1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-25 16:13:17 +00:00
freebsd/sys/vm/vm_phys.c
Alan Cox fbd80bd047 Refactor the code that performs physically contiguous memory allocation,
yielding a new public interface, vm_page_alloc_contig().  This new function
addresses some of the limitations of the current interfaces, contigmalloc()
and kmem_alloc_contig().  For example, the physically contiguous memory that
is allocated with those interfaces can only be allocated to the kernel vm
object and must be mapped into the kernel virtual address space.  It also
provides functionality that vm_phys_alloc_contig() doesn't, such as wiring
the returned pages.  Moreover, unlike that function, it respects the low
water marks on the paging queues and wakes up the page daemon when
necessary.  That said, at present, this new function can't be applied to all
types of vm objects.  However, that restriction will be eliminated in the
coming weeks.

From a design standpoint, this change also addresses an inconsistency
between vm_phys_alloc_contig() and the other vm_phys_alloc*() functions.
Specifically, vm_phys_alloc_contig() manipulated vm_page fields that other
functions in vm/vm_phys.c didn't.  Moreover, vm_phys_alloc_contig() knew
about vnodes and reservations.  Now, vm_page_alloc_contig() is responsible
for these things.

Reviewed by:	kib
Discussed with:	jhb
2011-11-16 16:46:09 +00:00

891 lines
24 KiB
C

/*-
* Copyright (c) 2002-2006 Rice University
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Alan L. Cox,
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Physical memory system implementation
*
* Any external functions defined by this module are only to be used by the
* virtual memory system.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <ddb/ddb.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
/*
* VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
* domain. These extra lists are stored at the end of the regular
* free lists starting with VM_NFREELIST.
*/
#define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1)
struct vm_freelist {
struct pglist pl;
int lcnt;
};
struct vm_phys_seg {
vm_paddr_t start;
vm_paddr_t end;
vm_page_t first_page;
int domain;
struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
};
struct mem_affinity *mem_affinity;
static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
static int vm_phys_nsegs;
static struct vm_freelist
vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
static struct vm_freelist
(*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
static int cnt_prezero;
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
&cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
#if VM_NDOMAIN > 1
static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
#endif
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
int domain);
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
int order);
/*
* Outputs the state of the physical memory allocator, specifically,
* the amount of physical memory in each free list.
*/
static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
struct vm_freelist *fl;
int error, flind, oind, pind;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
for (flind = 0; flind < vm_nfreelists; flind++) {
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
"\n ORDER (SIZE) | NUMBER"
"\n ", flind);
for (pind = 0; pind < VM_NFREEPOOL; pind++)
sbuf_printf(&sbuf, " | POOL %d", pind);
sbuf_printf(&sbuf, "\n-- ");
for (pind = 0; pind < VM_NFREEPOOL; pind++)
sbuf_printf(&sbuf, "-- -- ");
sbuf_printf(&sbuf, "--\n");
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
sbuf_printf(&sbuf, " %2d (%6dK)", oind,
1 << (PAGE_SHIFT - 10 + oind));
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt);
}
sbuf_printf(&sbuf, "\n");
}
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
/*
* Outputs the set of physical memory segments.
*/
static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
struct vm_phys_seg *seg;
int error, segind;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
for (segind = 0; segind < vm_phys_nsegs; segind++) {
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
seg = &vm_phys_segs[segind];
sbuf_printf(&sbuf, "start: %#jx\n",
(uintmax_t)seg->start);
sbuf_printf(&sbuf, "end: %#jx\n",
(uintmax_t)seg->end);
sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
#if VM_NDOMAIN > 1
/*
* Outputs the set of free list lookup lists.
*/
static int
sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
int domain, error, flind, ndomains;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
ndomains = vm_nfreelists - VM_NFREELIST + 1;
for (domain = 0; domain < ndomains; domain++) {
sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
for (flind = 0; flind < vm_nfreelists; flind++)
sbuf_printf(&sbuf, " [%d]:\t%p\n", flind,
vm_phys_lookup_lists[domain][flind]);
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
#endif
/*
* Create a physical memory segment.
