finished);
}
/* Flush the queue with delayed requests. */
static void
gv_plex_flush(struct gv_plex *p)
{
struct gv_softc *sc;
struct bio *bp;
sc = p->vinumconf;
bp = bioq_takefirst(p->rqueue);
while (bp != NULL) {
gv_plex_start(p, bp);
bp = bioq_takefirst(p->rqueue);
}
}
static void
gv_post_bio(struct gv_softc *sc, struct bio *bp)
{
KASSERT(sc != NULL, ("NULL sc"));
KASSERT(bp != NULL, ("NULL bp"));
mtx_lock(&sc->bqueue_mtx);
bioq_disksort(sc->bqueue_down, bp);
wakeup(sc);
mtx_unlock(&sc->bqueue_mtx);
}
int
gv_sync_request(struct gv_plex *from, struct gv_plex *to, off_t offset,
off_t length, int type, caddr_t data)
{
struct gv_softc *sc;
struct bio *bp;
KASSERT(from != NULL, ("NULL from"));
KASSERT(to != NULL, ("NULL to"));
sc = from->vinumconf;
KASSERT(sc != NULL, ("NULL sc"));
bp = g_new_bio();
if (bp == NULL) {
G_VINUM_DEBUG(0, "sync from '%s' failed at offset "
" %jd; out of memory", from->name, offset);
return (ENOMEM);
}
bp->bio_length = length;
bp->bio_done = gv_done;
bp->bio_pflags |= GV_BIO_SYNCREQ;
bp->bio_offset = offset;
bp->bio_caller1 = from;
bp->bio_caller2 = to;
bp->bio_cmd = type;
if (data == NULL)
data = g_malloc(length, M_WAITOK);
bp->bio_pflags |= GV_BIO_MALLOC; /* Free on the next run. */
bp->bio_data = data;
/* Send down next. */
gv_post_bio(sc, bp);
//gv_plex_start(from, bp);
return (0);
}
/*
* Handle a finished plex sync bio.
*/
int
gv_sync_complete(struct gv_plex *to, struct bio *bp)
{
struct gv_plex *from, *p;
struct gv_sd *s;
struct gv_volume *v;
struct gv_softc *sc;
off_t offset;
int err;
g_topology_assert_not();
err = 0;
KASSERT(to != NULL, ("NULL to"));
KASSERT(bp != NULL, ("NULL bp"));
from = bp->bio_caller2;
KASSERT(from != NULL, ("NULL from"));
v = to->vol_sc;
KASSERT(v != NULL, ("NULL v"));
sc = v->vinumconf;
KASSERT(sc != NULL, ("NULL sc"));
/* If it was a read, write it. */
if (bp->bio_cmd == BIO_READ) {
err = gv_sync_request(from, to, bp->bio_offset, bp->bio_length,
BIO_WRITE, bp->bio_data);
/* If it was a write, read the next one. */
} else if (bp->bio_cmd == BIO_WRITE) {
if (bp->bio_pflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
to->synced += bp->bio_length;
/* If we're finished, clean up. */
if (bp->bio_offset + bp->bio_length >= from->size) {
G_VINUM_DEBUG(1, "syncing of %s from %s completed",
to->name, from->name);
/* Update our state. */
LIST_FOREACH(s, &to->subdisks, in_plex)
gv_set_sd_state(s, GV_SD_UP, 0);
gv_update_plex_state(to);
to->flags &= ~GV_PLEX_SYNCING;
to->synced = 0;
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
} else {
offset = bp->bio_offset + bp->bio_length;
err = gv_sync_request(from, to, offset,
MIN(bp->bio_length, from->size - offset),
BIO_READ, NULL);
}
}
g_destroy_bio(bp);
/* Clean up if there was an error. */
if (err) {
to->flags &= ~GV_PLEX_SYNCING;
G_VINUM_DEBUG(0, "error syncing plexes: error code %d", err);
}
/* Check if all plexes are synced, and lower refcounts. */
g_topology_lock();
LIST_FOREACH(p, &v->plexes, in_volume) {
if (p->flags & GV_PLEX_SYNCING) {
g_topology_unlock();
return (-1);
}
}
/* If we came here, all plexes are synced, and we're free. */
gv_access(v->provider, -1, -1, 0);
g_topology_unlock();
G_VINUM_DEBUG(1, "plex sync completed");
gv_volume_flush(v);
return (0);
}
/*
* Create a new bio struct for the next grow request.
