1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-14 14:55:41 +00:00
freebsd/sys/netpfil/ipfw/ip_dummynet.c
Hiren Panchasara fc5e1956d9 ECN marking implenetation for dummynet.
Changes include both DCTCP and RFC 3168 ECN marking methodology.

DCTCP draft: http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00

Submitted by:	Midori Kato (aoimidori27@gmail.com)
Worked with:	Lars Eggert (lars@netapp.com)
Reviewed by:	luigi, hiren
2014-06-01 07:28:24 +00:00

2315 lines
59 KiB
C

/*-
* Copyright (c) 1998-2002,2010 Luigi Rizzo, Universita` di Pisa
* Portions Copyright (c) 2000 Akamba Corp.
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Configuration and internal object management for dummynet.
*/
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/time.h>
#include <sys/taskqueue.h>
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
#include <netinet/in.h>
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netpfil/ipfw/ip_fw_private.h>
#include <netpfil/ipfw/dn_heap.h>
#include <netpfil/ipfw/ip_dn_private.h>
#include <netpfil/ipfw/dn_sched.h>
/* which objects to copy */
#define DN_C_LINK 0x01
#define DN_C_SCH 0x02
#define DN_C_FLOW 0x04
#define DN_C_FS 0x08
#define DN_C_QUEUE 0x10
/* we use this argument in case of a schk_new */
struct schk_new_arg {
struct dn_alg *fp;
struct dn_sch *sch;
};
/*---- callout hooks. ----*/
static struct callout dn_timeout;
static struct task dn_task;
static struct taskqueue *dn_tq = NULL;
static void
dummynet(void *arg)
{
(void)arg; /* UNUSED */
taskqueue_enqueue_fast(dn_tq, &dn_task);
}
void
dn_reschedule(void)
{
callout_reset_sbt(&dn_timeout, tick_sbt, 0, dummynet, NULL,
C_HARDCLOCK | C_DIRECT_EXEC);
}
/*----- end of callout hooks -----*/
/* Return a scheduler descriptor given the type or name. */
static struct dn_alg *
find_sched_type(int type, char *name)
{
struct dn_alg *d;
SLIST_FOREACH(d, &dn_cfg.schedlist, next) {
if (d->type == type || (name && !strcasecmp(d->name, name)))
return d;
}
return NULL; /* not found */
}
int
ipdn_bound_var(int *v, int dflt, int lo, int hi, const char *msg)
{
int oldv = *v;
const char *op = NULL;
if (dflt < lo)
dflt = lo;
if (dflt > hi)
dflt = hi;
if (oldv < lo) {
*v = dflt;
op = "Bump";
} else if (oldv > hi) {
*v = hi;
op = "Clamp";
} else
return *v;
if (op && msg)
printf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
return *v;
}
/*---- flow_id mask, hash and compare functions ---*/
/*
* The flow_id includes the 5-tuple, the queue/pipe number
* which we store in the extra area in host order,
* and for ipv6 also the flow_id6.
* XXX see if we want the tos byte (can store in 'flags')
*/
static struct ipfw_flow_id *
flow_id_mask(struct ipfw_flow_id *mask, struct ipfw_flow_id *id)
{
int is_v6 = IS_IP6_FLOW_ID(id);
id->dst_port &= mask->dst_port;
id->src_port &= mask->src_port;
id->proto &= mask->proto;
id->extra &= mask->extra;
if (is_v6) {
APPLY_MASK(&id->dst_ip6, &mask->dst_ip6);
APPLY_MASK(&id->src_ip6, &mask->src_ip6);
id->flow_id6 &= mask->flow_id6;
} else {
id->dst_ip &= mask->dst_ip;
id->src_ip &= mask->src_ip;
}
return id;
}
/* computes an OR of two masks, result in dst and also returned */
static struct ipfw_flow_id *
flow_id_or(struct ipfw_flow_id *src, struct ipfw_flow_id *dst)
{
int is_v6 = IS_IP6_FLOW_ID(dst);
dst->dst_port |= src->dst_port;
dst->src_port |= src->src_port;
dst->proto |= src->proto;
dst->extra |= src->extra;
if (is_v6) {
#define OR_MASK(_d, _s) \
(_d)->__u6_addr.__u6_addr32[0] |= (_s)->__u6_addr.__u6_addr32[0]; \
(_d)->__u6_addr.__u6_addr32[1] |= (_s)->__u6_addr.__u6_addr32[1]; \
(_d)->__u6_addr.__u6_addr32[2] |= (_s)->__u6_addr.__u6_addr32[2]; \
(_d)->__u6_addr.__u6_addr32[3] |= (_s)->__u6_addr.__u6_addr32[3];
OR_MASK(&dst->dst_ip6, &src->dst_ip6);
OR_MASK(&dst->src_ip6, &src->src_ip6);
#undef OR_MASK
dst->flow_id6 |= src->flow_id6;
} else {
dst->dst_ip |= src->dst_ip;
dst->src_ip |= src->src_ip;
}
return dst;
}
static int
nonzero_mask(struct ipfw_flow_id *m)
{
if (m->dst_port || m->src_port || m->proto || m->extra)
return 1;
if (IS_IP6_FLOW_ID(m)) {
return
m->dst_ip6.__u6_addr.__u6_addr32[0] ||
m->dst_ip6.__u6_addr.__u6_addr32[1] ||
m->dst_ip6.__u6_addr.__u6_addr32[2] ||
m->dst_ip6.__u6_addr.__u6_addr32[3] ||
m->src_ip6.__u6_addr.__u6_addr32[0] ||
m->src_ip6.__u6_addr.__u6_addr32[1] ||
m->src_ip6.__u6_addr.__u6_addr32[2] ||
m->src_ip6.__u6_addr.__u6_addr32[3] ||
m->flow_id6;
} else {
return m->dst_ip || m->src_ip;
}
}
/* XXX we may want a better hash function */
static uint32_t
flow_id_hash(struct ipfw_flow_id *id)
{
uint32_t i;
if (IS_IP6_FLOW_ID(id)) {
uint32_t *d = (uint32_t *)&id->dst_ip6;
uint32_t *s = (uint32_t *)&id->src_ip6;
i = (d[0] ) ^ (d[1]) ^
(d[2] ) ^ (d[3]) ^
(d[0] >> 15) ^ (d[1] >> 15) ^
(d[2] >> 15) ^ (d[3] >> 15) ^
(s[0] << 1) ^ (s[1] << 1) ^
(s[2] << 1) ^ (s[3] << 1) ^
(s[0] << 16) ^ (s[1] << 16) ^
(s[2] << 16) ^ (s[3] << 16) ^
(id->dst_port << 1) ^ (id->src_port) ^
(id->extra) ^
(id->proto ) ^ (id->flow_id6);
} else {
i = (id->dst_ip) ^ (id->dst_ip >> 15) ^
(id->src_ip << 1) ^ (id->src_ip >> 16) ^
(id->extra) ^
(id->dst_port << 1) ^ (id->src_port) ^ (id->proto);
}
return i;
}
/* Like bcmp, returns 0 if ids match, 1 otherwise. */
static int
flow_id_cmp(struct ipfw_flow_id *id1, struct ipfw_flow_id *id2)
{
int is_v6 = IS_IP6_FLOW_ID(id1);
if (!is_v6) {
if (IS_IP6_FLOW_ID(id2))
return 1; /* different address families */
return (id1->dst_ip == id2->dst_ip &&
id1->src_ip == id2->src_ip &&
id1->dst_port == id2->dst_port &&
id1->src_port == id2->src_port &&
id1->proto == id2->proto &&
id1->extra == id2->extra) ? 0 : 1;
}
/* the ipv6 case */
return (
!bcmp(&id1->dst_ip6,&id2->dst_ip6, sizeof(id1->dst_ip6)) &&
!bcmp(&id1->src_ip6,&id2->src_ip6, sizeof(id1->src_ip6)) &&
id1->dst_port == id2->dst_port &&
id1->src_port == id2->src_port &&
id1->proto == id2->proto &&
id1->extra == id2->extra &&
id1->flow_id6 == id2->flow_id6) ? 0 : 1;
}
/*--------- end of flow-id mask, hash and compare ---------*/
/*--- support functions for the qht hashtable ----
* Entries are hashed by flow-id
*/
static uint32_t
q_hash(uintptr_t key, int flags, void *arg)
{
/* compute the hash slot from the flow id */
struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_queue *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_hash(id);
}
static int
q_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_queue *o = (struct dn_queue *)obj;
struct ipfw_flow_id *id2;
if (flags & DNHT_KEY_IS_OBJ) {
/* compare pointers */
id2 = &((struct dn_queue *)key)->ni.fid;
} else {
id2 = (struct ipfw_flow_id *)key;
}
return (0 == flow_id_cmp(&o->ni.fid, id2));
}
/*
* create a new queue instance for the given 'key'.
