mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-30 12:04:07 +00:00
1571 lines
48 KiB
C
1571 lines
48 KiB
C
/* Alias analysis for GNU C
|
|
Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
|
|
Contributed by John Carr (jfc@mit.edu).
|
|
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "rtl.h"
|
|
#include "expr.h"
|
|
#include "regs.h"
|
|
#include "hard-reg-set.h"
|
|
#include "flags.h"
|
|
#include "output.h"
|
|
#include "toplev.h"
|
|
#include "splay-tree.h"
|
|
|
|
/* The alias sets assigned to MEMs assist the back-end in determining
|
|
which MEMs can alias which other MEMs. In general, two MEMs in
|
|
different alias sets to not alias each other. There is one
|
|
exception, however. Consider something like:
|
|
|
|
struct S {int i; double d; };
|
|
|
|
a store to an `S' can alias something of either type `int' or type
|
|
`double'. (However, a store to an `int' cannot alias a `double'
|
|
and vice versa.) We indicate this via a tree structure that looks
|
|
like:
|
|
struct S
|
|
/ \
|
|
/ \
|
|
|/_ _\|
|
|
int double
|
|
|
|
(The arrows are directed and point downwards.) If, when comparing
|
|
two alias sets, we can hold one set fixed, and trace the other set
|
|
downwards, and at some point find the first set, the two MEMs can
|
|
alias one another. In this situation we say the alias set for
|
|
`struct S' is the `superset' and that those for `int' and `double'
|
|
are `subsets'.
|
|
|
|
Alias set zero is implicitly a superset of all other alias sets.
|
|
However, this is no actual entry for alias set zero. It is an
|
|
error to attempt to explicitly construct a subset of zero. */
|
|
|
|
typedef struct alias_set_entry {
|
|
/* The alias set number, as stored in MEM_ALIAS_SET. */
|
|
int alias_set;
|
|
|
|
/* The children of the alias set. These are not just the immediate
|
|
children, but, in fact, all children. So, if we have:
|
|
|
|
struct T { struct S s; float f; }
|
|
|
|
continuing our example above, the children here will be all of
|
|
`int', `double', `float', and `struct S'. */
|
|
splay_tree children;
|
|
}* alias_set_entry;
|
|
|
|
static rtx canon_rtx PROTO((rtx));
|
|
static int rtx_equal_for_memref_p PROTO((rtx, rtx));
|
|
static rtx find_symbolic_term PROTO((rtx));
|
|
static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
|
|
HOST_WIDE_INT));
|
|
static void record_set PROTO((rtx, rtx));
|
|
static rtx find_base_term PROTO((rtx));
|
|
static int base_alias_check PROTO((rtx, rtx, enum machine_mode,
|
|
enum machine_mode));
|
|
static rtx find_base_value PROTO((rtx));
|
|
static int mems_in_disjoint_alias_sets_p PROTO((rtx, rtx));
|
|
static int insert_subset_children PROTO((splay_tree_node,
|
|
void*));
|
|
static alias_set_entry get_alias_set_entry PROTO((int));
|
|
static rtx fixed_scalar_and_varying_struct_p PROTO((rtx, rtx, int (*)(rtx)));
|
|
static int aliases_everything_p PROTO((rtx));
|
|
static int write_dependence_p PROTO((rtx, rtx, int));
|
|
|
|
/* Set up all info needed to perform alias analysis on memory references. */
|
|
|
|
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
|
|
|
|
/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
|
|
different alias sets. We ignore alias sets in functions making use
|
|
of variable arguments because the va_arg macros on some systems are
|
|
not legal ANSI C. */
|
|
#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
|
|
mems_in_disjoint_alias_sets_p (MEM1, MEM2)
|
|
|
|
/* Cap the number of passes we make over the insns propagating alias
|
|
information through set chains.
|
|
|
|
10 is a completely arbitrary choice. */
|
|
#define MAX_ALIAS_LOOP_PASSES 10
|
|
|
|
/* reg_base_value[N] gives an address to which register N is related.
|
|
If all sets after the first add or subtract to the current value
|
|
or otherwise modify it so it does not point to a different top level
|
|
object, reg_base_value[N] is equal to the address part of the source
|
|
of the first set.
|
|
|
|
A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
|
|
expressions represent certain special values: function arguments and
|
|
the stack, frame, and argument pointers. The contents of an address
|
|
expression are not used (but they are descriptive for debugging);
|
|
only the address and mode matter. Pointer equality, not rtx_equal_p,
|
|
determines whether two ADDRESS expressions refer to the same base
|
|
address. The mode determines whether it is a function argument or
|
|
other special value. */
|
|
|
|
rtx *reg_base_value;
|
|
rtx *new_reg_base_value;
|
|
unsigned int reg_base_value_size; /* size of reg_base_value array */
|
|
#define REG_BASE_VALUE(X) \
|
|
((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
|
|
|
|
/* Vector of known invariant relationships between registers. Set in
|
|
loop unrolling. Indexed by register number, if nonzero the value
|
|
is an expression describing this register in terms of another.
|
|
|
|
The length of this array is REG_BASE_VALUE_SIZE.
