mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-21 11:13:30 +00:00
de478dd4b4
least one execute bit set, otherwise execve(2) will return EACCES even for an user with PRIV_VFS_EXEC privilege. Add the check also to vaccess(9), vaccess_acl_nfs4(9) and vaccess_acl_posix1e(9). This makes access(2) to better agree with execve(2). Because ZFS doesn't use vaccess(9) for VEXEC, add the check to zfs_freebsd_access() too. There may be other file systems which are not using vaccess*() functions and need to be handled separately. PR: kern/125009 Reviewed by: bde, trasz Approved by: pjd (ZFS part)
651 lines
17 KiB
C
651 lines
17 KiB
C
/*-
|
|
* Copyright (c) 1999-2006 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Developed by the TrustedBSD Project.
|
|
*
|
|
* ACL support routines specific to POSIX.1e access control lists. These are
|
|
* utility routines for code common across file systems implementing POSIX.1e
|
|
* ACLs.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/acl.h>
|
|
|
|
/*
|
|
* Implement a version of vaccess() that understands POSIX.1e ACL semantics;
|
|
* the access ACL has already been prepared for evaluation by the file system
|
|
* and is passed via 'uid', 'gid', and 'acl'. Return 0 on success, else an
|
|
* errno value.
|
|
*/
|
|
int
|
|
vaccess_acl_posix1e(enum vtype type, uid_t file_uid, gid_t file_gid,
|
|
struct acl *acl, accmode_t accmode, struct ucred *cred, int *privused)
|
|
{
|
|
struct acl_entry *acl_other, *acl_mask;
|
|
accmode_t dac_granted;
|
|
accmode_t priv_granted;
|
|
accmode_t acl_mask_granted;
|
|
int group_matched, i;
|
|
|
|
KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
|
|
("invalid bit in accmode"));
|
|
KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
|
|
("VAPPEND without VWRITE"));
|
|
|
|
/*
|
|
* Look for a normal, non-privileged way to access the file/directory
|
|
* as requested. If it exists, go with that. Otherwise, attempt to
|
|
* use privileges granted via priv_granted. In some cases, which
|
|
* privileges to use may be ambiguous due to "best match", in which
|
|
* case fall back on first match for the time being.
|
|
*/
|
|
if (privused != NULL)
|
|
*privused = 0;
|
|
|
|
/*
|
|
* Determine privileges now, but don't apply until we've found a DAC
|
|
* entry that matches but has failed to allow access.
|
|
*
|
|
* XXXRW: Ideally, we'd determine the privileges required before
|
|
* asking for them.
|
|
*/
|
|
priv_granted = 0;
|
|
|
|
if (type == VDIR) {
|
|
if ((accmode & VEXEC) && !priv_check_cred(cred,
|
|
PRIV_VFS_LOOKUP, 0))
|
|
priv_granted |= VEXEC;
|
|
} else {
|
|
/*
|
|
* Ensure that at least one execute bit is on. Otherwise,
|
|
* a privileged user will always succeed, and we don't want
|
|
* this to happen unless the file really is executable.
|
|
*/
|
|
if ((accmode & VEXEC) && (acl_posix1e_acl_to_mode(acl) &
|
|
(S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
|
|
!priv_check_cred(cred, PRIV_VFS_EXEC, 0))
|
|
priv_granted |= VEXEC;
|
|
}
|
|
|
|
if ((accmode & VREAD) && !priv_check_cred(cred, PRIV_VFS_READ, 0))
|
|
priv_granted |= VREAD;
|
|
|
|
if (((accmode & VWRITE) || (accmode & VAPPEND)) &&
|
|
!priv_check_cred(cred, PRIV_VFS_WRITE, 0))
|
|
priv_granted |= (VWRITE | VAPPEND);
|
|
|
|
if ((accmode & VADMIN) && !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
|
|
priv_granted |= VADMIN;
|
|
|
|
/*
|
|
* The owner matches if the effective uid associated with the
|
|
* credential matches that of the ACL_USER_OBJ entry. While we're
|
|
* doing the first scan, also cache the location of the ACL_MASK and
|
|
* ACL_OTHER entries, preventing some future iterations.