*/
static void *
q_new(uintptr_t key, int flags, void *arg)
{
struct dn_queue *q, *template = arg;
struct dn_fsk *fs = template->fs;
int size = sizeof(*q) + fs->sched->fp->q_datalen;
q = malloc(size, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (q == NULL) {
D("no memory for new queue");
return NULL;
}
set_oid(&q->ni.oid, DN_QUEUE, size);
if (fs->fs.flags & DN_QHT_HASH)
q->ni.fid = *(struct ipfw_flow_id *)key;
q->fs = fs;
q->_si = template->_si;
q->_si->q_count++;
if (fs->sched->fp->new_queue)
fs->sched->fp->new_queue(q);
dn_cfg.queue_count++;
return q;
}
/*
* Notify schedulers that a queue is going away.
* If (flags & DN_DESTROY), also free the packets.
* The version for callbacks is called q_delete_cb().
*/
static void
dn_delete_queue(struct dn_queue *q, int flags)
{
struct dn_fsk *fs = q->fs;
// D("fs %p si %p\n", fs, q->_si);
/* notify the parent scheduler that the queue is going away */
if (fs && fs->sched->fp->free_queue)
fs->sched->fp->free_queue(q);
q->_si->q_count--;
q->_si = NULL;
if (flags & DN_DESTROY) {
if (q->mq.head)
dn_free_pkts(q->mq.head);
bzero(q, sizeof(*q)); // safety
free(q, M_DUMMYNET);
dn_cfg.queue_count--;
}
}
static int
q_delete_cb(void *q, void *arg)
{
int flags = (int)(uintptr_t)arg;
dn_delete_queue(q, flags);
return (flags & DN_DESTROY) ? DNHT_SCAN_DEL : 0;
}
/*
* calls dn_delete_queue/q_delete_cb on all queues,
* which notifies the parent scheduler and possibly drains packets.
* flags & DN_DESTROY: drains queues and destroy qht;
*/
static void
qht_delete(struct dn_fsk *fs, int flags)
{
ND("fs %d start flags %d qht %p",
fs->fs.fs_nr, flags, fs->qht);
if (!fs->qht)
return;
if (fs->fs.flags & DN_QHT_HASH) {
dn_ht_scan(fs->qht, q_delete_cb, (void *)(uintptr_t)flags);
if (flags & DN_DESTROY) {
dn_ht_free(fs->qht, 0);
fs->qht = NULL;
}
} else {
dn_delete_queue((struct dn_queue *)(fs->qht), flags);
if (flags & DN_DESTROY)
fs->qht = NULL;
}
}
/*
* Find and possibly create the queue for a MULTIQUEUE scheduler.
* We never call it for !MULTIQUEUE (the queue is in the sch_inst).
*/
struct dn_queue *
ipdn_q_find(struct dn_fsk *fs, struct dn_sch_inst *si,
struct ipfw_flow_id *id)
{
struct dn_queue template;
template._si = si;
template.fs = fs;
if (fs->fs.flags & DN_QHT_HASH) {
struct ipfw_flow_id masked_id;
if (fs->qht == NULL) {
fs->qht = dn_ht_init(NULL, fs->fs.buckets,
offsetof(struct dn_queue, q_next),
q_hash, q_match, q_new);
if (fs->qht == NULL)
return NULL;
}
masked_id = *id;
flow_id_mask(&fs->fsk_mask, &masked_id);
return dn_ht_find(fs->qht, (uintptr_t)&masked_id,
DNHT_INSERT, &template);
} else {
if (fs->qht == NULL)
fs->qht = q_new(0, 0, &template);
return (struct dn_queue *)fs->qht;
}
}
/*--- end of queue hash table ---*/
/*--- support functions for the sch_inst hashtable ----
*
* These are hashed by flow-id
*/
static uint32_t
si_hash(uintptr_t key, int flags, void *arg)
{
/* compute the hash slot from the flow id */
struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_sch_inst *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_hash(id);
}
static int
si_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_sch_inst *o = obj;
struct ipfw_flow_id *id2;
id2 = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_sch_inst *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_cmp(&o->ni.fid, id2) == 0;
}
/*
* create a new instance for the given 'key'
* Allocate memory for instance, delay line and scheduler private data.
*/
static void *
si_new(uintptr_t key, int flags, void *arg)
{
struct dn_schk *s = arg;
struct dn_sch_inst *si;
int l = sizeof(*si) + s->fp->si_datalen;
si = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (si == NULL)
goto error;
/* Set length only for the part passed up to userland. */
set_oid(&si->ni.oid, DN_SCH_I, sizeof(struct dn_flow));
set_oid(&(si->dline.oid), DN_DELAY_LINE,
sizeof(struct delay_line));
/* mark si and dline as outside the event queue */
si->ni.oid.id = si->dline.oid.id = -1;
si->sched = s;
si->dline.si = si;
if (s->fp->new_sched && s->fp->new_sched(si)) {
D("new_sched error");
goto error;
}
if (s->sch.flags & DN_HAVE_MASK)
si->ni.fid = *(struct ipfw_flow_id *)key;
dn_cfg.si_count++;
return si;
error:
if (si) {
bzero(si, sizeof(*si)); // safety
free(si, M_DUMMYNET);
}
return NULL;
}
/*
* Callback from siht to delete all scheduler instances. Remove
* si and delay line from the system heap, destroy all queues.
* We assume that all flowset have been notified and do not
* point to us anymore.
*/
static int
si_destroy(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
struct dn_schk *s = si->sched;
struct delay_line *dl = &si->dline;
if (dl->oid.subtype) /* remove delay line from event heap */
heap_extract(&dn_cfg.evheap, dl);
dn_free_pkts(dl->mq.head); /* drain delay line */
if (si->kflags & DN_ACTIVE) /* remove si from event heap */
heap_extract(&dn_cfg.evheap, si);
if (s->fp->free_sched)
s->fp->free_sched(si);
bzero(si, sizeof(*si)); /* safety */
free(si, M_DUMMYNET);
dn_cfg.si_count--;
return DNHT_SCAN_DEL;
}
/*
* Find the scheduler instance for this packet. If we need to apply
* a mask, do on a local copy of the flow_id to preserve the original.
* Assume siht is always initialized if we have a mask.
*/
struct dn_sch_inst *
ipdn_si_find(struct dn_schk *s, struct ipfw_flow_id *id)
{
if (s->sch.flags & DN_HAVE_MASK) {
struct ipfw_flow_id id_t = *id;
flow_id_mask(&s->sch.sched_mask, &id_t);
return dn_ht_find(s->siht, (uintptr_t)&id_t,
DNHT_INSERT, s);
}
if (!s->siht)
s->siht = si_new(0, 0, s);
return (struct dn_sch_inst *)s->siht;
}
/* callback to flush credit for the scheduler instance */
static int
si_reset_credit(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
struct dn_link *p = &si->sched->link;
si->credit = p->burst + (dn_cfg.io_fast ? p->bandwidth : 0);
return 0;
}
static void
schk_reset_credit(struct dn_schk *s)
{
if (s->sch.flags & DN_HAVE_MASK)
dn_ht_scan(s->siht, si_reset_credit, NULL);
else if (s->siht)
si_reset_credit(s->siht, NULL);
}
/*---- end of sch_inst hashtable ---------------------*/
/*-------------------------------------------------------
* flowset hash (fshash) support. Entries are hashed by fs_nr.
* New allocations are put in the fsunlinked list, from which
* they are removed when they point to a specific scheduler.
*/
static uint32_t
fsk_hash(uintptr_t key, int flags, void *arg)
{
uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_fsk *)key)->fs.fs_nr;
return ( (i>>8)^(i>>4)^i );
}
static int
fsk_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_fsk *fs = obj;
int i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_fsk *)key)->fs.fs_nr;
return (fs->fs.fs_nr == i);
}
static void *
fsk_new(uintptr_t key, int flags, void *arg)
{
struct dn_fsk *fs;
fs = malloc(sizeof(*fs), M_DUMMYNET, M_NOWAIT | M_ZERO);
if (fs) {
set_oid(&fs->fs.oid, DN_FS, sizeof(fs->fs));
dn_cfg.fsk_count++;
fs->drain_bucket = 0;
SLIST_INSERT_HEAD(&dn_cfg.fsu, fs, sch_chain);
}
return fs;
}
/*
* detach flowset from its current scheduler. Flags as follows:
* DN_DETACH removes from the fsk_list
* DN_DESTROY deletes individual queues
* DN_DELETE_FS destroys the flowset (otherwise goes in unlinked).
*/
static void
fsk_detach(struct dn_fsk *fs, int flags)
{
if (flags & DN_DELETE_FS)
flags |= DN_DESTROY;
ND("fs %d from sched %d flags %s %s %s",
fs->fs.fs_nr, fs->fs.sched_nr,
(flags & DN_DELETE_FS) ? "DEL_FS":"",
(flags & DN_DESTROY) ? "DEL":"",
(flags & DN_DETACH) ? "DET":"");
if (flags & DN_DETACH) { /* detach from the list */
struct dn_fsk_head *h;
h = fs->sched ? &fs->sched->fsk_list : &dn_cfg.fsu;
SLIST_REMOVE(h, fs, dn_fsk, sch_chain);
}
/* Free the RED parameters, they will be recomputed on
* subsequent attach if needed.