|
|
|
|
Because this array contains only pseudo registers it has no effect
|
|
after reload. */
|
|
static rtx *alias_invariant;
|
|
|
|
/* Vector indexed by N giving the initial (unchanging) value known
|
|
for pseudo-register N. */
|
|
rtx *reg_known_value;
|
|
|
|
/* Indicates number of valid entries in reg_known_value. */
|
|
static int reg_known_value_size;
|
|
|
|
/* Vector recording for each reg_known_value whether it is due to a
|
|
REG_EQUIV note. Future passes (viz., reload) may replace the
|
|
pseudo with the equivalent expression and so we account for the
|
|
dependences that would be introduced if that happens. */
|
|
/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
|
|
assign_parms mention the arg pointer, and there are explicit insns in the
|
|
RTL that modify the arg pointer. Thus we must ensure that such insns don't
|
|
get scheduled across each other because that would invalidate the REG_EQUIV
|
|
notes. One could argue that the REG_EQUIV notes are wrong, but solving
|
|
the problem in the scheduler will likely give better code, so we do it
|
|
here. */
|
|
char *reg_known_equiv_p;
|
|
|
|
/* True when scanning insns from the start of the rtl to the
|
|
NOTE_INSN_FUNCTION_BEG note. */
|
|
|
|
static int copying_arguments;
|
|
|
|
/* The splay-tree used to store the various alias set entries. */
|
|
|
|
static splay_tree alias_sets;
|
|
|
|
/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
|
|
such an entry, or NULL otherwise. */
|
|
|
|
static alias_set_entry
|
|
get_alias_set_entry (alias_set)
|
|
int alias_set;
|
|
{
|
|
splay_tree_node sn =
|
|
splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
|
|
|
|
return sn ? ((alias_set_entry) sn->value) : ((alias_set_entry) 0);
|
|
}
|
|
|
|
/* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
|
|
that the two MEMs cannot alias each other. */
|
|
|
|
static int
|
|
mems_in_disjoint_alias_sets_p (mem1, mem2)
|
|
rtx mem1;
|
|
rtx mem2;
|
|
{
|
|
alias_set_entry ase;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* Perform a basic sanity check. Namely, that there are no alias sets
|
|
if we're not using strict aliasing. This helps to catch bugs
|
|
whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
|
|
where a MEM is allocated in some way other than by the use of
|
|
gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
|
|
use alias sets to indicate that spilled registers cannot alias each
|
|
other, we might need to remove this check. */
|
|
if (!flag_strict_aliasing &&
|
|
(MEM_ALIAS_SET (mem1) || MEM_ALIAS_SET (mem2)))
|
|
abort ();
|
|
#endif
|
|
|
|
/* The code used in varargs macros are often not conforming ANSI C,
|
|
which can trick the compiler into making incorrect aliasing
|
|
assumptions in these functions. So, we don't use alias sets in
|
|
such a function. FIXME: This should be moved into the front-end;
|
|
it is a language-dependent notion, and there's no reason not to
|
|
still use these checks to handle globals. */
|
|
if (current_function_stdarg || current_function_varargs)
|
|
return 0;
|
|
|
|
if (!MEM_ALIAS_SET (mem1) || !MEM_ALIAS_SET (mem2))
|
|
/* We have no alias set information for one of the MEMs, so we
|
|
have to assume it can alias anything. */
|
|
return 0;
|
|
|
|
if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
|
|
/* The two alias sets are the same, so they may alias. */
|
|
return 0;
|
|
|
|
/* Iterate through each of the children of the first alias set,
|
|
comparing it with the second alias set. */
|
|
ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
|
|
if (ase && splay_tree_lookup (ase->children,
|
|
(splay_tree_key) MEM_ALIAS_SET (mem2)))
|
|
return 0;
|
|
|
|
/* Now do the same, but with the alias sets reversed. */
|
|
ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
|
|
if (ase && splay_tree_lookup (ase->children,
|
|
(splay_tree_key) MEM_ALIAS_SET (mem1)))
|
|
return 0;
|
|
|
|
/* The two MEMs are in distinct alias sets, and neither one is the
|
|
child of the other. Therefore, they cannot alias. */
|
|
return 1;
|
|
}
|
|
|
|
/* Insert the NODE into the splay tree given by DATA. Used by
|
|
record_alias_subset via splay_tree_foreach. */
|
|
|
|
static int
|
|
insert_subset_children (node, data)
|
|
splay_tree_node node;
|
|
void *data;
|
|
{
|
|
splay_tree_insert ((splay_tree) data,
|
|
node->key,
|
|
node->value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Indicate that things in SUBSET can alias things in SUPERSET, but
|
|
not vice versa. For example, in C, a store to an `int' can alias a
|
|
structure containing an `int', but not vice versa. Here, the
|
|
structure would be the SUPERSET and `int' the SUBSET. This
|
|
function should be called only once per SUPERSET/SUBSET pair. At
|
|
present any given alias set may only be a subset of one superset.
|
|
|
|
It is illegal for SUPERSET to be zero; everything is implicitly a
|
|
subset of alias set zero. */
|
|
|
|
void
|
|
record_alias_subset (superset, subset)
|
|
int superset;
|
|
int subset;
|
|
{
|
|
alias_set_entry superset_entry;
|
|
alias_set_entry subset_entry;
|
|
|
|
if (superset == 0)
|
|
abort ();
|
|
|
|
superset_entry = get_alias_set_entry (superset);
|
|
if (!superset_entry)
|
|
{
|
|
/* Create an entry for the SUPERSET, so that we have a place to
|
|
attach the SUBSET. */
|
|
superset_entry =
|
|
(alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
|
|
superset_entry->alias_set = superset;
|
|
superset_entry->children
|
|
= splay_tree_new (splay_tree_compare_ints, 0, 0);
|
|
splay_tree_insert (alias_sets,
|
|
(splay_tree_key) superset,
|
|
(splay_tree_value) superset_entry);
|
|
|
|
}
|
|
|
|
subset_entry = get_alias_set_entry (subset);
|
|
if (subset_entry)
|
|
/* There is an entry for the subset. Enter all of its children
|
|
(if they are not already present) as children of the SUPERSET. */
|
|
splay_tree_foreach (subset_entry->children,
|
|
insert_subset_children,
|
|
superset_entry->children);
|
|
|
|
/* Enter the SUBSET itself as a child of the SUPERSET. */
|
|
splay_tree_insert (superset_entry->children,
|
|
(splay_tree_key) subset,
|
|
/*value=*/0);
|
|
}
|
|
|
|
/* Inside SRC, the source of a SET, find a base address. */
|
|
|
|
static rtx
|
|
find_base_value (src)
|
|
register rtx src;
|
|
{
|
|
switch (GET_CODE (src))
|
|
{
|
|
case SYMBOL_REF:
|
|
case LABEL_REF:
|
|
return src;
|
|
|
|
case REG:
|
|
/* At the start of a function argument registers have known base
|
|
values which may be lost later. Returning an ADDRESS
|
|
expression here allows optimization based on argument values
|
|
even when the argument registers are used for other purposes. */
|
|
if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
|
|
return new_reg_base_value[REGNO (src)];
|
|
|
|
/* If a pseudo has a known base value, return it. Do not do this
|
|
for hard regs since it can result in a circular dependency
|
|
chain for registers which have values at function entry.
|
|
|
|
The test above is not sufficient because the scheduler may move
|
|
a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
|
|
if (REGNO (src) >= FIRST_PSEUDO_REGISTER
|
|
&& (unsigned) REGNO (src) < reg_base_value_size
|
|
&& reg_base_value[REGNO (src)])
|
|
return reg_base_value[REGNO (src)];
|
|
|
|
return src;
|
|
|
|
case MEM:
|
|
/* Check for an argument passed in memory. Only record in the
|
|
copying-arguments block; it is too hard to track changes
|
|
otherwise. */
|
|
if (copying_arguments
|
|
&& (XEXP (src, 0) == arg_pointer_rtx
|
|
|| (GET_CODE (XEXP (src, 0)) == PLUS
|
|
&& XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
|
|
return gen_rtx_ADDRESS (VOIDmode, src);
|
|
return 0;
|
|
|
|
case CONST:
|
|
src = XEXP (src, 0);
|
|
if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
|
|
break;
|
|
/* fall through */
|
|
|
|
case PLUS:
|
|
case MINUS:
|
|
{
|
|
rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
|
|
|
|
/* If either operand is a REG, then see if we already have
|
|
a known value for it. */
|
|
if (GET_CODE (src_0) == REG)
|
|
{
|
|
temp = find_base_value (src_0);
|
|
if (temp)
|
|
src_0 = temp;
|
|
}
|
|
|
|
if (GET_CODE (src_1) == REG)
|
|
{
|
|
temp = find_base_value (src_1);
|
|
if (temp)
|
|
src_1 = temp;
|
|
}
|
|
|
|
/* Guess which operand is the base address.