*/
int
gv_grow_request(struct gv_plex *p, off_t offset, off_t length, int type,
caddr_t data)
{
struct gv_softc *sc;
struct bio *bp;
KASSERT(p != NULL, ("gv_grow_request: NULL p"));
sc = p->vinumconf;
KASSERT(sc != NULL, ("gv_grow_request: NULL sc"));
bp = g_new_bio();
if (bp == NULL) {
G_VINUM_DEBUG(0, "grow of %s failed creating bio: "
"out of memory", p->name);
return (ENOMEM);
}
bp->bio_cmd = type;
bp->bio_done = gv_done;
bp->bio_error = 0;
bp->bio_caller1 = p;
bp->bio_offset = offset;
bp->bio_length = length;
bp->bio_pflags |= GV_BIO_GROW;
if (data == NULL)
data = g_malloc(length, M_WAITOK);
bp->bio_pflags |= GV_BIO_MALLOC;
bp->bio_data = data;
gv_post_bio(sc, bp);
//gv_plex_start(p, bp);
return (0);
}
/*
* Finish handling of a bio to a growing plex.
*/
void
gv_grow_complete(struct gv_plex *p, struct bio *bp)
{
struct gv_softc *sc;
struct gv_sd *s;
struct gv_volume *v;
off_t origsize, offset;
int sdcount, err;
v = p->vol_sc;
KASSERT(v != NULL, ("gv_grow_complete: NULL v"));
sc = v->vinumconf;
KASSERT(sc != NULL, ("gv_grow_complete: NULL sc"));
err = 0;
/* If it was a read, write it. */
if (bp->bio_cmd == BIO_READ) {
p->synced += bp->bio_length;
err = gv_grow_request(p, bp->bio_offset, bp->bio_length,
BIO_WRITE, bp->bio_data);
/* If it was a write, read next. */
} else if (bp->bio_cmd == BIO_WRITE) {
if (bp->bio_pflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
/* Find the real size of the plex. */
sdcount = gv_sdcount(p, 1);
s = LIST_FIRST(&p->subdisks);
KASSERT(s != NULL, ("NULL s"));
origsize = (s->size * (sdcount - 1));
if (bp->bio_offset + bp->bio_length >= origsize) {
G_VINUM_DEBUG(1, "growing of %s completed", p->name);
p->flags &= ~GV_PLEX_GROWING;
LIST_FOREACH(s, &p->subdisks, in_plex) {
s->flags &= ~GV_SD_GROW;
gv_set_sd_state(s, GV_SD_UP, 0);
}
p->size = gv_plex_size(p);
gv_update_vol_size(v, gv_vol_size(v));
gv_set_plex_state(p, GV_PLEX_UP, 0);
g_topology_lock();
gv_access(v->provider, -1, -1, 0);
g_topology_unlock();
p->synced = 0;
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
/* Issue delayed requests. */
gv_plex_flush(p);
} else {
offset = bp->bio_offset + bp->bio_length;
err = gv_grow_request(p, offset,
MIN(bp->bio_length, origsize - offset),
BIO_READ, NULL);
}
}
g_destroy_bio(bp);
if (err) {
p->flags &= ~GV_PLEX_GROWING;
G_VINUM_DEBUG(0, "error growing plex: error code %d", err);
}
}
/*
* Create an initialization BIO and send it off to the consumer. Assume that
* we're given initialization data as parameter.