*/
if (fs->w_q_lookup)
free(fs->w_q_lookup, M_DUMMYNET);
fs->w_q_lookup = NULL;
qht_delete(fs, flags);
if (fs->sched && fs->sched->fp->free_fsk)
fs->sched->fp->free_fsk(fs);
fs->sched = NULL;
if (flags & DN_DELETE_FS) {
bzero(fs, sizeof(*fs)); /* safety */
free(fs, M_DUMMYNET);
dn_cfg.fsk_count--;
} else {
SLIST_INSERT_HEAD(&dn_cfg.fsu, fs, sch_chain);
}
}
/*
* Detach or destroy all flowsets in a list.
* flags specifies what to do:
* DN_DESTROY: flush all queues
* DN_DELETE_FS: DN_DESTROY + destroy flowset
* DN_DELETE_FS implies DN_DESTROY
*/
static void
fsk_detach_list(struct dn_fsk_head *h, int flags)
{
struct dn_fsk *fs;
int n = 0; /* only for stats */
ND("head %p flags %x", h, flags);
while ((fs = SLIST_FIRST(h))) {
SLIST_REMOVE_HEAD(h, sch_chain);
n++;
fsk_detach(fs, flags);
}
ND("done %d flowsets", n);
}
/*
* called on 'queue X delete' -- removes the flowset from fshash,
* deletes all queues for the flowset, and removes the flowset.
*/
static int
delete_fs(int i, int locked)
{
struct dn_fsk *fs;
int err = 0;
if (!locked)
DN_BH_WLOCK();
fs = dn_ht_find(dn_cfg.fshash, i, DNHT_REMOVE, NULL);
ND("fs %d found %p", i, fs);
if (fs) {
fsk_detach(fs, DN_DETACH | DN_DELETE_FS);
err = 0;
} else
err = EINVAL;
if (!locked)
DN_BH_WUNLOCK();
return err;
}
/*----- end of flowset hashtable support -------------*/
/*------------------------------------------------------------
* Scheduler hash. When searching by index we pass sched_nr,
* otherwise we pass struct dn_sch * which is the first field in
* struct dn_schk so we can cast between the two. We use this trick
* because in the create phase (but it should be fixed).
*/
static uint32_t
schk_hash(uintptr_t key, int flags, void *_arg)
{
uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_schk *)key)->sch.sched_nr;
return ( (i>>8)^(i>>4)^i );
}
static int
schk_match(void *obj, uintptr_t key, int flags, void *_arg)
{
struct dn_schk *s = (struct dn_schk *)obj;
int i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_schk *)key)->sch.sched_nr;
return (s->sch.sched_nr == i);
}
/*
* Create the entry and intialize with the sched hash if needed.
* Leave s->fp unset so we can tell whether a dn_ht_find() returns
* a new object or a previously existing one.
*/
static void *
schk_new(uintptr_t key, int flags, void *arg)
{
struct schk_new_arg *a = arg;
struct dn_schk *s;
int l = sizeof(*s) +a->fp->schk_datalen;
s = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s == NULL)
return NULL;
set_oid(&s->link.oid, DN_LINK, sizeof(s->link));
s->sch = *a->sch; // copy initial values
s->link.link_nr = s->sch.sched_nr;
SLIST_INIT(&s->fsk_list);
/* initialize the hash table or create the single instance */
s->fp = a->fp; /* si_new needs this */
s->drain_bucket = 0;
if (s->sch.flags & DN_HAVE_MASK) {
s->siht = dn_ht_init(NULL, s->sch.buckets,
offsetof(struct dn_sch_inst, si_next),
si_hash, si_match, si_new);
if (s->siht == NULL) {
free(s, M_DUMMYNET);
return NULL;
}
}
s->fp = NULL; /* mark as a new scheduler */
dn_cfg.schk_count++;
return s;
}
/*
* Callback for sched delete. Notify all attached flowsets to
* detach from the scheduler, destroy the internal flowset, and
* all instances. The scheduler goes away too.
* arg is 0 (only detach flowsets and destroy instances)
* DN_DESTROY (detach & delete queues, delete schk)
* or DN_DELETE_FS (delete queues and flowsets, delete schk)
*/
static int
schk_delete_cb(void *obj, void *arg)
{
struct dn_schk *s = obj;
#if 0
int a = (int)arg;
ND("sched %d arg %s%s",
s->sch.sched_nr,
a&DN_DESTROY ? "DEL ":"",
a&DN_DELETE_FS ? "DEL_FS":"");
#endif
fsk_detach_list(&s->fsk_list, arg ? DN_DESTROY : 0);
/* no more flowset pointing to us now */
if (s->sch.flags & DN_HAVE_MASK) {
dn_ht_scan(s->siht, si_destroy, NULL);
dn_ht_free(s->siht, 0);
} else if (s->siht)
si_destroy(s->siht, NULL);
if (s->profile) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
s->siht = NULL;
if (s->fp->destroy)
s->fp->destroy(s);
bzero(s, sizeof(*s)); // safety
free(obj, M_DUMMYNET);
dn_cfg.schk_count--;
return DNHT_SCAN_DEL;
}
/*
* called on a 'sched X delete' command. Deletes a single scheduler.
* This is done by removing from the schedhash, unlinking all
* flowsets and deleting their traffic.
*/
static int
delete_schk(int i)
{
struct dn_schk *s;
s = dn_ht_find(dn_cfg.schedhash, i, DNHT_REMOVE, NULL);
ND("%d %p", i, s);
if (!s)
return EINVAL;
delete_fs(i + DN_MAX_ID, 1); /* first delete internal fs */
/* then detach flowsets, delete traffic */
schk_delete_cb(s, (void*)(uintptr_t)DN_DESTROY);
return 0;
}
/*--- end of schk hashtable support ---*/
static int
copy_obj(char **start, char *end, void *_o, const char *msg, int i)
{
struct dn_id *o = _o;
int have = end - *start;
if (have < o->len || o->len == 0 || o->type == 0) {
D("(WARN) type %d %s %d have %d need %d",
o->type, msg, i, have, o->len);
return 1;
}
ND("type %d %s %d len %d", o->type, msg, i, o->len);
bcopy(_o, *start, o->len);
if (o->type == DN_LINK) {
/* Adjust burst parameter for link */
struct dn_link *l = (struct dn_link *)*start;
l->burst = div64(l->burst, 8 * hz);
l->delay = l->delay * 1000 / hz;
} else if (o->type == DN_SCH) {
/* Set id->id to the number of instances */
struct dn_schk *s = _o;
struct dn_id *id = (struct dn_id *)(*start);
id->id = (s->sch.flags & DN_HAVE_MASK) ?
dn_ht_entries(s->siht) : (s->siht ? 1 : 0);
}
*start += o->len;
return 0;
}
/* Specific function to copy a queue.
* Copies only the user-visible part of a queue (which is in
* a struct dn_flow), and sets len accordingly.
*/
static int
copy_obj_q(char **start, char *end, void *_o, const char *msg, int i)
{
struct dn_id *o = _o;
int have = end - *start;
int len = sizeof(struct dn_flow); /* see above comment */
if (have < len || o->len == 0 || o->type != DN_QUEUE) {
D("ERROR type %d %s %d have %d need %d",
o->type, msg, i, have, len);
return 1;
}
ND("type %d %s %d len %d", o->type, msg, i, len);
bcopy(_o, *start, len);
((struct dn_id*)(*start))->len = len;
*start += len;
return 0;
}
static int
copy_q_cb(void *obj, void *arg)
{
struct dn_queue *q = obj;
struct copy_args *a = arg;
struct dn_flow *ni = (struct dn_flow *)(*a->start);
if (copy_obj_q(a->start, a->end, &q->ni, "queue", -1))
return DNHT_SCAN_END;
ni->oid.type = DN_FLOW; /* override the DN_QUEUE */
ni->oid.id = si_hash((uintptr_t)&ni->fid, 0, NULL);
return 0;
}
static int
copy_q(struct copy_args *a, struct dn_fsk *fs, int flags)
{
if (!fs->qht)
return 0;
if (fs->fs.flags & DN_QHT_HASH)
dn_ht_scan(fs->qht, copy_q_cb, a);
else
copy_q_cb(fs->qht, a);
return 0;
}
/*
* This routine only copies the initial part of a profile ? XXX
*/
static int
copy_profile(struct copy_args *a, struct dn_profile *p)
{
int have = a->end - *a->start;
/* XXX here we check for max length */
int profile_len = sizeof(struct dn_profile) -
ED_MAX_SAMPLES_NO*sizeof(int);
if (p == NULL)
return 0;
if (have < profile_len) {
D("error have %d need %d", have, profile_len);
return 1;
}
bcopy(p, *a->start, profile_len);
((struct dn_id *)(*a->start))->len = profile_len;
*a->start += profile_len;
return 0;
}
static int
copy_flowset(struct copy_args *a, struct dn_fsk *fs, int flags)
{
struct dn_fs *ufs = (struct dn_fs *)(*a->start);
if (!fs)
return 0;
ND("flowset %d", fs->fs.fs_nr);
if (copy_obj(a->start, a->end, &fs->fs, "flowset", fs->fs.fs_nr))
return DNHT_SCAN_END;
ufs->oid.id = (fs->fs.flags & DN_QHT_HASH) ?