|
|
|
|
If either operand is a symbol, then it is the base. If
|
|
either operand is a CONST_INT, then the other is the base. */
|
|
|
|
if (GET_CODE (src_1) == CONST_INT
|
|
|| GET_CODE (src_0) == SYMBOL_REF
|
|
|| GET_CODE (src_0) == LABEL_REF
|
|
|| GET_CODE (src_0) == CONST)
|
|
return find_base_value (src_0);
|
|
|
|
if (GET_CODE (src_0) == CONST_INT
|
|
|| GET_CODE (src_1) == SYMBOL_REF
|
|
|| GET_CODE (src_1) == LABEL_REF
|
|
|| GET_CODE (src_1) == CONST)
|
|
return find_base_value (src_1);
|
|
|
|
/* This might not be necessary anymore.
|
|
|
|
If either operand is a REG that is a known pointer, then it
|
|
is the base. */
|
|
if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
|
|
return find_base_value (src_0);
|
|
|
|
if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
|
|
return find_base_value (src_1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
case LO_SUM:
|
|
/* The standard form is (lo_sum reg sym) so look only at the
|
|
second operand. */
|
|
return find_base_value (XEXP (src, 1));
|
|
|
|
case AND:
|
|
/* If the second operand is constant set the base
|
|
address to the first operand. */
|
|
if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
|
|
return find_base_value (XEXP (src, 0));
|
|
return 0;
|
|
|
|
case ZERO_EXTEND:
|
|
case SIGN_EXTEND: /* used for NT/Alpha pointers */
|
|
case HIGH:
|
|
return find_base_value (XEXP (src, 0));
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called from init_alias_analysis indirectly through note_stores. */
|
|
|
|
/* while scanning insns to find base values, reg_seen[N] is nonzero if
|
|
register N has been set in this function. */
|
|
static char *reg_seen;
|
|
|
|
/* Addresses which are known not to alias anything else are identified
|
|
by a unique integer. */
|
|
static int unique_id;
|
|
|
|
static void
|
|
record_set (dest, set)
|
|
rtx dest, set;
|
|
{
|
|
register int regno;
|
|
rtx src;
|
|
|
|
if (GET_CODE (dest) != REG)
|
|
return;
|
|
|
|
regno = REGNO (dest);
|
|
|
|
if (set)
|
|
{
|
|
/* A CLOBBER wipes out any old value but does not prevent a previously
|
|
unset register from acquiring a base address (i.e. reg_seen is not
|
|
set). */
|
|
if (GET_CODE (set) == CLOBBER)
|
|
{
|
|
new_reg_base_value[regno] = 0;
|
|
return;
|
|
}
|
|
src = SET_SRC (set);
|
|
}
|
|
else
|
|
{
|
|
if (reg_seen[regno])
|
|
{
|
|
new_reg_base_value[regno] = 0;
|
|
return;
|
|
}
|
|
reg_seen[regno] = 1;
|
|
new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
|
|
GEN_INT (unique_id++));
|
|
return;
|
|
}
|
|
|
|
/* This is not the first set. If the new value is not related to the
|
|
old value, forget the base value. Note that the following code is
|
|
not detected:
|
|
extern int x, y; int *p = &x; p += (&y-&x);
|
|
ANSI C does not allow computing the difference of addresses
|
|
of distinct top level objects. */
|
|
if (new_reg_base_value[regno])
|
|
switch (GET_CODE (src))
|
|
{
|
|
case LO_SUM:
|
|
case PLUS:
|
|
case MINUS:
|
|
if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
|
|
new_reg_base_value[regno] = 0;
|
|
break;
|
|
case AND:
|
|
if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
|
|
new_reg_base_value[regno] = 0;
|
|
break;
|
|
default:
|
|
new_reg_base_value[regno] = 0;
|
|
break;
|
|
}
|
|
/* If this is the first set of a register, record the value. */
|
|
else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
|
|
&& ! reg_seen[regno] && new_reg_base_value[regno] == 0)
|
|
new_reg_base_value[regno] = find_base_value (src);
|
|
|
|
reg_seen[regno] = 1;
|
|
}
|
|
|
|
/* Called from loop optimization when a new pseudo-register is created. */
|
|
void
|
|
record_base_value (regno, val, invariant)
|
|
int regno;
|
|
rtx val;
|
|
int invariant;
|
|
{
|
|
if ((unsigned) regno >= reg_base_value_size)
|
|
return;
|
|
|
|
/* If INVARIANT is true then this value also describes an invariant
|
|
relationship which can be used to deduce that two registers with
|
|
unknown values are different. */
|
|
if (invariant && alias_invariant)
|
|
alias_invariant[regno] = val;
|
|
|
|
if (GET_CODE (val) == REG)
|
|
{
|
|
if ((unsigned) REGNO (val) < reg_base_value_size)
|
|
{
|
|
reg_base_value[regno] = reg_base_value[REGNO (val)];
|
|
}
|
|
return;
|
|
}
|
|
reg_base_value[regno] = find_base_value (val);
|
|
}
|
|
|
|
static rtx
|
|
canon_rtx (x)
|
|
rtx x;
|
|
{
|
|
/* Recursively look for equivalences. */
|
|
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
|
|
&& REGNO (x) < reg_known_value_size)
|
|
return reg_known_value[REGNO (x)] == x
|
|
? x : canon_rtx (reg_known_value[REGNO (x)]);
|
|
else if (GET_CODE (x) == PLUS)
|
|
{
|
|
rtx x0 = canon_rtx (XEXP (x, 0));
|
|
rtx x1 = canon_rtx (XEXP (x, 1));
|
|
|
|
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
|
|
{
|
|
/* We can tolerate LO_SUMs being offset here; these
|
|
rtl are used for nothing other than comparisons. */
|
|
if (GET_CODE (x0) == CONST_INT)
|
|
return plus_constant_for_output (x1, INTVAL (x0));
|
|
else if (GET_CODE (x1) == CONST_INT)
|
|
return plus_constant_for_output (x0, INTVAL (x1));
|
|
return gen_rtx_PLUS (GET_MODE (x), x0, x1);
|
|
}
|
|
}
|
|
/* This gives us much better alias analysis when called from
|
|
the loop optimizer. Note we want to leave the original
|
|
MEM alone, but need to return the canonicalized MEM with
|
|
all the flags with their original values. */
|
|
else if (GET_CODE (x) == MEM)
|
|
{
|
|
rtx addr = canon_rtx (XEXP (x, 0));
|
|
if (addr != XEXP (x, 0))
|
|
{
|
|
rtx new = gen_rtx_MEM (GET_MODE (x), addr);
|
|
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
|
|
MEM_COPY_ATTRIBUTES (new, x);
|
|
MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
|
|
x = new;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/* Return 1 if X and Y are identical-looking rtx's.