*/
static void
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
{
struct vm_phys_seg *seg;
#ifdef VM_PHYSSEG_SPARSE
long pages;
int segind;
pages = 0;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
pages += atop(seg->end - seg->start);
}
#endif
KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
seg = &vm_phys_segs[vm_phys_nsegs++];
seg->start = start;
seg->end = end;
seg->domain = domain;
#ifdef VM_PHYSSEG_SPARSE
seg->first_page = &vm_page_array[pages];
#else
seg->first_page = PHYS_TO_VM_PAGE(start);
#endif
#if VM_NDOMAIN > 1
if (flind == VM_FREELIST_DEFAULT && domain != 0) {
flind = VM_NFREELIST + (domain - 1);
if (flind >= vm_nfreelists)
vm_nfreelists = flind + 1;
}
#endif
seg->free_queues = &vm_phys_free_queues[flind];
}
static void
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
{
int i;
if (mem_affinity == NULL) {
_vm_phys_create_seg(start, end, flind, 0);
return;
}
for (i = 0;; i++) {
if (mem_affinity[i].end == 0)
panic("Reached end of affinity info");
if (mem_affinity[i].end <= start)
continue;
if (mem_affinity[i].start > start)
panic("No affinity info for start %jx",
(uintmax_t)start);
if (mem_affinity[i].end >= end) {
_vm_phys_create_seg(start, end, flind,
mem_affinity[i].domain);
break;
}
_vm_phys_create_seg(start, mem_affinity[i].end, flind,
mem_affinity[i].domain);
start = mem_affinity[i].end;
}
}
/*
* Initialize the physical memory allocator.
*/
void
vm_phys_init(void)
{
struct vm_freelist *fl;
int flind, i, oind, pind;
#if VM_NDOMAIN > 1
int ndomains, j;
#endif
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
#ifdef VM_FREELIST_ISADMA
if (phys_avail[i] < 16777216) {
if (phys_avail[i + 1] > 16777216) {
vm_phys_create_seg(phys_avail[i], 16777216,
VM_FREELIST_ISADMA);
vm_phys_create_seg(16777216, phys_avail[i + 1],
VM_FREELIST_DEFAULT);
} else {
vm_phys_create_seg(phys_avail[i],
phys_avail[i + 1], VM_FREELIST_ISADMA);
}
if (VM_FREELIST_ISADMA >= vm_nfreelists)
vm_nfreelists = VM_FREELIST_ISADMA + 1;
} else
#endif
#ifdef VM_FREELIST_HIGHMEM
if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
vm_phys_create_seg(phys_avail[i],
VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
} else {
vm_phys_create_seg(phys_avail[i],
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
}
if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
} else
#endif
vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
VM_FREELIST_DEFAULT);
}
for (flind = 0; flind < vm_nfreelists; flind++) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
for (oind = 0; oind < VM_NFREEORDER; oind++)
TAILQ_INIT(&fl[oind].pl);
}
}
#if VM_NDOMAIN > 1
/*
* Build a free list lookup list for each domain. All of the
* memory domain lists are inserted at the VM_FREELIST_DEFAULT
* index in a round-robin order starting with the current
* domain.
*/
ndomains = vm_nfreelists - VM_NFREELIST + 1;
for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
for (i = 0; i < ndomains; i++)
vm_phys_lookup_lists[i][flind] =
&vm_phys_free_queues[flind];
for (i = 0; i < ndomains; i++)
for (j = 0; j < ndomains; j++) {
flind = (i + j) % ndomains;
if (flind == 0)
flind = VM_FREELIST_DEFAULT;
else
flind += VM_NFREELIST - 1;
vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
&vm_phys_free_queues[flind];
}
for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
flind++)
for (i = 0; i < ndomains; i++)
vm_phys_lookup_lists[i][flind + ndomains - 1] =
&vm_phys_free_queues[flind];
#else
for (flind = 0; flind < vm_nfreelists; flind++)
vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
#endif
}
/*
* Split a contiguous, power of two-sized set of physical pages.
*/
static __inline void
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
{
vm_page_t m_buddy;
while (oind > order) {
oind--;
m_buddy = &m[1 << oind];
KASSERT(m_buddy->order == VM_NFREEORDER,
("vm_phys_split_pages: page %p has unexpected order %d",
m_buddy, m_buddy->order));
m_buddy->order = oind;
TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
fl[oind].lcnt++;
}
}
/*
* Initialize a physical page and add it to the free lists.