dn_ht_entries(fs->qht) : (fs->qht ? 1 : 0);
if (flags) { /* copy queues */
copy_q(a, fs, 0);
}
return 0;
}
static int
copy_si_cb(void *obj, void *arg)
{
struct dn_sch_inst *si = obj;
struct copy_args *a = arg;
struct dn_flow *ni = (struct dn_flow *)(*a->start);
if (copy_obj(a->start, a->end, &si->ni, "inst",
si->sched->sch.sched_nr))
return DNHT_SCAN_END;
ni->oid.type = DN_FLOW; /* override the DN_SCH_I */
ni->oid.id = si_hash((uintptr_t)si, DNHT_KEY_IS_OBJ, NULL);
return 0;
}
static int
copy_si(struct copy_args *a, struct dn_schk *s, int flags)
{
if (s->sch.flags & DN_HAVE_MASK)
dn_ht_scan(s->siht, copy_si_cb, a);
else if (s->siht)
copy_si_cb(s->siht, a);
return 0;
}
/*
* compute a list of children of a scheduler and copy up
*/
static int
copy_fsk_list(struct copy_args *a, struct dn_schk *s, int flags)
{
struct dn_fsk *fs;
struct dn_id *o;
uint32_t *p;
int n = 0, space = sizeof(*o);
SLIST_FOREACH(fs, &s->fsk_list, sch_chain) {
if (fs->fs.fs_nr < DN_MAX_ID)
n++;
}
space += n * sizeof(uint32_t);
DX(3, "sched %d has %d flowsets", s->sch.sched_nr, n);
if (a->end - *(a->start) < space)
return DNHT_SCAN_END;
o = (struct dn_id *)(*(a->start));
o->len = space;
*a->start += o->len;
o->type = DN_TEXT;
p = (uint32_t *)(o+1);
SLIST_FOREACH(fs, &s->fsk_list, sch_chain)
if (fs->fs.fs_nr < DN_MAX_ID)
*p++ = fs->fs.fs_nr;
return 0;
}
static int
copy_data_helper(void *_o, void *_arg)
{
struct copy_args *a = _arg;
uint32_t *r = a->extra->r; /* start of first range */
uint32_t *lim; /* first invalid pointer */
int n;
lim = (uint32_t *)((char *)(a->extra) + a->extra->o.len);
if (a->type == DN_LINK || a->type == DN_SCH) {
/* pipe|sched show, we receive a dn_schk */
struct dn_schk *s = _o;
n = s->sch.sched_nr;
if (a->type == DN_SCH && n >= DN_MAX_ID)
return 0; /* not a scheduler */
if (a->type == DN_LINK && n <= DN_MAX_ID)
return 0; /* not a pipe */
/* see if the object is within one of our ranges */
for (;r < lim; r += 2) {
if (n < r[0] || n > r[1])
continue;
/* Found a valid entry, copy and we are done */
if (a->flags & DN_C_LINK) {
if (copy_obj(a->start, a->end,
&s->link, "link", n))
return DNHT_SCAN_END;
if (copy_profile(a, s->profile))
return DNHT_SCAN_END;
if (copy_flowset(a, s->fs, 0))
return DNHT_SCAN_END;
}
if (a->flags & DN_C_SCH) {
if (copy_obj(a->start, a->end,
&s->sch, "sched", n))
return DNHT_SCAN_END;
/* list all attached flowsets */
if (copy_fsk_list(a, s, 0))
return DNHT_SCAN_END;
}
if (a->flags & DN_C_FLOW)
copy_si(a, s, 0);
break;
}
} else if (a->type == DN_FS) {
/* queue show, skip internal flowsets */
struct dn_fsk *fs = _o;
n = fs->fs.fs_nr;
if (n >= DN_MAX_ID)
return 0;
/* see if the object is within one of our ranges */
for (;r < lim; r += 2) {
if (n < r[0] || n > r[1])
continue;
if (copy_flowset(a, fs, 0))
return DNHT_SCAN_END;
copy_q(a, fs, 0);
break; /* we are done */
}
}
return 0;
}
static inline struct dn_schk *
locate_scheduler(int i)
{
return dn_ht_find(dn_cfg.schedhash, i, 0, NULL);
}
/*
* red parameters are in fixed point arithmetic.
*/
static int
config_red(struct dn_fsk *fs)
{
int64_t s, idle, weight, w0;
int t, i;
fs->w_q = fs->fs.w_q;
fs->max_p = fs->fs.max_p;
ND("called");
/* Doing stuff that was in userland */
i = fs->sched->link.bandwidth;
s = (i <= 0) ? 0 :
hz * dn_cfg.red_avg_pkt_size * 8 * SCALE(1) / i;
idle = div64((s * 3) , fs->w_q); /* s, fs->w_q scaled; idle not scaled */
fs->lookup_step = div64(idle , dn_cfg.red_lookup_depth);
/* fs->lookup_step not scaled, */
if (!fs->lookup_step)
fs->lookup_step = 1;
w0 = weight = SCALE(1) - fs->w_q; //fs->w_q scaled
for (t = fs->lookup_step; t > 1; --t)
weight = SCALE_MUL(weight, w0);
fs->lookup_weight = (int)(weight); // scaled
/* Now doing stuff that was in kerneland */
fs->min_th = SCALE(fs->fs.min_th);
fs->max_th = SCALE(fs->fs.max_th);
if (fs->fs.max_th == fs->fs.min_th)
fs->c_1 = fs->max_p;
else
fs->c_1 = SCALE((int64_t)(fs->max_p)) / (fs->fs.max_th - fs->fs.min_th);
fs->c_2 = SCALE_MUL(fs->c_1, SCALE(fs->fs.min_th));
if (fs->fs.flags & DN_IS_GENTLE_RED) {
fs->c_3 = (SCALE(1) - fs->max_p) / fs->fs.max_th;
fs->c_4 = SCALE(1) - 2 * fs->max_p;
}
/* If the lookup table already exist, free and create it again. */
if (fs->w_q_lookup) {
free(fs->w_q_lookup, M_DUMMYNET);
fs->w_q_lookup = NULL;
}
if (dn_cfg.red_lookup_depth == 0) {
printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth"
"must be > 0\n");
fs->fs.flags &= ~DN_IS_RED;
fs->fs.flags &= ~DN_IS_GENTLE_RED;
return (EINVAL);
}
fs->lookup_depth = dn_cfg.red_lookup_depth;
fs->w_q_lookup = (u_int *)malloc(fs->lookup_depth * sizeof(int),
M_DUMMYNET, M_NOWAIT);
if (fs->w_q_lookup == NULL) {
printf("dummynet: sorry, cannot allocate red lookup table\n");
fs->fs.flags &= ~DN_IS_RED;
fs->fs.flags &= ~DN_IS_GENTLE_RED;
return(ENOSPC);
}
/* Fill the lookup table with (1 - w_q)^x */
fs->w_q_lookup[0] = SCALE(1) - fs->w_q;
for (i = 1; i < fs->lookup_depth; i++)
fs->w_q_lookup[i] =
SCALE_MUL(fs->w_q_lookup[i - 1], fs->lookup_weight);
if (dn_cfg.red_avg_pkt_size < 1)
dn_cfg.red_avg_pkt_size = 512;
fs->avg_pkt_size = dn_cfg.red_avg_pkt_size;
if (dn_cfg.red_max_pkt_size < 1)
dn_cfg.red_max_pkt_size = 1500;
fs->max_pkt_size = dn_cfg.red_max_pkt_size;
ND("exit");
return 0;
}
/* Scan all flowset attached to this scheduler and update red */
static void
update_red(struct dn_schk *s)
{
struct dn_fsk *fs;
SLIST_FOREACH(fs, &s->fsk_list, sch_chain) {
if (fs && (fs->fs.flags & DN_IS_RED))
config_red(fs);
}
}
/* attach flowset to scheduler s, possibly requeue */
static void
fsk_attach(struct dn_fsk *fs, struct dn_schk *s)
{
ND("remove fs %d from fsunlinked, link to sched %d",
fs->fs.fs_nr, s->sch.sched_nr);
SLIST_REMOVE(&dn_cfg.fsu, fs, dn_fsk, sch_chain);
fs->sched = s;
SLIST_INSERT_HEAD(&s->fsk_list, fs, sch_chain);
if (s->fp->new_fsk)
s->fp->new_fsk(fs);
/* XXX compute fsk_mask */
fs->fsk_mask = fs->fs.flow_mask;
if (fs->sched->sch.flags & DN_HAVE_MASK)
flow_id_or(&fs->sched->sch.sched_mask, &fs->fsk_mask);
if (fs->qht) {
/*
* we must drain qht according to the old
* type, and reinsert according to the new one.