|
|
|
|
We use the data in reg_known_value above to see if two registers with
|
|
different numbers are, in fact, equivalent. */
|
|
|
|
static int
|
|
rtx_equal_for_memref_p (x, y)
|
|
rtx x, y;
|
|
{
|
|
register int i;
|
|
register int j;
|
|
register enum rtx_code code;
|
|
register char *fmt;
|
|
|
|
if (x == 0 && y == 0)
|
|
return 1;
|
|
if (x == 0 || y == 0)
|
|
return 0;
|
|
x = canon_rtx (x);
|
|
y = canon_rtx (y);
|
|
|
|
if (x == y)
|
|
return 1;
|
|
|
|
code = GET_CODE (x);
|
|
/* Rtx's of different codes cannot be equal. */
|
|
if (code != GET_CODE (y))
|
|
return 0;
|
|
|
|
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
|
|
(REG:SI x) and (REG:HI x) are NOT equivalent. */
|
|
|
|
if (GET_MODE (x) != GET_MODE (y))
|
|
return 0;
|
|
|
|
/* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
|
|
|
|
if (code == REG)
|
|
return REGNO (x) == REGNO (y);
|
|
if (code == LABEL_REF)
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
|
if (code == SYMBOL_REF)
|
|
return XSTR (x, 0) == XSTR (y, 0);
|
|
if (code == CONST_INT)
|
|
return INTVAL (x) == INTVAL (y);
|
|
if (code == ADDRESSOF)
|
|
return REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0)) && XINT (x, 1) == XINT (y, 1);
|
|
|
|
/* For commutative operations, the RTX match if the operand match in any
|
|
order. Also handle the simple binary and unary cases without a loop. */
|
|
if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
|
|
return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
|
|
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
|
|
|| (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
|
|
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
|
|
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
|
|
return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
|
|
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
|
|
else if (GET_RTX_CLASS (code) == '1')
|
|
return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
|
|
|
|
/* Compare the elements. If any pair of corresponding elements
|
|
fail to match, return 0 for the whole things.
|
|
|
|
Limit cases to types which actually appear in addresses. */
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
{
|
|
switch (fmt[i])
|
|
{
|
|
case 'i':
|
|
if (XINT (x, i) != XINT (y, i))
|
|
return 0;
|
|
break;
|
|
|
|
case 'E':
|
|
/* Two vectors must have the same length. */
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
|
return 0;
|
|
|
|
/* And the corresponding elements must match. */
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|
if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
|
|
return 0;
|
|
break;
|
|
|
|
case 'e':
|
|
if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
|
|
return 0;
|
|
break;
|
|
|
|
/* This can happen for an asm which clobbers memory. */
|
|
case '0':
|
|
break;
|
|
|
|
/* It is believed that rtx's at this level will never
|
|
contain anything but integers and other rtx's,
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
|
|
X and return it, or return 0 if none found. */
|
|
|
|
static rtx
|
|
find_symbolic_term (x)
|
|
rtx x;
|
|
{
|
|
register int i;
|
|
register enum rtx_code code;
|
|
register char *fmt;
|
|
|
|
code = GET_CODE (x);
|
|
if (code == SYMBOL_REF || code == LABEL_REF)
|
|
return x;
|
|
if (GET_RTX_CLASS (code) == 'o')
|
|
return 0;
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
{
|
|
rtx t;
|
|
|
|
if (fmt[i] == 'e')
|
|
{
|
|
t = find_symbolic_term (XEXP (x, i));
|
|
if (t != 0)
|
|
return t;
|
|
}
|
|
else if (fmt[i] == 'E')
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static rtx
|
|
find_base_term (x)
|
|
register rtx x;
|
|
{
|
|
switch (GET_CODE (x))
|
|
{
|
|
case REG:
|
|
return REG_BASE_VALUE (x);
|
|
|
|
case ZERO_EXTEND:
|
|
case SIGN_EXTEND: /* Used for Alpha/NT pointers */
|
|
case HIGH:
|
|
case PRE_INC:
|
|
case PRE_DEC:
|
|
case POST_INC:
|
|
case POST_DEC:
|
|
return find_base_term (XEXP (x, 0));
|
|
|
|
case CONST:
|
|
x = XEXP (x, 0);
|
|
if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
|
|
return 0;
|
|
/* fall through */
|
|
case LO_SUM:
|
|
case PLUS:
|
|
case MINUS:
|
|
{
|
|
rtx tmp1 = XEXP (x, 0);
|
|
rtx tmp2 = XEXP (x, 1);
|
|
|
|
/* This is a litle bit tricky since we have to determine which of
|
|
the two operands represents the real base address. Otherwise this
|
|
routine may return the index register instead of the base register.
|
|
|
|
That may cause us to believe no aliasing was possible, when in
|
|
fact aliasing is possible.