|
|
*/
|
|
acl_mask = acl_other = NULL;
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
switch (acl->acl_entry[i].ae_tag) {
|
|
case ACL_USER_OBJ:
|
|
if (file_uid != cred->cr_uid)
|
|
break;
|
|
dac_granted = 0;
|
|
dac_granted |= VADMIN;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
/*
|
|
* XXXRW: Do privilege lookup here.
|
|
*/
|
|
if ((accmode & (dac_granted | priv_granted)) ==
|
|
accmode) {
|
|
if (privused != NULL)
|
|
*privused = 1;
|
|
return (0);
|
|
}
|
|
goto error;
|
|
|
|
case ACL_MASK:
|
|
acl_mask = &acl->acl_entry[i];
|
|
break;
|
|
|
|
case ACL_OTHER:
|
|
acl_other = &acl->acl_entry[i];
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* An ACL_OTHER entry should always exist in a valid access ACL. If
|
|
* it doesn't, then generate a serious failure. For now, this means
|
|
* a debugging message and EPERM, but in the future should probably
|
|
* be a panic.
|
|
*/
|
|
if (acl_other == NULL) {
|
|
/*
|
|
* XXX This should never happen
|
|
*/
|
|
printf("vaccess_acl_posix1e: ACL_OTHER missing\n");
|
|
return (EPERM);
|
|
}
|
|
|
|
/*
|
|
* Checks against ACL_USER, ACL_GROUP_OBJ, and ACL_GROUP fields are
|
|
* masked by an ACL_MASK entry, if any. As such, first identify the
|
|
* ACL_MASK field, then iterate through identifying potential user
|
|
* matches, then group matches. If there is no ACL_MASK, assume that
|
|
* the mask allows all requests to succeed.
|
|
*/
|
|
if (acl_mask != NULL) {
|
|
acl_mask_granted = 0;
|
|
if (acl_mask->ae_perm & ACL_EXECUTE)
|
|
acl_mask_granted |= VEXEC;
|
|
if (acl_mask->ae_perm & ACL_READ)
|
|
acl_mask_granted |= VREAD;
|
|
if (acl_mask->ae_perm & ACL_WRITE)
|
|
acl_mask_granted |= (VWRITE | VAPPEND);
|
|
} else
|
|
acl_mask_granted = VEXEC | VREAD | VWRITE | VAPPEND;
|
|
|
|
/*
|
|
* Check ACL_USER ACL entries. There will either be one or no
|
|
* matches; if there is one, we accept or rejected based on the
|
|
* match; otherwise, we continue on to groups.
|
|
*/
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
switch (acl->acl_entry[i].ae_tag) {
|
|
case ACL_USER:
|
|
if (acl->acl_entry[i].ae_id != cred->cr_uid)
|
|
break;
|
|
dac_granted = 0;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
dac_granted &= acl_mask_granted;
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
/*
|
|
* XXXRW: Do privilege lookup here.
|
|
*/
|
|
if ((accmode & (dac_granted | priv_granted)) !=
|
|
accmode)
|
|
goto error;
|
|
|
|
if (privused != NULL)
|
|
*privused = 1;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Group match is best-match, not first-match, so find a "best"
|
|
* match. Iterate across, testing each potential group match. Make
|
|
* sure we keep track of whether we found a match or not, so that we
|
|
* know if we should try again with any available privilege, or if we
|
|
* should move on to ACL_OTHER.
|
|
*/
|
|
group_matched = 0;
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
switch (acl->acl_entry[i].ae_tag) {
|
|
case ACL_GROUP_OBJ:
|
|
if (!groupmember(file_gid, cred))
|
|
break;
|
|
dac_granted = 0;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
dac_granted &= acl_mask_granted;
|
|
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
group_matched = 1;
|
|
break;
|
|
|
|
case ACL_GROUP:
|
|
if (!groupmember(acl->acl_entry[i].ae_id, cred))
|
|
break;
|
|
dac_granted = 0;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
dac_granted &= acl_mask_granted;
|
|
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
group_matched = 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (group_matched == 1) {
|
|
/*
|
|
* There was a match, but it did not grant rights via pure
|
|
* DAC. Try again, this time with privilege.