* The requeue is complex -- in general we need to
* reclassify every single packet.
* For the time being, let's hope qht is never set
* when we reach this point.
*/
D("XXX TODO requeue from fs %d to sch %d",
fs->fs.fs_nr, s->sch.sched_nr);
fs->qht = NULL;
}
/* set the new type for qht */
if (nonzero_mask(&fs->fsk_mask))
fs->fs.flags |= DN_QHT_HASH;
else
fs->fs.flags &= ~DN_QHT_HASH;
/* XXX config_red() can fail... */
if (fs->fs.flags & DN_IS_RED)
config_red(fs);
}
/* update all flowsets which may refer to this scheduler */
static void
update_fs(struct dn_schk *s)
{
struct dn_fsk *fs, *tmp;
SLIST_FOREACH_SAFE(fs, &dn_cfg.fsu, sch_chain, tmp) {
if (s->sch.sched_nr != fs->fs.sched_nr) {
D("fs %d for sch %d not %d still unlinked",
fs->fs.fs_nr, fs->fs.sched_nr,
s->sch.sched_nr);
continue;
}
fsk_attach(fs, s);
}
}
/*
* Configuration -- to preserve backward compatibility we use
* the following scheme (N is 65536)
* NUMBER SCHED LINK FLOWSET
* 1 .. N-1 (1)WFQ (2)WFQ (3)queue
* N+1 .. 2N-1 (4)FIFO (5)FIFO (6)FIFO for sched 1..N-1
* 2N+1 .. 3N-1 -- -- (7)FIFO for sched N+1..2N-1
*
* "pipe i config" configures #1, #2 and #3
* "sched i config" configures #1 and possibly #6
* "queue i config" configures #3
* #1 is configured with 'pipe i config' or 'sched i config'
* #2 is configured with 'pipe i config', and created if not
* existing with 'sched i config'
* #3 is configured with 'queue i config'
* #4 is automatically configured after #1, can only be FIFO
* #5 is automatically configured after #2
* #6 is automatically created when #1 is !MULTIQUEUE,
* and can be updated.
* #7 is automatically configured after #2
*/
/*
* configure a link (and its FIFO instance)
*/
static int
config_link(struct dn_link *p, struct dn_id *arg)
{
int i;
if (p->oid.len != sizeof(*p)) {
D("invalid pipe len %d", p->oid.len);
return EINVAL;
}
i = p->link_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/*
* The config program passes parameters as follows:
* bw = bits/second (0 means no limits),
* delay = ms, must be translated into ticks.
* qsize = slots/bytes
* burst ???
*/
p->delay = (p->delay * hz) / 1000;
/* Scale burst size: bytes -> bits * hz */
p->burst *= 8 * hz;
DN_BH_WLOCK();
/* do it twice, base link and FIFO link */
for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) {
struct dn_schk *s = locate_scheduler(i);
if (s == NULL) {
DN_BH_WUNLOCK();
D("sched %d not found", i);
return EINVAL;
}
/* remove profile if exists */
if (s->profile) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
/* copy all parameters */
s->link.oid = p->oid;
s->link.link_nr = i;
s->link.delay = p->delay;
if (s->link.bandwidth != p->bandwidth) {
/* XXX bandwidth changes, need to update red params */
s->link.bandwidth = p->bandwidth;
update_red(s);
}
s->link.burst = p->burst;
schk_reset_credit(s);
}
dn_cfg.id++;
DN_BH_WUNLOCK();
return 0;
}
/*
* configure a flowset. Can be called from inside with locked=1,
*/
static struct dn_fsk *
config_fs(struct dn_fs *nfs, struct dn_id *arg, int locked)
{
int i;
struct dn_fsk *fs;
if (nfs->oid.len != sizeof(*nfs)) {
D("invalid flowset len %d", nfs->oid.len);
return NULL;
}
i = nfs->fs_nr;
if (i <= 0 || i >= 3*DN_MAX_ID)
return NULL;
ND("flowset %d", i);
/* XXX other sanity checks */
if (nfs->flags & DN_QSIZE_BYTES) {
ipdn_bound_var(&nfs->qsize, 16384,
1500, dn_cfg.byte_limit, NULL); // "queue byte size");
} else {
ipdn_bound_var(&nfs->qsize, 50,
1, dn_cfg.slot_limit, NULL); // "queue slot size");
}
if (nfs->flags & DN_HAVE_MASK) {
/* make sure we have some buckets */
ipdn_bound_var((int *)&nfs->buckets, dn_cfg.hash_size,
1, dn_cfg.max_hash_size, "flowset buckets");
} else {
nfs->buckets = 1; /* we only need 1 */
}
if (!locked)
DN_BH_WLOCK();
do { /* exit with break when done */
struct dn_schk *s;
int flags = nfs->sched_nr ? DNHT_INSERT : 0;
int j;
int oldc = dn_cfg.fsk_count;
fs = dn_ht_find(dn_cfg.fshash, i, flags, NULL);
if (fs == NULL) {
D("missing sched for flowset %d", i);
break;
}
/* grab some defaults from the existing one */
if (nfs->sched_nr == 0) /* reuse */
nfs->sched_nr = fs->fs.sched_nr;
for (j = 0; j < sizeof(nfs->par)/sizeof(nfs->par[0]); j++) {
if (nfs->par[j] == -1) /* reuse */
nfs->par[j] = fs->fs.par[j];
}
if (bcmp(&fs->fs, nfs, sizeof(*nfs)) == 0) {
ND("flowset %d unchanged", i);
break; /* no change, nothing to do */
}
if (oldc != dn_cfg.fsk_count) /* new item */
dn_cfg.id++;
s = locate_scheduler(nfs->sched_nr);
/* detach from old scheduler if needed, preserving
* queues if we need to reattach. Then update the
* configuration, and possibly attach to the new sched.
*/
DX(2, "fs %d changed sched %d@%p to %d@%p",
fs->fs.fs_nr,
fs->fs.sched_nr, fs->sched, nfs->sched_nr, s);
if (fs->sched) {
int flags = s ? DN_DETACH : (DN_DETACH | DN_DESTROY);
flags |= DN_DESTROY; /* XXX temporary */
fsk_detach(fs, flags);
}
fs->fs = *nfs; /* copy configuration */
if (s != NULL)
fsk_attach(fs, s);
} while (0);
if (!locked)
DN_BH_WUNLOCK();
return fs;
}
/*
* config/reconfig a scheduler and its FIFO variant.
* For !MULTIQUEUE schedulers, also set up the flowset.
*
* On reconfigurations (detected because s->fp is set),
* detach existing flowsets preserving traffic, preserve link,
* and delete the old scheduler creating a new one.
*/
static int
config_sched(struct dn_sch *_nsch, struct dn_id *arg)
{
struct dn_schk *s;
struct schk_new_arg a; /* argument for schk_new */
int i;
struct dn_link p; /* copy of oldlink */
struct dn_profile *pf = NULL; /* copy of old link profile */
/* Used to preserv mask parameter */
struct ipfw_flow_id new_mask;
int new_buckets = 0;
int new_flags = 0;
int pipe_cmd;
int err = ENOMEM;
a.sch = _nsch;
if (a.sch->oid.len != sizeof(*a.sch)) {
D("bad sched len %d", a.sch->oid.len);
return EINVAL;
}
i = a.sch->sched_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/* make sure we have some buckets */
if (a.sch->flags & DN_HAVE_MASK)
ipdn_bound_var((int *)&a.sch->buckets, dn_cfg.hash_size,
1, dn_cfg.max_hash_size, "sched buckets");
/* XXX other sanity checks */
bzero(&p, sizeof(p));
pipe_cmd = a.sch->flags & DN_PIPE_CMD;
a.sch->flags &= ~DN_PIPE_CMD; //XXX do it even if is not set?
if (pipe_cmd) {
/* Copy mask parameter */
new_mask = a.sch->sched_mask;
new_buckets = a.sch->buckets;
new_flags = a.sch->flags;
}
DN_BH_WLOCK();
again: /* run twice, for wfq and fifo */
/*
* lookup the type. If not supplied, use the previous one
* or default to WF2Q+. Otherwise, return an error.
*/
dn_cfg.id++;
a.fp = find_sched_type(a.sch->oid.subtype, a.sch->name);
if (a.fp != NULL) {
/* found. Lookup or create entry */
s = dn_ht_find(dn_cfg.schedhash, i, DNHT_INSERT, &a);
} else if (a.sch->oid.subtype == 0 && !a.sch->name[0]) {
/* No type. search existing s* or retry with WF2Q+ */
s = dn_ht_find(dn_cfg.schedhash, i, 0, &a);
if (s != NULL) {
a.fp = s->fp;
/* Scheduler exists, skip to FIFO scheduler
* if command was pipe config...