|
|
|
|
We use a few simple tests to guess the base register. Additional
|
|
tests can certainly be added. For example, if one of the operands
|
|
is a shift or multiply, then it must be the index register and the
|
|
other operand is the base register. */
|
|
|
|
/* If either operand is known to be a pointer, then use it
|
|
to determine the base term. */
|
|
if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
|
|
return find_base_term (tmp1);
|
|
|
|
if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
|
|
return find_base_term (tmp2);
|
|
|
|
/* Neither operand was known to be a pointer. Go ahead and find the
|
|
base term for both operands. */
|
|
tmp1 = find_base_term (tmp1);
|
|
tmp2 = find_base_term (tmp2);
|
|
|
|
/* If either base term is named object or a special address
|
|
(like an argument or stack reference), then use it for the
|
|
base term. */
|
|
if (tmp1
|
|
&& (GET_CODE (tmp1) == SYMBOL_REF
|
|
|| GET_CODE (tmp1) == LABEL_REF
|
|
|| (GET_CODE (tmp1) == ADDRESS
|
|
&& GET_MODE (tmp1) != VOIDmode)))
|
|
return tmp1;
|
|
|
|
if (tmp2
|
|
&& (GET_CODE (tmp2) == SYMBOL_REF
|
|
|| GET_CODE (tmp2) == LABEL_REF
|
|
|| (GET_CODE (tmp2) == ADDRESS
|
|
&& GET_MODE (tmp2) != VOIDmode)))
|
|
return tmp2;
|
|
|
|
/* We could not determine which of the two operands was the
|
|
base register and which was the index. So we can determine
|
|
nothing from the base alias check. */
|
|
return 0;
|
|
}
|
|
|
|
case AND:
|
|
if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
|
|
return REG_BASE_VALUE (XEXP (x, 0));
|
|
return 0;
|
|
|
|
case SYMBOL_REF:
|
|
case LABEL_REF:
|
|
return x;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return 0 if the addresses X and Y are known to point to different
|
|
objects, 1 if they might be pointers to the same object. */
|
|
|
|
static int
|
|
base_alias_check (x, y, x_mode, y_mode)
|
|
rtx x, y;
|
|
enum machine_mode x_mode, y_mode;
|
|
{
|
|
rtx x_base = find_base_term (x);
|
|
rtx y_base = find_base_term (y);
|
|
|
|
/* If the address itself has no known base see if a known equivalent
|
|
value has one. If either address still has no known base, nothing
|
|
is known about aliasing. */
|
|
if (x_base == 0)
|
|
{
|
|
rtx x_c;
|
|
if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
|
|
return 1;
|
|
x_base = find_base_term (x_c);
|
|
if (x_base == 0)
|
|
return 1;
|
|
}
|
|
|
|
if (y_base == 0)
|
|
{
|
|
rtx y_c;
|
|
if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
|
|
return 1;
|
|
y_base = find_base_term (y_c);
|
|
if (y_base == 0)
|
|
return 1;
|
|
}
|
|
|
|
/* If the base addresses are equal nothing is known about aliasing. */
|
|
if (rtx_equal_p (x_base, y_base))
|
|
return 1;
|
|
|
|
/* The base addresses of the read and write are different expressions.
|
|
If they are both symbols and they are not accessed via AND, there is
|
|
no conflict. We can bring knowledge of object alignment into play
|
|
here. For example, on alpha, "char a, b;" can alias one another,
|
|
though "char a; long b;" cannot. */
|
|
if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
|
|
{
|
|
if (GET_CODE (x) == AND && GET_CODE (y) == AND)
|
|
return 1;
|
|
if (GET_CODE (x) == AND
|
|
&& (GET_CODE (XEXP (x, 1)) != CONST_INT
|
|
|| GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
|
|
return 1;
|
|
if (GET_CODE (y) == AND
|
|
&& (GET_CODE (XEXP (y, 1)) != CONST_INT
|
|
|| GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
|
|
return 1;
|
|
/* Differing symbols never alias. */
|
|
return 0;
|
|
}
|
|
|
|
/* If one address is a stack reference there can be no alias:
|
|
stack references using different base registers do not alias,
|
|
a stack reference can not alias a parameter, and a stack reference
|
|
can not alias a global. */
|
|
if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
|
|
|| (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
|
|
return 0;
|
|
|
|
if (! flag_argument_noalias)
|
|
return 1;
|
|
|
|
if (flag_argument_noalias > 1)
|
|
return 0;
|
|
|
|
/* Weak noalias assertion (arguments are distinct, but may match globals). */
|
|
return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
|
|
}
|
|
|
|
/* Return the address of the (N_REFS + 1)th memory reference to ADDR
|
|
where SIZE is the size in bytes of the memory reference. If ADDR
|
|
is not modified by the memory reference then ADDR is returned. */
|
|
|
|
rtx
|
|
addr_side_effect_eval (addr, size, n_refs)
|
|
rtx addr;
|
|
int size;
|
|
int n_refs;
|
|
{
|
|
int offset = 0;
|
|
|
|
switch (GET_CODE (addr))
|
|
{
|
|
case PRE_INC:
|
|
offset = (n_refs + 1) * size;
|
|
break;
|
|
case PRE_DEC:
|
|
offset = -(n_refs + 1) * size;
|
|
break;
|
|
case POST_INC:
|
|
offset = n_refs * size;
|
|
break;
|
|
case POST_DEC:
|
|
offset = -n_refs * size;
|
|
break;
|
|
|
|
default:
|
|
return addr;
|
|
}
|
|
|
|
if (offset)
|
|
addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
|
|
else
|
|
addr = XEXP (addr, 0);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* Return nonzero if X and Y (memory addresses) could reference the
|
|
same location in memory. C is an offset accumulator. When
|
|
C is nonzero, we are testing aliases between X and Y + C.
|
|
XSIZE is the size in bytes of the X reference,
|
|
similarly YSIZE is the size in bytes for Y.
|
|
|
|
If XSIZE or YSIZE is zero, we do not know the amount of memory being
|
|
referenced (the reference was BLKmode), so make the most pessimistic
|
|
assumptions.
|
|
|
|
If XSIZE or YSIZE is negative, we may access memory outside the object
|
|
being referenced as a side effect. This can happen when using AND to
|
|
align memory references, as is done on the Alpha.