*/
void
vm_phys_add_page(vm_paddr_t pa)
{
vm_page_t m;
cnt.v_page_count++;
m = vm_phys_paddr_to_vm_page(pa);
m->phys_addr = pa;
m->queue = PQ_NONE;
m->segind = vm_phys_paddr_to_segind(pa);
m->flags = PG_FREE;
KASSERT(m->order == VM_NFREEORDER,
("vm_phys_add_page: page %p has unexpected order %d",
m, m->order));
m->pool = VM_FREEPOOL_DEFAULT;
pmap_page_init(m);
mtx_lock(&vm_page_queue_free_mtx);
cnt.v_free_count++;
vm_phys_free_pages(m, 0);
mtx_unlock(&vm_page_queue_free_mtx);
}
/*
* Allocate a contiguous, power of two-sized set of physical pages
* from the free lists.
*
* The free page queues must be locked.
*/
vm_page_t
vm_phys_alloc_pages(int pool, int order)
{
vm_page_t m;
int flind;
for (flind = 0; flind < vm_nfreelists; flind++) {
m = vm_phys_alloc_freelist_pages(flind, pool, order);
if (m != NULL)
return (m);
}
return (NULL);
}
/*
* Find and dequeue a free page on the given free list, with the
* specified pool and order
*/
vm_page_t
vm_phys_alloc_freelist_pages(int flind, int pool, int order)
{
struct vm_freelist *fl;
struct vm_freelist *alt;
int domain, oind, pind;
vm_page_t m;
KASSERT(flind < VM_NFREELIST,
("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
KASSERT(pool < VM_NFREEPOOL,
("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
KASSERT(order < VM_NFREEORDER,
("vm_phys_alloc_freelist_pages: order %d is out of range", order));
#if VM_NDOMAIN > 1
domain = PCPU_GET(domain);
#else
domain = 0;
#endif
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
fl = (*vm_phys_lookup_lists[domain][flind])[pool];
for (oind = order; oind < VM_NFREEORDER; oind++) {
m = TAILQ_FIRST(&fl[oind].pl);
if (m != NULL) {
TAILQ_REMOVE(&fl[oind].pl, m, pageq);
fl[oind].lcnt--;
m->order = VM_NFREEORDER;
vm_phys_split_pages(m, oind, fl, order);
return (m);
}
}
/*
* The given pool was empty. Find the largest
* contiguous, power-of-two-sized set of pages in any
* pool. Transfer these pages to the given pool, and
* use them to satisfy the allocation.
*/
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
alt = (*vm_phys_lookup_lists[domain][flind])[pind];
m = TAILQ_FIRST(&alt[oind].pl);
if (m != NULL) {
TAILQ_REMOVE(&alt[oind].pl, m, pageq);
alt[oind].lcnt--;
m->order = VM_NFREEORDER;
vm_phys_set_pool(pool, m, oind);
vm_phys_split_pages(m, oind, fl, order);
return (m);
}
}
}
return (NULL);
}
/*
* Find the vm_page corresponding to the given physical address.
*/
vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
{
struct vm_phys_seg *seg;
int segind;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
if (pa >= seg->start && pa < seg->end)
return (&seg->first_page[atop(pa - seg->start)]);
}
return (NULL);
}
/*
* Find the segment containing the given physical address.
*/
static int
vm_phys_paddr_to_segind(vm_paddr_t pa)
{
struct vm_phys_seg *seg;
int segind;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
if (pa >= seg->start && pa < seg->end)
return (segind);
}
panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
(uintmax_t)pa);
}
/*
* Free a contiguous, power of two-sized set of physical pages.
*
* The free page queues must be locked.
*/
void
vm_phys_free_pages(vm_page_t m, int order)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_paddr_t pa;
vm_page_t m_buddy;
KASSERT(m->order == VM_NFREEORDER,
("vm_phys_free_pages: page %p has unexpected order %d",
m, m->order));
KASSERT(m->pool < VM_NFREEPOOL,
("vm_phys_free_pages: page %p has unexpected pool %d",
m, m->pool));
KASSERT(order < VM_NFREEORDER,
("vm_phys_free_pages: order %d is out of range", order));
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
seg = &vm_phys_segs[m->segind];
if (order < VM_NFREEORDER - 1) {
pa = VM_PAGE_TO_PHYS(m);
do {
pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
if (pa < seg->start || pa >= seg->end)
break;
m_buddy = &seg->first_page[atop(pa - seg->start)];
if (m_buddy->order != order)
break;
fl = (*seg->free_queues)[m_buddy->pool];
TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq);
fl[order].lcnt--;
m_buddy->order = VM_NFREEORDER;
if (m_buddy->pool != m->pool)
vm_phys_set_pool(m->pool, m_buddy, order);
order++;
pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
m = &seg->first_page[atop(pa - seg->start)];
} while (order < VM_NFREEORDER - 1);
}
m->order = order;
fl = (*seg->free_queues)[m->pool];
TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
fl[order].lcnt++;
}
/*
* Free a contiguous, arbitrarily sized set of physical pages.