*/
if (pipe_cmd)
goto next;
} else {
/* New scheduler, create a wf2q+ with no mask
* if command was pipe config...
*/
if (pipe_cmd) {
/* clear mask parameter */
bzero(&a.sch->sched_mask, sizeof(new_mask));
a.sch->buckets = 0;
a.sch->flags &= ~DN_HAVE_MASK;
}
a.sch->oid.subtype = DN_SCHED_WF2QP;
goto again;
}
} else {
D("invalid scheduler type %d %s",
a.sch->oid.subtype, a.sch->name);
err = EINVAL;
goto error;
}
/* normalize name and subtype */
a.sch->oid.subtype = a.fp->type;
bzero(a.sch->name, sizeof(a.sch->name));
strlcpy(a.sch->name, a.fp->name, sizeof(a.sch->name));
if (s == NULL) {
D("cannot allocate scheduler %d", i);
goto error;
}
/* restore existing link if any */
if (p.link_nr) {
s->link = p;
if (!pf || pf->link_nr != p.link_nr) { /* no saved value */
s->profile = NULL; /* XXX maybe not needed */
} else {
s->profile = malloc(sizeof(struct dn_profile),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s->profile == NULL) {
D("cannot allocate profile");
goto error; //XXX
}
bcopy(pf, s->profile, sizeof(*pf));
}
}
p.link_nr = 0;
if (s->fp == NULL) {
DX(2, "sched %d new type %s", i, a.fp->name);
} else if (s->fp != a.fp ||
bcmp(a.sch, &s->sch, sizeof(*a.sch)) ) {
/* already existing. */
DX(2, "sched %d type changed from %s to %s",
i, s->fp->name, a.fp->name);
DX(4, " type/sub %d/%d -> %d/%d",
s->sch.oid.type, s->sch.oid.subtype,
a.sch->oid.type, a.sch->oid.subtype);
if (s->link.link_nr == 0)
D("XXX WARNING link 0 for sched %d", i);
p = s->link; /* preserve link */
if (s->profile) {/* preserve profile */
if (!pf)
pf = malloc(sizeof(*pf),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (pf) /* XXX should issue a warning otherwise */
bcopy(s->profile, pf, sizeof(*pf));
}
/* remove from the hash */
dn_ht_find(dn_cfg.schedhash, i, DNHT_REMOVE, NULL);
/* Detach flowsets, preserve queues. */
// schk_delete_cb(s, NULL);
// XXX temporarily, kill queues
schk_delete_cb(s, (void *)DN_DESTROY);
goto again;
} else {
DX(4, "sched %d unchanged type %s", i, a.fp->name);
}
/* complete initialization */
s->sch = *a.sch;
s->fp = a.fp;
s->cfg = arg;
// XXX schk_reset_credit(s);
/* create the internal flowset if needed,
* trying to reuse existing ones if available
*/
if (!(s->fp->flags & DN_MULTIQUEUE) && !s->fs) {
s->fs = dn_ht_find(dn_cfg.fshash, i, 0, NULL);
if (!s->fs) {
struct dn_fs fs;
bzero(&fs, sizeof(fs));
set_oid(&fs.oid, DN_FS, sizeof(fs));
fs.fs_nr = i + DN_MAX_ID;
fs.sched_nr = i;
s->fs = config_fs(&fs, NULL, 1 /* locked */);
}
if (!s->fs) {
schk_delete_cb(s, (void *)DN_DESTROY);
D("error creating internal fs for %d", i);
goto error;
}
}
/* call init function after the flowset is created */
if (s->fp->config)
s->fp->config(s);
update_fs(s);
next:
if (i < DN_MAX_ID) { /* now configure the FIFO instance */
i += DN_MAX_ID;
if (pipe_cmd) {
/* Restore mask parameter for FIFO */
a.sch->sched_mask = new_mask;
a.sch->buckets = new_buckets;
a.sch->flags = new_flags;
} else {
/* sched config shouldn't modify the FIFO scheduler */
if (dn_ht_find(dn_cfg.schedhash, i, 0, &a) != NULL) {
/* FIFO already exist, don't touch it */
err = 0; /* and this is not an error */
goto error;
}
}
a.sch->sched_nr = i;
a.sch->oid.subtype = DN_SCHED_FIFO;
bzero(a.sch->name, sizeof(a.sch->name));
goto again;
}
err = 0;
error:
DN_BH_WUNLOCK();
if (pf)
free(pf, M_DUMMYNET);
return err;
}
/*
* attach a profile to a link
*/
static int
config_profile(struct dn_profile *pf, struct dn_id *arg)
{
struct dn_schk *s;
int i, olen, err = 0;
if (pf->oid.len < sizeof(*pf)) {
D("short profile len %d", pf->oid.len);
return EINVAL;
}
i = pf->link_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/* XXX other sanity checks */
DN_BH_WLOCK();
for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) {
s = locate_scheduler(i);
if (s == NULL) {
err = EINVAL;
break;
}
dn_cfg.id++;
/*
* If we had a profile and the new one does not fit,
* or it is deleted, then we need to free memory.
*/
if (s->profile && (pf->samples_no == 0 ||
s->profile->oid.len < pf->oid.len)) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
if (pf->samples_no == 0)
continue;
/*
* new profile, possibly allocate memory
* and copy data.
*/
if (s->profile == NULL)
s->profile = malloc(pf->oid.len,
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s->profile == NULL) {
D("no memory for profile %d", i);
err = ENOMEM;
break;
}
/* preserve larger length XXX double check */
olen = s->profile->oid.len;
if (olen < pf->oid.len)
olen = pf->oid.len;
bcopy(pf, s->profile, pf->oid.len);
s->profile->oid.len = olen;
}
DN_BH_WUNLOCK();
return err;
}
/*
* Delete all objects:
*/
static void
dummynet_flush(void)
{
/* delete all schedulers and related links/queues/flowsets */
dn_ht_scan(dn_cfg.schedhash, schk_delete_cb,
(void *)(uintptr_t)DN_DELETE_FS);
/* delete all remaining (unlinked) flowsets */
DX(4, "still %d unlinked fs", dn_cfg.fsk_count);
dn_ht_free(dn_cfg.fshash, DNHT_REMOVE);
fsk_detach_list(&dn_cfg.fsu, DN_DELETE_FS);
/* Reinitialize system heap... */
heap_init(&dn_cfg.evheap, 16, offsetof(struct dn_id, id));
}
/*
* Main handler for configuration. We are guaranteed to be called
* with an oid which is at least a dn_id.
* - the first object is the command (config, delete, flush, ...)
* - config_link must be issued after the corresponding config_sched
* - parameters (DN_TXT) for an object must preceed the object
* processed on a config_sched.
*/
int
do_config(void *p, int l)
{
struct dn_id *next, *o;
int err = 0, err2 = 0;
struct dn_id *arg = NULL;
uintptr_t *a;
o = p;
if (o->id != DN_API_VERSION) {
D("invalid api version got %d need %d",
o->id, DN_API_VERSION);
return EINVAL;
}
for (; l >= sizeof(*o); o = next) {
struct dn_id *prev = arg;
if (o->len < sizeof(*o) || l < o->len) {
D("bad len o->len %d len %d", o->len, l);
err = EINVAL;
break;
}
l -= o->len;
next = (struct dn_id *)((char *)o + o->len);
err = 0;
switch (o->type) {
default:
D("cmd %d not implemented", o->type);
break;
#ifdef EMULATE_SYSCTL
/* sysctl emulation.
* if we recognize the command, jump to the correct
* handler and return
*/
case DN_SYSCTL_SET:
err = kesysctl_emu_set(p, l);
return err;
#endif
case DN_CMD_CONFIG: /* simply a header */
break;
case DN_CMD_DELETE:
/* the argument is in the first uintptr_t after o */
a = (uintptr_t *)(o+1);
if (o->len < sizeof(*o) + sizeof(*a)) {
err = EINVAL;
break;
}
switch (o->subtype) {
case DN_LINK:
/* delete base and derived schedulers */
DN_BH_WLOCK();
err = delete_schk(*a);
err2 = delete_schk(*a + DN_MAX_ID);
DN_BH_WUNLOCK();
if (!err)
err = err2;
break;
default:
D("invalid delete type %d",
o->subtype);
err = EINVAL;
break;
case DN_FS:
err = (*a <1 || *a >= DN_MAX_ID) ?