|
|
|
|
Nice to notice that varying addresses cannot conflict with fp if no
|
|
local variables had their addresses taken, but that's too hard now. */
|
|
|
|
|
|
static int
|
|
memrefs_conflict_p (xsize, x, ysize, y, c)
|
|
register rtx x, y;
|
|
int xsize, ysize;
|
|
HOST_WIDE_INT c;
|
|
{
|
|
if (GET_CODE (x) == HIGH)
|
|
x = XEXP (x, 0);
|
|
else if (GET_CODE (x) == LO_SUM)
|
|
x = XEXP (x, 1);
|
|
else
|
|
x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
|
|
if (GET_CODE (y) == HIGH)
|
|
y = XEXP (y, 0);
|
|
else if (GET_CODE (y) == LO_SUM)
|
|
y = XEXP (y, 1);
|
|
else
|
|
y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
|
|
|
|
if (rtx_equal_for_memref_p (x, y))
|
|
{
|
|
if (xsize <= 0 || ysize <= 0)
|
|
return 1;
|
|
if (c >= 0 && xsize > c)
|
|
return 1;
|
|
if (c < 0 && ysize+c > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* This code used to check for conflicts involving stack references and
|
|
globals but the base address alias code now handles these cases. */
|
|
|
|
if (GET_CODE (x) == PLUS)
|
|
{
|
|
/* The fact that X is canonicalized means that this
|
|
PLUS rtx is canonicalized. */
|
|
rtx x0 = XEXP (x, 0);
|
|
rtx x1 = XEXP (x, 1);
|
|
|
|
if (GET_CODE (y) == PLUS)
|
|
{
|
|
/* The fact that Y is canonicalized means that this
|
|
PLUS rtx is canonicalized. */
|
|
rtx y0 = XEXP (y, 0);
|
|
rtx y1 = XEXP (y, 1);
|
|
|
|
if (rtx_equal_for_memref_p (x1, y1))
|
|
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
|
|
if (rtx_equal_for_memref_p (x0, y0))
|
|
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
|
|
if (GET_CODE (x1) == CONST_INT)
|
|
{
|
|
if (GET_CODE (y1) == CONST_INT)
|
|
return memrefs_conflict_p (xsize, x0, ysize, y0,
|
|
c - INTVAL (x1) + INTVAL (y1));
|
|
else
|
|
return memrefs_conflict_p (xsize, x0, ysize, y,
|
|
c - INTVAL (x1));
|
|
}
|
|
else if (GET_CODE (y1) == CONST_INT)
|
|
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
|
|
|
|
return 1;
|
|
}
|
|
else if (GET_CODE (x1) == CONST_INT)
|
|
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
|
|
}
|
|
else if (GET_CODE (y) == PLUS)
|
|
{
|
|
/* The fact that Y is canonicalized means that this
|
|
PLUS rtx is canonicalized. */
|
|
rtx y0 = XEXP (y, 0);
|
|
rtx y1 = XEXP (y, 1);
|
|
|
|
if (GET_CODE (y1) == CONST_INT)
|
|
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
if (GET_CODE (x) == GET_CODE (y))
|
|
switch (GET_CODE (x))
|
|
{
|
|
case MULT:
|
|
{
|
|
/* Handle cases where we expect the second operands to be the
|
|
same, and check only whether the first operand would conflict
|
|
or not. */
|
|
rtx x0, y0;
|
|
rtx x1 = canon_rtx (XEXP (x, 1));
|
|
rtx y1 = canon_rtx (XEXP (y, 1));
|
|
if (! rtx_equal_for_memref_p (x1, y1))
|
|
return 1;
|
|
x0 = canon_rtx (XEXP (x, 0));
|
|
y0 = canon_rtx (XEXP (y, 0));
|
|
if (rtx_equal_for_memref_p (x0, y0))
|
|
return (xsize == 0 || ysize == 0
|
|
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
|
|
|
|
/* Can't properly adjust our sizes. */
|
|
if (GET_CODE (x1) != CONST_INT)
|
|
return 1;
|
|
xsize /= INTVAL (x1);
|
|
ysize /= INTVAL (x1);
|
|
c /= INTVAL (x1);
|
|
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
|
|
}
|
|
|
|
case REG:
|
|
/* Are these registers known not to be equal? */
|
|
if (alias_invariant)
|
|
{
|
|
unsigned int r_x = REGNO (x), r_y = REGNO (y);
|
|
rtx i_x, i_y; /* invariant relationships of X and Y */
|
|
|
|
i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
|
|
i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
|
|
|
|
if (i_x == 0 && i_y == 0)
|
|
break;
|
|
|
|
if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
|
|
ysize, i_y ? i_y : y, c))
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Treat an access through an AND (e.g. a subword access on an Alpha)
|
|
as an access with indeterminate size. Assume that references
|
|
besides AND are aligned, so if the size of the other reference is
|
|
at least as large as the alignment, assume no other overlap. */
|
|
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
|
|
{
|
|
if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
|
|
xsize = -1;
|
|
return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
|
|
}
|
|
if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
|
|
{
|
|
/* ??? If we are indexing far enough into the array/structure, we
|
|
may yet be able to determine that we can not overlap. But we
|
|
also need to that we are far enough from the end not to overlap
|
|
a following reference, so we do nothing with that for now. */
|
|
if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
|
|
ysize = -1;
|
|
return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
|
|
}
|
|
|
|
if (CONSTANT_P (x))
|
|
{
|
|
if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
|
|
{
|
|
c += (INTVAL (y) - INTVAL (x));
|
|
return (xsize <= 0 || ysize <= 0
|
|
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
|
|
}
|
|
|
|
if (GET_CODE (x) == CONST)
|
|
{
|
|
if (GET_CODE (y) == CONST)
|
|
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
|
|
ysize, canon_rtx (XEXP (y, 0)), c);
|
|
else
|
|
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
|
|
ysize, y, c);
|
|
}
|
|
if (GET_CODE (y) == CONST)
|
|
return memrefs_conflict_p (xsize, x, ysize,
|
|
canon_rtx (XEXP (y, 0)), c);
|
|
|
|
if (CONSTANT_P (y))
|
|
return (xsize < 0 || ysize < 0
|
|
|| (rtx_equal_for_memref_p (x, y)
|
|
&& (xsize == 0 || ysize == 0
|
|
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
|
|
|
|
return 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Functions to compute memory dependencies.
|
|
|
|
Since we process the insns in execution order, we can build tables
|
|
to keep track of what registers are fixed (and not aliased), what registers
|
|
are varying in known ways, and what registers are varying in unknown
|
|
ways.
|
|
|
|
If both memory references are volatile, then there must always be a
|
|
dependence between the two references, since their order can not be
|
|
changed. A volatile and non-volatile reference can be interchanged
|
|
though.
|
|
|
|
A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
|
|
conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
|
|
allow QImode aliasing because the ANSI C standard allows character
|
|
pointers to alias anything. We are assuming that characters are
|
|
always QImode here. We also must allow AND addresses, because they may
|
|
generate accesses outside the object being referenced. This is used to
|
|
generate aligned addresses from unaligned addresses, for instance, the
|
|
alpha storeqi_unaligned pattern. */
|
|
|
|
/* Read dependence: X is read after read in MEM takes place. There can
|
|
only be a dependence here if both reads are volatile. */
|
|
|
|
int
|
|
read_dependence (mem, x)
|
|
rtx mem;
|
|
rtx x;
|
|
{
|
|
return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
|
|
}
|
|
|
|
/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
|
|
MEM2 is a reference to a structure at a varying address, or returns
|
|
MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
|
|
value is returned MEM1 and MEM2 can never alias. VARIES_P is used
|
|
to decide whether or not an address may vary; it should return
|
|
nozero whenever variation is possible. */
|
|
|
|
static rtx
|
|
fixed_scalar_and_varying_struct_p (mem1, mem2, varies_p)
|
|
rtx mem1;
|
|
rtx mem2;
|
|
int (*varies_p) PROTO((rtx));
|
|
{
|
|
rtx mem1_addr = XEXP (mem1, 0);
|
|
rtx mem2_addr = XEXP (mem2, 0);
|
|
|
|
if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
|
|
&& !varies_p (mem1_addr) && varies_p (mem2_addr))
|
|
/* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
|
|
varying address. */
|
|
return mem1;
|
|
|
|
if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
|
|
&& varies_p (mem1_addr) && !varies_p (mem2_addr))
|
|
/* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
|
|
varying address. */
|
|
return mem2;
|
|
|
|
return NULL_RTX;
|
|
}
|
|
|
|
/* Returns nonzero if something about the mode or address format MEM1
|
|
indicates that it might well alias *anything*. */
|
|
|
|
static int
|
|
aliases_everything_p (mem)
|
|
rtx mem;
|
|
{
|
|
if (GET_MODE (mem) == QImode)
|
|
/* ANSI C says that a `char*' can point to anything. */
|
|
return 1;
|
|
|
|
if (GET_CODE (XEXP (mem, 0)) == AND)
|
|
/* If the address is an AND, its very hard to know at what it is
|
|
actually pointing. */
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* True dependence: X is read after store in MEM takes place. */
|
|
|
|
int
|
|
true_dependence (mem, mem_mode, x, varies)
|
|
rtx mem;
|
|
enum machine_mode mem_mode;
|
|
rtx x;
|
|
int (*varies) PROTO((rtx));
|
|
{
|
|
register rtx x_addr, mem_addr;
|
|
|
|
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
|
return 1;
|
|
|
|
if (DIFFERENT_ALIAS_SETS_P (x, mem))
|
|
return 0;
|
|
|
|
/* If X is an unchanging read, then it can't possibly conflict with any
|
|
non-unchanging store. It may conflict with an unchanging write though,
|
|
because there may be a single store to this address to initialize it.