*
* The free page queues must be locked.
*/
void
vm_phys_free_contig(vm_page_t m, u_long npages)
{
u_int n;
int order;
/*
* Avoid unnecessary coalescing by freeing the pages in the largest
* possible power-of-two-sized subsets.
*/
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
for (;; npages -= n) {
/*
* Unsigned "min" is used here so that "order" is assigned
* "VM_NFREEORDER - 1" when "m"'s physical address is zero
* or the low-order bits of its physical address are zero
* because the size of a physical address exceeds the size of
* a long.
*/
order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
VM_NFREEORDER - 1);
n = 1 << order;
if (npages < n)
break;
vm_phys_free_pages(m, order);
m += n;
}
/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
for (; npages > 0; npages -= n) {
order = flsl(npages) - 1;
n = 1 << order;
vm_phys_free_pages(m, order);
m += n;
}
}
/*
* Set the pool for a contiguous, power of two-sized set of physical pages.
*/
void
vm_phys_set_pool(int pool, vm_page_t m, int order)
{
vm_page_t m_tmp;
for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
m_tmp->pool = pool;
}
/*
* Search for the given physical page "m" in the free lists. If the search
* succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
* FALSE, indicating that "m" is not in the free lists.
*
* The free page queues must be locked.
*/
boolean_t
vm_phys_unfree_page(vm_page_t m)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_paddr_t pa, pa_half;
vm_page_t m_set, m_tmp;
int order;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
/*
* First, find the contiguous, power of two-sized set of free
* physical pages containing the given physical page "m" and
* assign it to "m_set".
*/
seg = &vm_phys_segs[m->segind];
for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
order < VM_NFREEORDER - 1; ) {
order++;
pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
if (pa >= seg->start)
m_set = &seg->first_page[atop(pa - seg->start)];
else
return (FALSE);
}
if (m_set->order < order)
return (FALSE);
if (m_set->order == VM_NFREEORDER)
return (FALSE);
KASSERT(m_set->order < VM_NFREEORDER,
("vm_phys_unfree_page: page %p has unexpected order %d",
m_set, m_set->order));
/*
* Next, remove "m_set" from the free lists. Finally, extract
* "m" from "m_set" using an iterative algorithm: While "m_set"
* is larger than a page, shrink "m_set" by returning the half
* of "m_set" that does not contain "m" to the free lists.
*/
fl = (*seg->free_queues)[m_set->pool];
order = m_set->order;
TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
fl[order].lcnt--;
m_set->order = VM_NFREEORDER;
while (order > 0) {
order--;
pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
if (m->phys_addr < pa_half)
m_tmp = &seg->first_page[atop(pa_half - seg->start)];
else {
m_tmp = m_set;
m_set = &seg->first_page[atop(pa_half - seg->start)];
}
m_tmp->order = order;
TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
fl[order].lcnt++;
}
KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
return (TRUE);
}
/*
* Try to zero one physical page. Used by an idle priority thread.
*/
boolean_t
vm_phys_zero_pages_idle(void)
{
static struct vm_freelist *fl = vm_phys_free_queues[0][0];
static int flind, oind, pind;
vm_page_t m, m_tmp;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
for (;;) {
TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
vm_phys_unfree_page(m_tmp);
cnt.v_free_count--;
mtx_unlock(&vm_page_queue_free_mtx);
pmap_zero_page_idle(m_tmp);
m_tmp->flags |= PG_ZERO;
mtx_lock(&vm_page_queue_free_mtx);
cnt.v_free_count++;
vm_phys_free_pages(m_tmp, 0);
vm_page_zero_count++;
cnt_prezero++;
return (TRUE);
}
}
}
oind++;
if (oind == VM_NFREEORDER) {
oind = 0;
pind++;
if (pind == VM_NFREEPOOL) {
pind = 0;
flind++;
if (flind == vm_nfreelists)
flind = 0;
}
fl = vm_phys_free_queues[flind][pind];
}
}
}
/*
* Allocate a contiguous set of physical pages of the given size
* "npages" from the free lists. All of the physical pages must be at
* or above the given physical address "low" and below the given
* physical address "high". The given value "alignment" determines the
* alignment of the first physical page in the set. If the given value
* "boundary" is non-zero, then the set of physical pages cannot cross
* any physical address boundary that is a multiple of that value. Both
* "alignment" and "boundary" must be a power of two.