EINVAL : delete_fs(*a, 0) ;
break;
}
break;
case DN_CMD_FLUSH:
DN_BH_WLOCK();
dummynet_flush();
DN_BH_WUNLOCK();
break;
case DN_TEXT: /* store argument the next block */
prev = NULL;
arg = o;
break;
case DN_LINK:
err = config_link((struct dn_link *)o, arg);
break;
case DN_PROFILE:
err = config_profile((struct dn_profile *)o, arg);
break;
case DN_SCH:
err = config_sched((struct dn_sch *)o, arg);
break;
case DN_FS:
err = (NULL==config_fs((struct dn_fs *)o, arg, 0));
break;
}
if (prev)
arg = NULL;
if (err != 0)
break;
}
return err;
}
static int
compute_space(struct dn_id *cmd, struct copy_args *a)
{
int x = 0, need = 0;
int profile_size = sizeof(struct dn_profile) -
ED_MAX_SAMPLES_NO*sizeof(int);
/* NOTE about compute space:
* NP = dn_cfg.schk_count
* NSI = dn_cfg.si_count
* NF = dn_cfg.fsk_count
* NQ = dn_cfg.queue_count
* - ipfw pipe show
* (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler
* link, scheduler template, flowset
* integrated in scheduler and header
* for flowset list
* (NSI)*(dn_flow) all scheduler instance (includes
* the queue instance)
* - ipfw sched show
* (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler
* link, scheduler template, flowset
* integrated in scheduler and header
* for flowset list
* (NSI * dn_flow) all scheduler instances
* (NF * sizeof(uint_32)) space for flowset list linked to scheduler
* (NQ * dn_queue) all queue [XXXfor now not listed]
* - ipfw queue show
* (NF * dn_fs) all flowset
* (NQ * dn_queue) all queues
*/
switch (cmd->subtype) {
default:
return -1;
/* XXX where do LINK and SCH differ ? */
/* 'ipfw sched show' could list all queues associated to
* a scheduler. This feature for now is disabled
*/
case DN_LINK: /* pipe show */
x = DN_C_LINK | DN_C_SCH | DN_C_FLOW;
need += dn_cfg.schk_count *
(sizeof(struct dn_fs) + profile_size) / 2;
need += dn_cfg.fsk_count * sizeof(uint32_t);
break;
case DN_SCH: /* sched show */
need += dn_cfg.schk_count *
(sizeof(struct dn_fs) + profile_size) / 2;
need += dn_cfg.fsk_count * sizeof(uint32_t);
x = DN_C_SCH | DN_C_LINK | DN_C_FLOW;
break;
case DN_FS: /* queue show */
x = DN_C_FS | DN_C_QUEUE;
break;
case DN_GET_COMPAT: /* compatibility mode */
need = dn_compat_calc_size();
break;
}
a->flags = x;
if (x & DN_C_SCH) {
need += dn_cfg.schk_count * sizeof(struct dn_sch) / 2;
/* NOT also, each fs might be attached to a sched */
need += dn_cfg.schk_count * sizeof(struct dn_id) / 2;
}
if (x & DN_C_FS)
need += dn_cfg.fsk_count * sizeof(struct dn_fs);
if (x & DN_C_LINK) {
need += dn_cfg.schk_count * sizeof(struct dn_link) / 2;
}
/*
* When exporting a queue to userland, only pass up the
* struct dn_flow, which is the only visible part.
*/
if (x & DN_C_QUEUE)
need += dn_cfg.queue_count * sizeof(struct dn_flow);
if (x & DN_C_FLOW)
need += dn_cfg.si_count * (sizeof(struct dn_flow));
return need;
}
/*
* If compat != NULL dummynet_get is called in compatibility mode.
* *compat will be the pointer to the buffer to pass to ipfw
*/
int
dummynet_get(struct sockopt *sopt, void **compat)
{
int have, i, need, error;
char *start = NULL, *buf;
size_t sopt_valsize;
struct dn_id *cmd;
struct copy_args a;
struct copy_range r;
int l = sizeof(struct dn_id);
bzero(&a, sizeof(a));
bzero(&r, sizeof(r));
/* save and restore original sopt_valsize around copyin */
sopt_valsize = sopt->sopt_valsize;
cmd = &r.o;
if (!compat) {
/* copy at least an oid, and possibly a full object */
error = sooptcopyin(sopt, cmd, sizeof(r), sizeof(*cmd));
sopt->sopt_valsize = sopt_valsize;
if (error)
goto done;
l = cmd->len;
#ifdef EMULATE_SYSCTL
/* sysctl emulation. */
if (cmd->type == DN_SYSCTL_GET)
return kesysctl_emu_get(sopt);
#endif
if (l > sizeof(r)) {
/* request larger than default, allocate buffer */
cmd = malloc(l, M_DUMMYNET, M_WAITOK);
error = sooptcopyin(sopt, cmd, l, l);
sopt->sopt_valsize = sopt_valsize;
if (error)
goto done;
}
} else { /* compatibility */
error = 0;
cmd->type = DN_CMD_GET;
cmd->len = sizeof(struct dn_id);
cmd->subtype = DN_GET_COMPAT;
// cmd->id = sopt_valsize;
D("compatibility mode");
}
a.extra = (struct copy_range *)cmd;
if (cmd->len == sizeof(*cmd)) { /* no range, create a default */
uint32_t *rp = (uint32_t *)(cmd + 1);
cmd->len += 2* sizeof(uint32_t);
rp[0] = 1;
rp[1] = DN_MAX_ID - 1;
if (cmd->subtype == DN_LINK) {
rp[0] += DN_MAX_ID;
rp[1] += DN_MAX_ID;
}
}
/* Count space (under lock) and allocate (outside lock).
* Exit with lock held if we manage to get enough buffer.
* Try a few times then give up.
*/
for (have = 0, i = 0; i < 10; i++) {
DN_BH_WLOCK();
need = compute_space(cmd, &a);
/* if there is a range, ignore value from compute_space() */
if (l > sizeof(*cmd))
need = sopt_valsize - sizeof(*cmd);
if (need < 0) {
DN_BH_WUNLOCK();
error = EINVAL;
goto done;
}
need += sizeof(*cmd);
cmd->id = need;
if (have >= need)
break;
DN_BH_WUNLOCK();
if (start)
free(start, M_DUMMYNET);
start = NULL;
if (need > sopt_valsize)
break;
have = need;
start = malloc(have, M_DUMMYNET, M_WAITOK | M_ZERO);
}
if (start == NULL) {
if (compat) {
*compat = NULL;
error = 1; // XXX
} else {
error = sooptcopyout(sopt, cmd, sizeof(*cmd));
}
goto done;
}
ND("have %d:%d sched %d, %d:%d links %d, %d:%d flowsets %d, "
"%d:%d si %d, %d:%d queues %d",
dn_cfg.schk_count, sizeof(struct dn_sch), DN_SCH,
dn_cfg.schk_count, sizeof(struct dn_link), DN_LINK,
dn_cfg.fsk_count, sizeof(struct dn_fs), DN_FS,
dn_cfg.si_count, sizeof(struct dn_flow), DN_SCH_I,
dn_cfg.queue_count, sizeof(struct dn_queue), DN_QUEUE);
sopt->sopt_valsize = sopt_valsize;
a.type = cmd->subtype;
if (compat == NULL) {
bcopy(cmd, start, sizeof(*cmd));
((struct dn_id*)(start))->len = sizeof(struct dn_id);
buf = start + sizeof(*cmd);
} else
buf = start;
a.start = &buf;
a.end = start + have;
/* start copying other objects */
if (compat) {
a.type = DN_COMPAT_PIPE;
dn_ht_scan(dn_cfg.schedhash, copy_data_helper_compat, &a);
a.type = DN_COMPAT_QUEUE;
dn_ht_scan(dn_cfg.fshash, copy_data_helper_compat, &a);
} else if (a.type == DN_FS) {
dn_ht_scan(dn_cfg.fshash, copy_data_helper, &a);
} else {
dn_ht_scan(dn_cfg.schedhash, copy_data_helper, &a);
}
DN_BH_WUNLOCK();
if (compat) {
*compat = start;
sopt->sopt_valsize = buf - start;
/* free() is done by ip_dummynet_compat() */
start = NULL; //XXX hack
} else {
error = sooptcopyout(sopt, start, buf - start);
}
done:
if (cmd && cmd != &r.o)
free(cmd, M_DUMMYNET);
if (start)
free(start, M_DUMMYNET);
return error;
}
/* Callback called on scheduler instance to delete it if idle */
static int
drain_scheduler_cb(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
if ((si->kflags & DN_ACTIVE) || si->dline.mq.head != NULL)
return 0;
if (si->sched->fp->flags & DN_MULTIQUEUE) {
if (si->q_count == 0)
return si_destroy(si, NULL);
else
return 0;
} else { /* !DN_MULTIQUEUE */
if ((si+1)->ni.length == 0)
return si_destroy(si, NULL);
else
return 0;
}
return 0; /* unreachable */
}
/* Callback called on scheduler to check if it has instances */
static int
drain_scheduler_sch_cb(void *_s, void *arg)
{
struct dn_schk *s = _s;
if (s->sch.flags & DN_HAVE_MASK) {
dn_ht_scan_bucket(s->siht, &s->drain_bucket,
drain_scheduler_cb, NULL);
s->drain_bucket++;
} else {
if (s->siht) {
if (drain_scheduler_cb(s->siht, NULL) == DNHT_SCAN_DEL)
s->siht = NULL;
}
}
return 0;
}
/* Called every tick, try to delete a 'bucket' of scheduler */
void
dn_drain_scheduler(void)
{
dn_ht_scan_bucket(dn_cfg.schedhash, &dn_cfg.drain_sch,
drain_scheduler_sch_cb, NULL);
dn_cfg.drain_sch++;
}
/* Callback called on queue to delete if it is idle */
static int
drain_queue_cb(void *_q, void *arg)
{
struct dn_queue *q = _q;
if (q->ni.length == 0) {
dn_delete_queue(q, DN_DESTROY);
return DNHT_SCAN_DEL; /* queue is deleted */
}
return 0; /* queue isn't deleted */
}
/* Callback called on flowset used to check if it has queues */
static int
drain_queue_fs_cb(void *_fs, void *arg)
{
struct dn_fsk *fs = _fs;
if (fs->fs.flags & DN_QHT_HASH) {
/* Flowset has a hash table for queues */
dn_ht_scan_bucket(fs->qht, &fs->drain_bucket,
drain_queue_cb, NULL);
fs->drain_bucket++;
} else {
/* No hash table for this flowset, null the pointer
* if the queue is deleted
*/
if (fs->qht) {
if (drain_queue_cb(fs->qht, NULL) == DNHT_SCAN_DEL)
fs->qht = NULL;
}
}
return 0;
}
/* Called every tick, try to delete a 'bucket' of queue */
void
dn_drain_queue(void)
{
/* scan a bucket of flowset */
dn_ht_scan_bucket(dn_cfg.fshash, &dn_cfg.drain_fs,
drain_queue_fs_cb, NULL);
dn_cfg.drain_fs++;
}
/*
* Handler for the various dummynet socket options
*/
static int
ip_dn_ctl(struct sockopt *sopt)
{
void *p = NULL;
int error, l;
error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET);
if (error)
return (error);
/* Disallow sets in really-really secure mode. */
if (sopt->sopt_dir == SOPT_SET) {
error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
if (error)
return (error);
}
switch (sopt->sopt_name) {
default :
D("dummynet: unknown option %d", sopt->sopt_name);
error = EINVAL;
break;
case IP_DUMMYNET_FLUSH:
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL: /* remove a pipe or queue */
case IP_DUMMYNET_GET:
D("dummynet: compat option %d", sopt->sopt_name);
error = ip_dummynet_compat(sopt);
break;
case IP_DUMMYNET3 :
if (sopt->sopt_dir == SOPT_GET) {
error = dummynet_get(sopt, NULL);
break;
}
l = sopt->sopt_valsize;
if (l < sizeof(struct dn_id) || l > 12000) {
D("argument len %d invalid", l);
break;
}
p = malloc(l, M_TEMP, M_WAITOK); // XXX can it fail ?