|
|
Just fall through to the code below to resolve the case where we have
|
|
both an unchanging read and an unchanging write. This won't handle all
|
|
cases optimally, but the possible performance loss should be
|
|
negligible. */
|
|
if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
|
|
return 0;
|
|
|
|
if (mem_mode == VOIDmode)
|
|
mem_mode = GET_MODE (mem);
|
|
|
|
if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x), mem_mode))
|
|
return 0;
|
|
|
|
x_addr = canon_rtx (XEXP (x, 0));
|
|
mem_addr = canon_rtx (XEXP (mem, 0));
|
|
|
|
if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
|
|
SIZE_FOR_MODE (x), x_addr, 0))
|
|
return 0;
|
|
|
|
if (aliases_everything_p (x))
|
|
return 1;
|
|
|
|
/* We cannot use aliases_everyting_p to test MEM, since we must look
|
|
at MEM_MODE, rather than GET_MODE (MEM). */
|
|
if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
|
|
return 1;
|
|
|
|
/* In true_dependence we also allow BLKmode to alias anything. Why
|
|
don't we do this in anti_dependence and output_dependence? */
|
|
if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
|
|
return 1;
|
|
|
|
return !fixed_scalar_and_varying_struct_p (mem, x, varies);
|
|
}
|
|
|
|
/* Returns non-zero if a write to X might alias a previous read from
|
|
(or, if WRITEP is non-zero, a write to) MEM. */
|
|
|
|
static int
|
|
write_dependence_p (mem, x, writep)
|
|
rtx mem;
|
|
rtx x;
|
|
int writep;
|
|
{
|
|
rtx x_addr, mem_addr;
|
|
rtx fixed_scalar;
|
|
|
|
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|
|
return 1;
|
|
|
|
/* If MEM is an unchanging read, then it can't possibly conflict with
|
|
the store to X, because there is at most one store to MEM, and it must
|
|
have occurred somewhere before MEM. */
|
|
if (!writep && RTX_UNCHANGING_P (mem))
|
|
return 0;
|
|
|
|
if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x),
|
|
GET_MODE (mem)))
|
|
return 0;
|
|
|
|
x = canon_rtx (x);
|
|
mem = canon_rtx (mem);
|
|
|
|
if (DIFFERENT_ALIAS_SETS_P (x, mem))
|
|
return 0;
|
|
|
|
x_addr = XEXP (x, 0);
|
|
mem_addr = XEXP (mem, 0);
|
|
|
|
if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
|
|
SIZE_FOR_MODE (x), x_addr, 0))
|
|
return 0;
|
|
|
|
fixed_scalar
|
|
= fixed_scalar_and_varying_struct_p (mem, x, rtx_addr_varies_p);
|
|
|
|
return (!(fixed_scalar == mem && !aliases_everything_p (x))
|
|
&& !(fixed_scalar == x && !aliases_everything_p (mem)));
|
|
}
|
|
|
|
/* Anti dependence: X is written after read in MEM takes place. */
|
|
|
|
int
|
|
anti_dependence (mem, x)
|
|
rtx mem;
|
|
rtx x;
|
|
{
|
|
return write_dependence_p (mem, x, /*writep=*/0);
|
|
}
|
|
|
|
/* Output dependence: X is written after store in MEM takes place. */
|
|
|
|
int
|
|
output_dependence (mem, x)
|
|
register rtx mem;
|
|
register rtx x;
|
|
{
|
|
return write_dependence_p (mem, x, /*writep=*/1);
|
|
}
|
|
|
|
|
|
static HARD_REG_SET argument_registers;
|
|
|
|
void
|
|
init_alias_once ()
|
|
{
|
|
register int i;
|
|
|
|
#ifndef OUTGOING_REGNO
|
|
#define OUTGOING_REGNO(N) N
|
|
#endif
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
/* Check whether this register can hold an incoming pointer
|
|
argument. FUNCTION_ARG_REGNO_P tests outgoing register
|
|
numbers, so translate if necessary due to register windows. */
|
|
if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
|
|
&& HARD_REGNO_MODE_OK (i, Pmode))
|
|
SET_HARD_REG_BIT (argument_registers, i);
|
|
|
|
alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
|
|
}
|
|
|
|
void
|
|
init_alias_analysis ()
|
|
{
|
|
int maxreg = max_reg_num ();
|
|
int changed, pass;
|
|
register int i;
|
|
register unsigned int ui;
|
|
register rtx insn;
|
|
|
|
reg_known_value_size = maxreg;
|
|
|
|
reg_known_value
|
|
= (rtx *) oballoc ((maxreg - FIRST_PSEUDO_REGISTER) * sizeof (rtx))
|
|
- FIRST_PSEUDO_REGISTER;
|
|
reg_known_equiv_p =
|
|
oballoc (maxreg - FIRST_PSEUDO_REGISTER) - FIRST_PSEUDO_REGISTER;
|
|
bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
|
|
(maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
|
|
bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
|
|
(maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
|
|
|
|
/* Overallocate reg_base_value to allow some growth during loop
|
|
optimization. Loop unrolling can create a large number of
|
|
registers. */
|
|
reg_base_value_size = maxreg * 2;
|
|
reg_base_value = (rtx *)oballoc (reg_base_value_size * sizeof (rtx));
|
|
new_reg_base_value = (rtx *)alloca (reg_base_value_size * sizeof (rtx));
|
|
reg_seen = (char *)alloca (reg_base_value_size);
|
|
bzero ((char *) reg_base_value, reg_base_value_size * sizeof (rtx));
|
|
if (! reload_completed && flag_unroll_loops)
|
|
{
|
|
alias_invariant = (rtx *)xrealloc (alias_invariant,
|
|
reg_base_value_size * sizeof (rtx));
|
|
bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
|
|
}
|
|
|
|
|
|
/* The basic idea is that each pass through this loop will use the
|
|
"constant" information from the previous pass to propagate alias
|
|
information through another level of assignments.