*/
void
gv_init_request(struct gv_sd *s, off_t start, caddr_t data, off_t length)
{
struct gv_drive *d;
struct g_consumer *cp;
struct bio *bp, *cbp;
KASSERT(s != NULL, ("gv_init_request: NULL s"));
d = s->drive_sc;
KASSERT(d != NULL, ("gv_init_request: NULL d"));
cp = d->consumer;
KASSERT(cp != NULL, ("gv_init_request: NULL cp"));
bp = g_new_bio();
if (bp == NULL) {
G_VINUM_DEBUG(0, "subdisk '%s' init: write failed at offset %jd"
" (drive offset %jd); out of memory", s->name,
(intmax_t)s->initialized, (intmax_t)start);
return; /* XXX: Error codes. */
}
bp->bio_cmd = BIO_WRITE;
bp->bio_data = data;
bp->bio_done = gv_done;
bp->bio_error = 0;
bp->bio_length = length;
bp->bio_pflags |= GV_BIO_INIT;
bp->bio_offset = start;
bp->bio_caller1 = s;
/* Then ofcourse, we have to clone it. */
cbp = g_clone_bio(bp);
if (cbp == NULL) {
G_VINUM_DEBUG(0, "subdisk '%s' init: write failed at offset %jd"
" (drive offset %jd); out of memory", s->name,
(intmax_t)s->initialized, (intmax_t)start);
return; /* XXX: Error codes. */
}
cbp->bio_done = gv_done;
cbp->bio_caller1 = s;
/* Send it off to the consumer. */
g_io_request(cbp, cp);
}
/*
* Handle a finished initialization BIO.
*/
void
gv_init_complete(struct gv_plex *p, struct bio *bp)
{
struct gv_softc *sc;
struct gv_drive *d;
struct g_consumer *cp;
struct gv_sd *s;
off_t start, length;
caddr_t data;
int error;
s = bp->bio_caller1;
start = bp->bio_offset;
length = bp->bio_length;
error = bp->bio_error;
data = bp->bio_data;
KASSERT(s != NULL, ("gv_init_complete: NULL s"));
d = s->drive_sc;
KASSERT(d != NULL, ("gv_init_complete: NULL d"));
cp = d->consumer;
KASSERT(cp != NULL, ("gv_init_complete: NULL cp"));
sc = p->vinumconf;
KASSERT(sc != NULL, ("gv_init_complete: NULL sc"));
g_destroy_bio(bp);
/*
* First we need to find out if it was okay, and abort if it's not.
* Then we need to free previous buffers, find out the correct subdisk,
* as well as getting the correct starting point and length of the BIO.
*/
if (start >= s->drive_offset + s->size) {
/* Free the data we initialized. */
if (data != NULL)
g_free(data);
g_topology_assert_not();
g_topology_lock();
g_access(cp, 0, -1, 0);
g_topology_unlock();
if (error) {
gv_set_sd_state(s, GV_SD_STALE, GV_SETSTATE_FORCE |
GV_SETSTATE_CONFIG);
} else {
gv_set_sd_state(s, GV_SD_UP, GV_SETSTATE_CONFIG);
s->initialized = 0;
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
G_VINUM_DEBUG(1, "subdisk '%s' init: finished "
"successfully", s->name);
}
return;
}
s->initialized += length;
start += length;
gv_init_request(s, start, data, length);
}
/*
* Create a new bio struct for the next parity rebuild. Used both by internal
* rebuild of degraded plexes as well as user initiated rebuilds/checks.
*/
void
gv_parity_request(struct gv_plex *p, int flags, off_t offset)
{
struct gv_softc *sc;
struct bio *bp;
KASSERT(p != NULL, ("gv_parity_request: NULL p"));
sc = p->vinumconf;
KASSERT(sc != NULL, ("gv_parity_request: NULL sc"));
bp = g_new_bio();
if (bp == NULL) {
G_VINUM_DEBUG(0, "rebuild of %s failed creating bio: "
"out of memory", p->name);
return;
}
bp->bio_cmd = BIO_WRITE;
bp->bio_done = gv_done;
bp->bio_error = 0;
bp->bio_length = p->stripesize;
bp->bio_caller1 = p;
/*
* Check if it's a rebuild of a degraded plex or a user request of
* parity rebuild.
