1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-04 12:52:15 +00:00
freebsd/sys/contrib/octeon-sdk/cvmx-spi.c
Juli Mallett 85129b4bd4 Use bootverbose to control debug printfs from the Cavium Simple Executive
code.  Also remove an unnecessary CVMX_ENABLE_DEBUG_PRINTS conditional around
what is already a cvmx_dprintf.
2012-11-24 02:12:24 +00:00

671 lines
25 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* Support library for the SPI
*
* <hr>$Revision: 70030 $<hr>
*/
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-config.h>
#include <asm/octeon/cvmx-spxx-defs.h>
#include <asm/octeon/cvmx-stxx-defs.h>
#include <asm/octeon/cvmx-srxx-defs.h>
#include <asm/octeon/cvmx-pko.h>
#include <asm/octeon/cvmx-spi.h>
#include <asm/octeon/cvmx-clock.h>
#else
#include "cvmx.h"
#if !defined(__FreeBSD__) || !defined(_KERNEL)
#include "cvmx-config.h"
#endif
#include "cvmx-sysinfo.h"
#include "cvmx-pko.h"
#include "cvmx-spi.h"
#include "cvmx-clock.h"
#endif
#define INVOKE_CB(function_p, args...) \
do { \
if (function_p) { \
res = function_p(args); \
if (res) \
return res; \
} \
} while (0)
#if CVMX_ENABLE_DEBUG_PRINTS
static const char *modes[] = {"UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex"};
#endif
/* Default callbacks, can be overridden
* using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks
*/
static cvmx_spi_callbacks_t cvmx_spi_callbacks = {
.reset_cb = cvmx_spi_reset_cb,
.calendar_setup_cb = cvmx_spi_calendar_setup_cb,
.clock_detect_cb = cvmx_spi_clock_detect_cb,
.training_cb = cvmx_spi_training_cb,
.calendar_sync_cb = cvmx_spi_calendar_sync_cb,
.interface_up_cb = cvmx_spi_interface_up_cb
};
/**
* Get current SPI4 initialization callbacks
*
* @param callbacks Pointer to the callbacks structure.to fill
*
* @return Pointer to cvmx_spi_callbacks_t structure.
*/
void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t * callbacks)
{
memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks));
}
/**
* Set new SPI4 initialization callbacks
*
* @param new_callbacks Pointer to an updated callbacks structure.
*/
void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t * new_callbacks)
{
memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks));
}
/**
* Initialize and start the SPI interface.
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param timeout Timeout to wait for clock synchronization in seconds
* @param num_ports Number of SPI ports to configure
*
* @return Zero on success, negative of failure.
*/
int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout, int num_ports)
{
int res = -1;
if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
return res;
// Callback to perform SPI4 reset
INVOKE_CB( cvmx_spi_callbacks.reset_cb, interface, mode);
// Callback to perform calendar setup
INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode, num_ports);
// Callback to perform clock detection
INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
// Callback to perform SPI4 link training
INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
// Callback to perform calendar sync
INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout);
// Callback to handle interface coming up
INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
return res;
}
/**
* This routine restarts the SPI interface after it has lost synchronization
* with its correspondent system.
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param timeout Timeout to wait for clock synchronization in seconds
* @return Zero on success, negative of failure.