*/
vm_page_t
vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
u_long alignment, vm_paddr_t boundary)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_paddr_t pa, pa_last, size;
vm_page_t m, m_ret;
u_long npages_end;
int domain, flind, oind, order, pind;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
#if VM_NDOMAIN > 1
domain = PCPU_GET(domain);
#else
domain = 0;
#endif
size = npages << PAGE_SHIFT;
KASSERT(size != 0,
("vm_phys_alloc_contig: size must not be 0"));
KASSERT((alignment & (alignment - 1)) == 0,
("vm_phys_alloc_contig: alignment must be a power of 2"));
KASSERT((boundary & (boundary - 1)) == 0,
("vm_phys_alloc_contig: boundary must be a power of 2"));
/* Compute the queue that is the best fit for npages. */
for (order = 0; (1 << order) < npages; order++);
for (flind = 0; flind < vm_nfreelists; flind++) {
for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = (*vm_phys_lookup_lists[domain][flind])
[pind];
TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
/*
* A free list may contain physical pages
* from one or more segments.
*/
seg = &vm_phys_segs[m_ret->segind];
if (seg->start > high ||
low >= seg->end)
continue;
/*
* Is the size of this allocation request
* larger than the largest block size?
*/
if (order >= VM_NFREEORDER) {
/*
* Determine if a sufficient number
* of subsequent blocks to satisfy
* the allocation request are free.
*/
pa = VM_PAGE_TO_PHYS(m_ret);
pa_last = pa + size;
for (;;) {
pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
if (pa >= pa_last)
break;
if (pa < seg->start ||
pa >= seg->end)
break;
m = &seg->first_page[atop(pa - seg->start)];
if (m->order != VM_NFREEORDER - 1)
break;
}
/* If not, continue to the next block. */
if (pa < pa_last)
continue;
}
/*
* Determine if the blocks are within the given range,
* satisfy the given alignment, and do not cross the
* given boundary.
*/
pa = VM_PAGE_TO_PHYS(m_ret);
if (pa >= low &&
pa + size <= high &&
(pa & (alignment - 1)) == 0 &&
((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
goto done;
}
}
}
}
return (NULL);
done:
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
fl = (*seg->free_queues)[m->pool];
TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
fl[m->order].lcnt--;
m->order = VM_NFREEORDER;
}
if (m_ret->pool != VM_FREEPOOL_DEFAULT)
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
fl = (*seg->free_queues)[m_ret->pool];
vm_phys_split_pages(m_ret, oind, fl, order);
/* Return excess pages to the free lists. */
npages_end = roundup2(npages, 1 << imin(oind, order));
if (npages < npages_end)
vm_phys_free_contig(&m_ret[npages], npages_end - npages);
return (m_ret);
}
#ifdef DDB
/*
* Show the number of physical pages in each of the free lists.
*/
DB_SHOW_COMMAND(freepages, db_show_freepages)
{
struct vm_freelist *fl;
int flind, oind, pind;
for (flind = 0; flind < vm_nfreelists; flind++) {
db_printf("FREE LIST %d:\n"
"\n ORDER (SIZE) | NUMBER"
"\n ", flind);
for (pind = 0; pind < VM_NFREEPOOL; pind++)
db_printf(" | POOL %d", pind);
db_printf("\n-- ");
for (pind = 0; pind < VM_NFREEPOOL; pind++)
db_printf("-- -- ");
db_printf("--\n");
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
db_printf(" %2.2d (%6.6dK)", oind,
1 << (PAGE_SHIFT - 10 + oind));
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
db_printf(" | %6.6d", fl[oind].lcnt);
}
db_printf("\n");
}
db_printf("\n");
}
}
#endif