|
|
*/
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
switch (acl->acl_entry[i].ae_tag) {
|
|
case ACL_GROUP_OBJ:
|
|
if (!groupmember(file_gid, cred))
|
|
break;
|
|
dac_granted = 0;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
dac_granted &= acl_mask_granted;
|
|
|
|
/*
|
|
* XXXRW: Do privilege lookup here.
|
|
*/
|
|
if ((accmode & (dac_granted | priv_granted))
|
|
!= accmode)
|
|
break;
|
|
|
|
if (privused != NULL)
|
|
*privused = 1;
|
|
return (0);
|
|
|
|
case ACL_GROUP:
|
|
if (!groupmember(acl->acl_entry[i].ae_id,
|
|
cred))
|
|
break;
|
|
dac_granted = 0;
|
|
if (acl->acl_entry[i].ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl->acl_entry[i].ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl->acl_entry[i].ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
dac_granted &= acl_mask_granted;
|
|
|
|
/*
|
|
* XXXRW: Do privilege lookup here.
|
|
*/
|
|
if ((accmode & (dac_granted | priv_granted))
|
|
!= accmode)
|
|
break;
|
|
|
|
if (privused != NULL)
|
|
*privused = 1;
|
|
return (0);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* Even with privilege, group membership was not sufficient.
|
|
* Return failure.
|
|
*/
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Fall back on ACL_OTHER. ACL_MASK is not applied to ACL_OTHER.
|
|
*/
|
|
dac_granted = 0;
|
|
if (acl_other->ae_perm & ACL_EXECUTE)
|
|
dac_granted |= VEXEC;
|
|
if (acl_other->ae_perm & ACL_READ)
|
|
dac_granted |= VREAD;
|
|
if (acl_other->ae_perm & ACL_WRITE)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
/*
|
|
* XXXRW: Do privilege lookup here.
|
|
*/
|
|
if ((accmode & (dac_granted | priv_granted)) == accmode) {
|
|
if (privused != NULL)
|
|
*privused = 1;
|
|
return (0);
|
|
}
|
|
|
|
error:
|
|
return ((accmode & VADMIN) ? EPERM : EACCES);
|
|
}
|
|
|
|
/*
|
|
* For the purposes of filesystems maintaining the _OBJ entries in an inode
|
|
* with a mode_t field, this routine converts a mode_t entry to an
|
|
* acl_perm_t.
|
|
*/
|
|
acl_perm_t
|
|
acl_posix1e_mode_to_perm(acl_tag_t tag, mode_t mode)
|
|
{
|
|
acl_perm_t perm = 0;
|
|
|
|
switch(tag) {
|
|
case ACL_USER_OBJ:
|
|
if (mode & S_IXUSR)
|
|
perm |= ACL_EXECUTE;
|
|
if (mode & S_IRUSR)
|
|
perm |= ACL_READ;
|
|
if (mode & S_IWUSR)
|
|
perm |= ACL_WRITE;
|
|
return (perm);
|
|
|
|
case ACL_GROUP_OBJ:
|
|
if (mode & S_IXGRP)
|
|
perm |= ACL_EXECUTE;
|
|
if (mode & S_IRGRP)
|
|
perm |= ACL_READ;
|
|
if (mode & S_IWGRP)
|
|
perm |= ACL_WRITE;
|
|
return (perm);
|
|
|
|
case ACL_OTHER:
|
|
if (mode & S_IXOTH)
|
|
perm |= ACL_EXECUTE;
|
|
if (mode & S_IROTH)
|
|
perm |= ACL_READ;
|
|
if (mode & S_IWOTH)
|
|
perm |= ACL_WRITE;
|
|
return (perm);
|
|
|
|
default:
|
|
printf("acl_posix1e_mode_to_perm: invalid tag (%d)\n", tag);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given inode information (uid, gid, mode), return an acl entry of the
|
|
* appropriate type.