*/
int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout)
{
int res = -1;
if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
return res;
cvmx_dprintf ("SPI%d: Restart %s\n", interface, modes[mode]);
// Callback to perform SPI4 reset
INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface,mode);
// NOTE: Calendar setup is not performed during restart
// Refer to cvmx_spi_start_interface() for the full sequence
// Callback to perform clock detection
INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
// Callback to perform SPI4 link training
INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
// Callback to perform calendar sync
INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout);
// Callback to handle interface coming up
INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
return res;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_spi_restart_interface);
#endif
/**
* Callback to perform SPI4 reset
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode)
{
cvmx_spxx_dbg_deskew_ctl_t spxx_dbg_deskew_ctl;
cvmx_spxx_clk_ctl_t spxx_clk_ctl;
cvmx_spxx_bist_stat_t spxx_bist_stat;
cvmx_spxx_int_msk_t spxx_int_msk;
cvmx_stxx_int_msk_t stxx_int_msk;
cvmx_spxx_trn4_ctl_t spxx_trn4_ctl;
int index;
uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
/* Disable SPI error events while we run BIST */
spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface));
cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0);
stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface));
cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0);
/* Run BIST in the SPI interface */
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0);
cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0);
spxx_clk_ctl.u64 = 0;
spxx_clk_ctl.s.runbist = 1;
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
cvmx_wait (10 * MS);
spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface));
if (spxx_bist_stat.s.stat0)
cvmx_dprintf("ERROR SPI%d: BIST failed on receive datapath FIFO\n", interface);
if (spxx_bist_stat.s.stat1)
cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n", interface);
if (spxx_bist_stat.s.stat2)
cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n", interface);
/* Clear the calendar table after BIST to fix parity errors */
for (index=0; index<32; index++)
{
cvmx_srxx_spi4_calx_t srxx_spi4_calx;
cvmx_stxx_spi4_calx_t stxx_spi4_calx;
srxx_spi4_calx.u64 = 0;
srxx_spi4_calx.s.oddpar = 1;
cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64);
stxx_spi4_calx.u64 = 0;
stxx_spi4_calx.s.oddpar = 1;
cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64);
}
/* Re enable reporting of error interrupts */
cvmx_write_csr(CVMX_SPXX_INT_REG(interface), cvmx_read_csr(CVMX_SPXX_INT_REG(interface)));
cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64);
cvmx_write_csr(CVMX_STXX_INT_REG(interface), cvmx_read_csr(CVMX_STXX_INT_REG(interface)));
cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64);
// Setup the CLKDLY right in the middle
spxx_clk_ctl.u64 = 0;
spxx_clk_ctl.s.seetrn = 0;
spxx_clk_ctl.s.clkdly = 0x10;
spxx_clk_ctl.s.runbist = 0;
spxx_clk_ctl.s.statdrv = 0;
spxx_clk_ctl.s.statrcv = 1; /* This should always be on the opposite edge as statdrv */
spxx_clk_ctl.s.sndtrn = 0;
spxx_clk_ctl.s.drptrn = 0;
spxx_clk_ctl.s.rcvtrn = 0;
spxx_clk_ctl.s.srxdlck = 0;
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
cvmx_wait (100 * MS);
// Reset SRX0 DLL
spxx_clk_ctl.s.srxdlck = 1;
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
// Waiting for Inf0 Spi4 RX DLL to lock
cvmx_wait (100 * MS);
// Enable dynamic alignment
spxx_trn4_ctl.s.trntest = 0;
spxx_trn4_ctl.s.jitter = 1;
spxx_trn4_ctl.s.clr_boot = 1;
spxx_trn4_ctl.s.set_boot = 0;
if (OCTEON_IS_MODEL(OCTEON_CN58XX))
spxx_trn4_ctl.s.maxdist = 3;
else
spxx_trn4_ctl.s.maxdist = 8;
spxx_trn4_ctl.s.macro_en = 1;
spxx_trn4_ctl.s.mux_en = 1;
cvmx_write_csr (CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
spxx_dbg_deskew_ctl.u64 = 0;
cvmx_write_csr (CVMX_SPXX_DBG_DESKEW_CTL(interface), spxx_dbg_deskew_ctl.u64);
return 0;
}
/**
* Callback to setup calendar and miscellaneous settings before clock detection
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param num_ports Number of ports to configure on SPI
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode, int num_ports)
{
int port;
int index;
if (mode & CVMX_SPI_MODE_RX_HALFPLEX)
{
cvmx_srxx_com_ctl_t srxx_com_ctl;
cvmx_srxx_spi4_stat_t srxx_spi4_stat;
// SRX0 number of Ports
srxx_com_ctl.u64 = 0;
srxx_com_ctl.s.prts = num_ports - 1;
srxx_com_ctl.s.st_en = 0;
srxx_com_ctl.s.inf_en = 0;
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
// SRX0 Calendar Table. This round robbins through all ports
port = 0;
index = 0;
while (port < num_ports)
{
cvmx_srxx_spi4_calx_t srxx_spi4_calx;
srxx_spi4_calx.u64 = 0;
srxx_spi4_calx.s.prt0 = port++;
srxx_spi4_calx.s.prt1 = port++;
srxx_spi4_calx.s.prt2 = port++;
srxx_spi4_calx.s.prt3 = port++;
srxx_spi4_calx.s.oddpar = ~(cvmx_dpop(srxx_spi4_calx.u64) & 1);
cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64);
index++;
}
srxx_spi4_stat.u64 = 0;
srxx_spi4_stat.s.len = num_ports;