*/
if (flags & GV_BIO_REBUILD)
bp->bio_data = g_malloc(GV_DFLT_SYNCSIZE, M_WAITOK);
else if (flags & GV_BIO_CHECK)
bp->bio_data = g_malloc(p->stripesize, M_WAITOK | M_ZERO);
else {
G_VINUM_DEBUG(0, "invalid flags given in rebuild");
return;
}
bp->bio_pflags = flags;
bp->bio_pflags |= GV_BIO_MALLOC;
/* We still have more parity to build. */
bp->bio_offset = offset;
gv_post_bio(sc, bp);
//gv_plex_start(p, bp); /* Send it down to the plex. */
}
/*
* Handle a finished parity write.
*/
void
gv_parity_complete(struct gv_plex *p, struct bio *bp)
{
struct gv_softc *sc;
int error, flags;
error = bp->bio_error;
flags = bp->bio_pflags;
flags &= ~GV_BIO_MALLOC;
sc = p->vinumconf;
KASSERT(sc != NULL, ("gv_parity_complete: NULL sc"));
/* Clean up what we allocated. */
if (bp->bio_pflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
g_destroy_bio(bp);
if (error == EAGAIN) {
G_VINUM_DEBUG(0, "parity incorrect at offset 0x%jx",
(intmax_t)p->synced);
}
/* Any error is fatal, except EAGAIN when we're rebuilding. */
if (error && !(error == EAGAIN && (flags & GV_BIO_PARITY))) {
/* Make sure we don't have the lock. */
g_topology_assert_not();
g_topology_lock();
gv_access(p->vol_sc->provider, -1, -1, 0);
g_topology_unlock();
G_VINUM_DEBUG(0, "parity check on %s failed at 0x%jx "
"errno %d", p->name, (intmax_t)p->synced, error);
return;
} else {
p->synced += p->stripesize;
}
if (p->synced >= p->size) {
/* Make sure we don't have the lock. */
g_topology_assert_not();
g_topology_lock();
gv_access(p->vol_sc->provider, -1, -1, 0);
g_topology_unlock();
/* We're finished. */
G_VINUM_DEBUG(1, "parity operation on %s finished", p->name);
p->synced = 0;
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
return;
}
/* Send down next. It will determine if we need to itself. */
gv_parity_request(p, flags, p->synced);
}
/*
* Handle a finished plex rebuild bio.
*/
void
gv_rebuild_complete(struct gv_plex *p, struct bio *bp)
{
struct gv_softc *sc;
struct gv_sd *s;
int error, flags;
off_t offset;
error = bp->bio_error;
flags = bp->bio_pflags;
offset = bp->bio_offset;
flags &= ~GV_BIO_MALLOC;
sc = p->vinumconf;
KASSERT(sc != NULL, ("gv_rebuild_complete: NULL sc"));
/* Clean up what we allocated. */
if (bp->bio_pflags & GV_BIO_MALLOC)
g_free(bp->bio_data);
g_destroy_bio(bp);
if (error) {
g_topology_assert_not();
g_topology_lock();
gv_access(p->vol_sc->provider, -1, -1, 0);
g_topology_unlock();
G_VINUM_DEBUG(0, "rebuild of %s failed at offset %jd errno: %d",
p->name, (intmax_t)offset, error);
p->flags &= ~GV_PLEX_REBUILDING;
p->synced = 0;
gv_plex_flush(p); /* Flush out remaining rebuild BIOs. */
return;
}
offset += (p->stripesize * (gv_sdcount(p, 1) - 1));
if (offset >= p->size) {
/* We're finished. */
g_topology_assert_not();
g_topology_lock();
gv_access(p->vol_sc->provider, -1, -1, 0);
g_topology_unlock();
G_VINUM_DEBUG(1, "rebuild of %s finished", p->name);
gv_save_config(p->vinumconf);
p->flags &= ~GV_PLEX_REBUILDING;
p->synced = 0;
/* Try to up all subdisks. */
LIST_FOREACH(s, &p->subdisks, in_plex)
gv_update_sd_state(s);
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
gv_plex_flush(p); /* Flush out remaining rebuild BIOs. */
return;
}
/* Send down next. It will determine if we need to itself. */
gv_parity_request(p, flags, offset);
}