error = sooptcopyin(sopt, p, l, l);
if (error)
break ;
error = do_config(p, l);
break;
}
if (p != NULL)
free(p, M_TEMP);
return error ;
}
static void
ip_dn_init(void)
{
if (dn_cfg.init_done)
return;
printf("DUMMYNET %p with IPv6 initialized (100409)\n", curvnet);
dn_cfg.init_done = 1;
/* Set defaults here. MSVC does not accept initializers,
* and this is also useful for vimages
*/
/* queue limits */
dn_cfg.slot_limit = 100; /* Foot shooting limit for queues. */
dn_cfg.byte_limit = 1024 * 1024;
dn_cfg.expire = 1;
/* RED parameters */
dn_cfg.red_lookup_depth = 256; /* default lookup table depth */
dn_cfg.red_avg_pkt_size = 512; /* default medium packet size */
dn_cfg.red_max_pkt_size = 1500; /* default max packet size */
/* hash tables */
dn_cfg.max_hash_size = 65536; /* max in the hash tables */
dn_cfg.hash_size = 64; /* default hash size */
/* create hash tables for schedulers and flowsets.
* In both we search by key and by pointer.
*/
dn_cfg.schedhash = dn_ht_init(NULL, dn_cfg.hash_size,
offsetof(struct dn_schk, schk_next),
schk_hash, schk_match, schk_new);
dn_cfg.fshash = dn_ht_init(NULL, dn_cfg.hash_size,
offsetof(struct dn_fsk, fsk_next),
fsk_hash, fsk_match, fsk_new);
/* bucket index to drain object */
dn_cfg.drain_fs = 0;
dn_cfg.drain_sch = 0;
heap_init(&dn_cfg.evheap, 16, offsetof(struct dn_id, id));
SLIST_INIT(&dn_cfg.fsu);
SLIST_INIT(&dn_cfg.schedlist);
DN_LOCK_INIT();
TASK_INIT(&dn_task, 0, dummynet_task, curvnet);
dn_tq = taskqueue_create_fast("dummynet", M_WAITOK,
taskqueue_thread_enqueue, &dn_tq);
taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet");
callout_init(&dn_timeout, CALLOUT_MPSAFE);
dn_reschedule();
/* Initialize curr_time adjustment mechanics. */
getmicrouptime(&dn_cfg.prev_t);
}
static void
ip_dn_destroy(int last)
{
callout_drain(&dn_timeout);
DN_BH_WLOCK();
if (last) {
ND("removing last instance\n");
ip_dn_ctl_ptr = NULL;
ip_dn_io_ptr = NULL;
}
dummynet_flush();
DN_BH_WUNLOCK();
taskqueue_drain(dn_tq, &dn_task);
taskqueue_free(dn_tq);
dn_ht_free(dn_cfg.schedhash, 0);
dn_ht_free(dn_cfg.fshash, 0);
heap_free(&dn_cfg.evheap);
DN_LOCK_DESTROY();
}
static int
dummynet_modevent(module_t mod, int type, void *data)
{
if (type == MOD_LOAD) {
if (ip_dn_io_ptr) {
printf("DUMMYNET already loaded\n");
return EEXIST ;
}
ip_dn_init();
ip_dn_ctl_ptr = ip_dn_ctl;
ip_dn_io_ptr = dummynet_io;
return 0;
} else if (type == MOD_UNLOAD) {
ip_dn_destroy(1 /* last */);
return 0;
} else
return EOPNOTSUPP;
}
/* modevent helpers for the modules */
static int
load_dn_sched(struct dn_alg *d)
{
struct dn_alg *s;
if (d == NULL)
return 1; /* error */
ip_dn_init(); /* just in case, we need the lock */
/* Check that mandatory funcs exists */
if (d->enqueue == NULL || d->dequeue == NULL) {
D("missing enqueue or dequeue for %s", d->name);
return 1;
}
/* Search if scheduler already exists */
DN_BH_WLOCK();
SLIST_FOREACH(s, &dn_cfg.schedlist, next) {
if (strcmp(s->name, d->name) == 0) {
D("%s already loaded", d->name);
break; /* scheduler already exists */
}
}
if (s == NULL)
SLIST_INSERT_HEAD(&dn_cfg.schedlist, d, next);
DN_BH_WUNLOCK();
D("dn_sched %s %sloaded", d->name, s ? "not ":"");
return s ? 1 : 0;
}
static int
unload_dn_sched(struct dn_alg *s)
{
struct dn_alg *tmp, *r;
int err = EINVAL;
ND("called for %s", s->name);
DN_BH_WLOCK();
SLIST_FOREACH_SAFE(r, &dn_cfg.schedlist, next, tmp) {
if (strcmp(s->name, r->name) != 0)
continue;
ND("ref_count = %d", r->ref_count);
err = (r->ref_count != 0) ? EBUSY : 0;
if (err == 0)
SLIST_REMOVE(&dn_cfg.schedlist, r, dn_alg, next);
break;
}
DN_BH_WUNLOCK();
D("dn_sched %s %sunloaded", s->name, err ? "not ":"");
return err;
}
int
dn_sched_modevent(module_t mod, int cmd, void *arg)
{
struct dn_alg *sch = arg;
if (cmd == MOD_LOAD)
return load_dn_sched(sch);
else if (cmd == MOD_UNLOAD)
return unload_dn_sched(sch);
else
return EINVAL;
}
static moduledata_t dummynet_mod = {
"dummynet", dummynet_modevent, NULL
};
#define DN_SI_SUB SI_SUB_PROTO_IFATTACHDOMAIN
#define DN_MODEV_ORD (SI_ORDER_ANY - 128) /* after ipfw */
DECLARE_MODULE(dummynet, dummynet_mod, DN_SI_SUB, DN_MODEV_ORD);
MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);
MODULE_VERSION(dummynet, 3);
/*
* Starting up. Done in order after dummynet_modevent() has been called.
* VNET_SYSINIT is also called for each existing vnet and each new vnet.
*/
//VNET_SYSINIT(vnet_dn_init, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_init, NULL);
/*
* Shutdown handlers up shop. These are done in REVERSE ORDER, but still
* after dummynet_modevent() has been called. Not called on reboot.
* VNET_SYSUNINIT is also called for each exiting vnet as it exits.
* or when the module is unloaded.
*/
//VNET_SYSUNINIT(vnet_dn_uninit, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_destroy, NULL);
/* end of file */