srxx_spi4_stat.s.m = 1;
cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface), srxx_spi4_stat.u64);
}
if (mode & CVMX_SPI_MODE_TX_HALFPLEX)
{
cvmx_stxx_arb_ctl_t stxx_arb_ctl;
cvmx_gmxx_tx_spi_max_t gmxx_tx_spi_max;
cvmx_gmxx_tx_spi_thresh_t gmxx_tx_spi_thresh;
cvmx_gmxx_tx_spi_ctl_t gmxx_tx_spi_ctl;
cvmx_stxx_spi4_stat_t stxx_spi4_stat;
cvmx_stxx_spi4_dat_t stxx_spi4_dat;
// STX0 Config
stxx_arb_ctl.u64 = 0;
stxx_arb_ctl.s.igntpa = 0;
stxx_arb_ctl.s.mintrn = 0;
cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64);
gmxx_tx_spi_max.u64 = 0;
gmxx_tx_spi_max.s.max1 = 8;
gmxx_tx_spi_max.s.max2 = 4;
gmxx_tx_spi_max.s.slice = 0;
cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface), gmxx_tx_spi_max.u64);
gmxx_tx_spi_thresh.u64 = 0;
gmxx_tx_spi_thresh.s.thresh = 4;
cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface), gmxx_tx_spi_thresh.u64);
gmxx_tx_spi_ctl.u64 = 0;
gmxx_tx_spi_ctl.s.tpa_clr = 0;
gmxx_tx_spi_ctl.s.cont_pkt = 0;
cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface), gmxx_tx_spi_ctl.u64);
// STX0 Training Control
stxx_spi4_dat.u64 = 0;
stxx_spi4_dat.s.alpha = 32; /*Minimum needed by dynamic alignment*/
stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20*/
cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface), stxx_spi4_dat.u64);
// STX0 Calendar Table. This round robbins through all ports
port = 0;
index = 0;
while (port < num_ports)
{
cvmx_stxx_spi4_calx_t stxx_spi4_calx;
stxx_spi4_calx.u64 = 0;
stxx_spi4_calx.s.prt0 = port++;
stxx_spi4_calx.s.prt1 = port++;
stxx_spi4_calx.s.prt2 = port++;
stxx_spi4_calx.s.prt3 = port++;
stxx_spi4_calx.s.oddpar = ~(cvmx_dpop(stxx_spi4_calx.u64) & 1);
cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64);
index++;
}
stxx_spi4_stat.u64 = 0;
stxx_spi4_stat.s.len = num_ports;
stxx_spi4_stat.s.m = 1;
cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface), stxx_spi4_stat.u64);
}
return 0;
}
/**
* Callback to perform clock detection
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param timeout Timeout to wait for clock synchronization in seconds
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout)
{
int clock_transitions;
cvmx_spxx_clk_stat_t stat;
uint64_t timeout_time;
uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
/* Regardless of operating mode, both Tx and Rx clocks must be present
for the SPI interface to operate. */
cvmx_dprintf ("SPI%d: Waiting to see TsClk...\n", interface);
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
/* Require 100 clock transitions in order to avoid any noise in the
beginning */
clock_transitions = 100;
do
{
stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions)
{
/* We've seen a clock transition, so decrement the number we still
need */
clock_transitions--;
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
stat.s.s4clk0 = 0;
stat.s.s4clk1 = 0;
}
if (cvmx_get_cycle() > timeout_time)
{
cvmx_dprintf ("SPI%d: Timeout\n", interface);
return -1;
}
} while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0);
cvmx_dprintf ("SPI%d: Waiting to see RsClk...\n", interface);
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
/* Require 100 clock transitions in order to avoid any noise in the
beginning */
clock_transitions = 100;
do
{
stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT(interface));
if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions)
{
/* We've seen a clock transition, so decrement the number we still
need */
clock_transitions--;
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
stat.s.d4clk0 = 0;
stat.s.d4clk1 = 0;
}
if (cvmx_get_cycle() > timeout_time)
{
cvmx_dprintf ("SPI%d: Timeout\n", interface);
return -1;
}
} while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0);
return 0;
}
/**
* Callback to perform link training
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param timeout Timeout to wait for link to be trained (in seconds)
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout)
{
cvmx_spxx_trn4_ctl_t spxx_trn4_ctl;
cvmx_spxx_clk_stat_t stat;
uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
int rx_training_needed;
// SRX0 & STX0 Inf0 Links are configured - begin training
cvmx_spxx_clk_ctl_t spxx_clk_ctl;
spxx_clk_ctl.u64 = 0;
spxx_clk_ctl.s.seetrn = 0;
spxx_clk_ctl.s.clkdly = 0x10;
spxx_clk_ctl.s.runbist = 0;
spxx_clk_ctl.s.statdrv = 0;
spxx_clk_ctl.s.statrcv = 1; /* This should always be on the opposite edge as statdrv */
spxx_clk_ctl.s.sndtrn = 1;
spxx_clk_ctl.s.drptrn = 1;
spxx_clk_ctl.s.rcvtrn = 1;
spxx_clk_ctl.s.srxdlck = 1;
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
cvmx_wait (1000 * MS);
// SRX0 clear the boot bit
spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface));
spxx_trn4_ctl.s.clr_boot = 1;
cvmx_write_csr (CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
// Wait for the training sequence to complete
cvmx_dprintf ("SPI%d: Waiting for training\n", interface);
cvmx_wait (1000 * MS);
#if !defined(OCTEON_VENDOR_LANNER)
timeout_time = cvmx_get_cycle() + 1000ull * MS * 600; /* Wait a really long time here */
#else
timeout_time = cvmx_get_cycle() + 1000ull * MS * 10;
#endif
/* The HRM says we must wait for 34 + 16 * MAXDIST training sequences.