|
|
|
|
This could get expensive if the assignment chains are long. Maybe
|
|
we should throttle the number of iterations, possibly based on
|
|
the optimization level or flag_expensive_optimizations.
|
|
|
|
We could propagate more information in the first pass by making use
|
|
of REG_N_SETS to determine immediately that the alias information
|
|
for a pseudo is "constant".
|
|
|
|
A program with an uninitialized variable can cause an infinite loop
|
|
here. Instead of doing a full dataflow analysis to detect such problems
|
|
we just cap the number of iterations for the loop.
|
|
|
|
The state of the arrays for the set chain in question does not matter
|
|
since the program has undefined behavior. */
|
|
|
|
pass = 0;
|
|
do
|
|
{
|
|
/* Assume nothing will change this iteration of the loop. */
|
|
changed = 0;
|
|
|
|
/* We want to assign the same IDs each iteration of this loop, so
|
|
start counting from zero each iteration of the loop. */
|
|
unique_id = 0;
|
|
|
|
/* We're at the start of the funtion each iteration through the
|
|
loop, so we're copying arguments. */
|
|
copying_arguments = 1;
|
|
|
|
/* Wipe the potential alias information clean for this pass. */
|
|
bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
|
|
|
|
/* Wipe the reg_seen array clean. */
|
|
bzero ((char *) reg_seen, reg_base_value_size);
|
|
|
|
/* Mark all hard registers which may contain an address.
|
|
The stack, frame and argument pointers may contain an address.
|
|
An argument register which can hold a Pmode value may contain
|
|
an address even if it is not in BASE_REGS.
|
|
|
|
The address expression is VOIDmode for an argument and
|
|
Pmode for other registers. */
|
|
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
if (TEST_HARD_REG_BIT (argument_registers, i))
|
|
new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
|
|
gen_rtx_REG (Pmode, i));
|
|
|
|
new_reg_base_value[STACK_POINTER_REGNUM]
|
|
= gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
|
|
new_reg_base_value[ARG_POINTER_REGNUM]
|
|
= gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
|
|
new_reg_base_value[FRAME_POINTER_REGNUM]
|
|
= gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|
new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
|
|
= gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
|
|
#endif
|
|
if (struct_value_incoming_rtx
|
|
&& GET_CODE (struct_value_incoming_rtx) == REG)
|
|
new_reg_base_value[REGNO (struct_value_incoming_rtx)]
|
|
= gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
|
|
|
|
if (static_chain_rtx
|
|
&& GET_CODE (static_chain_rtx) == REG)
|
|
new_reg_base_value[REGNO (static_chain_rtx)]
|
|
= gen_rtx_ADDRESS (Pmode, static_chain_rtx);
|
|
|
|
/* Walk the insns adding values to the new_reg_base_value array. */
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
|
{
|
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|
{
|
|
rtx note, set;
|
|
/* If this insn has a noalias note, process it, Otherwise,
|
|
scan for sets. A simple set will have no side effects
|
|
which could change the base value of any other register. */
|
|
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
|
&& (find_reg_note (insn, REG_NOALIAS, NULL_RTX)))
|
|
record_set (SET_DEST (PATTERN (insn)), NULL_RTX);
|
|
else
|
|
note_stores (PATTERN (insn), record_set);
|
|
|
|
set = single_set (insn);
|
|
|
|
if (set != 0
|
|
&& GET_CODE (SET_DEST (set)) == REG
|
|
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
|
|
&& (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
|
|
&& REG_N_SETS (REGNO (SET_DEST (set))) == 1)
|
|
|| (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
|
|
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST
|
|
&& ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
|
|
{
|
|
int regno = REGNO (SET_DEST (set));
|
|
reg_known_value[regno] = XEXP (note, 0);
|
|
reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
|
|
}
|
|
}
|
|
else if (GET_CODE (insn) == NOTE
|
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
|
|
copying_arguments = 0;
|
|
}
|
|
|
|
/* Now propagate values from new_reg_base_value to reg_base_value. */
|
|
for (ui = 0; ui < reg_base_value_size; ui++)
|
|
{
|
|
if (new_reg_base_value[ui]
|
|
&& new_reg_base_value[ui] != reg_base_value[ui]
|
|
&& ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
|
|
{
|
|
reg_base_value[ui] = new_reg_base_value[ui];
|
|
changed = 1;
|
|
}
|
|
}
|
|
}
|
|
while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
|
|
|
|
/* Fill in the remaining entries. */
|
|
for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
|
|
if (reg_known_value[i] == 0)
|
|
reg_known_value[i] = regno_reg_rtx[i];
|
|
|
|
/* Simplify the reg_base_value array so that no register refers to
|
|
another register, except to special registers indirectly through
|
|
ADDRESS expressions.
|
|
|
|
In theory this loop can take as long as O(registers^2), but unless
|
|
there are very long dependency chains it will run in close to linear
|
|
time.
|
|
|
|
This loop may not be needed any longer now that the main loop does
|
|
a better job at propagating alias information. */
|
|
pass = 0;
|
|
do
|
|
{
|
|
changed = 0;
|
|
pass++;
|
|
for (ui = 0; ui < reg_base_value_size; ui++)
|
|
{
|
|
rtx base = reg_base_value[ui];
|
|
if (base && GET_CODE (base) == REG)
|
|
{
|
|
unsigned int base_regno = REGNO (base);
|
|
if (base_regno == ui) /* register set from itself */
|
|
reg_base_value[ui] = 0;
|
|
else
|
|
reg_base_value[ui] = reg_base_value[base_regno];
|
|
changed = 1;
|
|
}
|
|
}
|
|
}
|
|
while (changed && pass < MAX_ALIAS_LOOP_PASSES);
|
|
|
|
new_reg_base_value = 0;
|
|
reg_seen = 0;
|
|
}
|
|
|
|
void
|
|
end_alias_analysis ()
|
|
{
|
|
reg_known_value = 0;
|
|
reg_base_value = 0;
|
|
reg_base_value_size = 0;
|
|
if (alias_invariant)
|
|
{
|
|
free ((char *)alias_invariant);
|
|
alias_invariant = 0;
|
|
}
|
|
}
|