We'll be pessimistic and wait for a lot more */
rx_training_needed = 500;
do {
stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT(interface));
if (stat.s.srxtrn && rx_training_needed)
{
rx_training_needed--;
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
stat.s.srxtrn = 0;
}
if (cvmx_get_cycle() > timeout_time)
{
cvmx_dprintf ("SPI%d: Timeout\n", interface);
return -1;
}
} while (stat.s.srxtrn == 0);
return 0;
}
/**
* Callback to perform calendar data synchronization
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @param timeout Timeout to wait for calendar data in seconds
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout)
{
uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
// SRX0 interface should be good, send calendar data
cvmx_srxx_com_ctl_t srxx_com_ctl;
cvmx_dprintf ("SPI%d: Rx is synchronized, start sending calendar data\n", interface);
srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
srxx_com_ctl.s.inf_en = 1;
srxx_com_ctl.s.st_en = 1;
cvmx_write_csr (CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
}
if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
// STX0 has achieved sync
// The corespondant board should be sending calendar data
// Enable the STX0 STAT receiver.
cvmx_spxx_clk_stat_t stat;
uint64_t timeout_time;
cvmx_stxx_com_ctl_t stxx_com_ctl;
stxx_com_ctl.u64 = 0;
stxx_com_ctl.s.st_en = 1;
cvmx_write_csr (CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
// Waiting for calendar sync on STX0 STAT
cvmx_dprintf ("SPI%d: Waiting to sync on STX[%d] STAT\n", interface, interface);
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
// SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10)
do {
stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT (interface));
if (cvmx_get_cycle() > timeout_time)
{
cvmx_dprintf ("SPI%d: Timeout\n", interface);
return -1;
}
} while (stat.s.stxcal == 0);
}
return 0;
}
/**
* Callback to handle interface up
*
* @param interface The identifier of the packet interface to configure and
* use as a SPI interface.
* @param mode The operating mode for the SPI interface. The interface
* can operate as a full duplex (both Tx and Rx data paths
* active) or as a halfplex (either the Tx data path is
* active or the Rx data path is active, but not both).
* @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort)
*/
int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode)
{
cvmx_gmxx_rxx_frm_min_t gmxx_rxx_frm_min;
cvmx_gmxx_rxx_frm_max_t gmxx_rxx_frm_max;
cvmx_gmxx_rxx_jabber_t gmxx_rxx_jabber;
if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
cvmx_srxx_com_ctl_t srxx_com_ctl;
srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
srxx_com_ctl.s.inf_en = 1;
cvmx_write_csr (CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
cvmx_dprintf ("SPI%d: Rx is now up\n", interface);
}
if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
cvmx_stxx_com_ctl_t stxx_com_ctl;
stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface));
stxx_com_ctl.s.inf_en = 1;
cvmx_write_csr (CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
cvmx_dprintf ("SPI%d: Tx is now up\n", interface);
}
gmxx_rxx_frm_min.u64 = 0;
gmxx_rxx_frm_min.s.len = 64;
#ifdef OCTEON_VENDOR_RADISYS
/*
* Incoming packets on the RSYS4GBE have the FCS stripped.
*/
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_CUST_RADISYS_RSYS4GBE)
gmxx_rxx_frm_min.s.len -= 4;
#endif
cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0,interface), gmxx_rxx_frm_min.u64);
gmxx_rxx_frm_max.u64 = 0;
gmxx_rxx_frm_max.s.len = 64*1024 - 4;
cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0,interface), gmxx_rxx_frm_max.u64);
gmxx_rxx_jabber.u64 = 0;
gmxx_rxx_jabber.s.cnt = 64*1024 - 4;
cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0,interface), gmxx_rxx_jabber.u64);
return 0;
}