|
|
*/
|
|
struct acl_entry
|
|
acl_posix1e_mode_to_entry(acl_tag_t tag, uid_t uid, gid_t gid, mode_t mode)
|
|
{
|
|
struct acl_entry acl_entry;
|
|
|
|
acl_entry.ae_tag = tag;
|
|
acl_entry.ae_perm = acl_posix1e_mode_to_perm(tag, mode);
|
|
acl_entry.ae_entry_type = 0;
|
|
acl_entry.ae_flags = 0;
|
|
switch(tag) {
|
|
case ACL_USER_OBJ:
|
|
acl_entry.ae_id = uid;
|
|
break;
|
|
|
|
case ACL_GROUP_OBJ:
|
|
acl_entry.ae_id = gid;
|
|
break;
|
|
|
|
case ACL_OTHER:
|
|
acl_entry.ae_id = ACL_UNDEFINED_ID;
|
|
break;
|
|
|
|
default:
|
|
acl_entry.ae_id = ACL_UNDEFINED_ID;
|
|
printf("acl_posix1e_mode_to_entry: invalid tag (%d)\n", tag);
|
|
}
|
|
|
|
return (acl_entry);
|
|
}
|
|
|
|
/*
|
|
* Utility function to generate a file mode given appropriate ACL entries.
|
|
*/
|
|
mode_t
|
|
acl_posix1e_perms_to_mode(struct acl_entry *acl_user_obj_entry,
|
|
struct acl_entry *acl_group_obj_entry, struct acl_entry *acl_other_entry)
|
|
{
|
|
mode_t mode;
|
|
|
|
mode = 0;
|
|
if (acl_user_obj_entry->ae_perm & ACL_EXECUTE)
|
|
mode |= S_IXUSR;
|
|
if (acl_user_obj_entry->ae_perm & ACL_READ)
|
|
mode |= S_IRUSR;
|
|
if (acl_user_obj_entry->ae_perm & ACL_WRITE)
|
|
mode |= S_IWUSR;
|
|
if (acl_group_obj_entry->ae_perm & ACL_EXECUTE)
|
|
mode |= S_IXGRP;
|
|
if (acl_group_obj_entry->ae_perm & ACL_READ)
|
|
mode |= S_IRGRP;
|
|
if (acl_group_obj_entry->ae_perm & ACL_WRITE)
|
|
mode |= S_IWGRP;
|
|
if (acl_other_entry->ae_perm & ACL_EXECUTE)
|
|
mode |= S_IXOTH;
|
|
if (acl_other_entry->ae_perm & ACL_READ)
|
|
mode |= S_IROTH;
|
|
if (acl_other_entry->ae_perm & ACL_WRITE)
|
|
mode |= S_IWOTH;
|
|
|
|
return (mode);
|
|
}
|
|
|
|
/*
|
|
* Utility function to generate a file mode given a complete POSIX.1e access
|
|
* ACL. Note that if the ACL is improperly formed, this may result in a
|
|
* panic.
|
|
*/
|
|
mode_t
|
|
acl_posix1e_acl_to_mode(struct acl *acl)
|
|
{
|
|
struct acl_entry *acl_mask, *acl_user_obj, *acl_group_obj, *acl_other;
|
|
int i;
|
|
|
|
/*
|
|
* Find the ACL entries relevant to a POSIX permission mode.
|
|
*/
|
|
acl_user_obj = acl_group_obj = acl_other = acl_mask = NULL;
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
switch (acl->acl_entry[i].ae_tag) {
|
|
case ACL_USER_OBJ:
|
|
acl_user_obj = &acl->acl_entry[i];
|
|
break;
|
|
|
|
case ACL_GROUP_OBJ:
|
|
acl_group_obj = &acl->acl_entry[i];
|
|
break;
|
|
|
|
case ACL_OTHER:
|
|
acl_other = &acl->acl_entry[i];
|
|
break;
|
|
|
|
case ACL_MASK:
|
|
acl_mask = &acl->acl_entry[i];
|
|
break;
|
|
|
|
case ACL_USER:
|
|
case ACL_GROUP:
|
|
break;
|
|
|
|
default:
|
|
panic("acl_posix1e_acl_to_mode: bad ae_tag");
|
|
}
|
|
}
|
|
|
|
if (acl_user_obj == NULL || acl_group_obj == NULL || acl_other == NULL)
|
|
panic("acl_posix1e_acl_to_mode: missing base ae_tags");
|
|
|
|
/*
|
|
* POSIX.1e specifies that if there is an ACL_MASK entry, we replace
|
|
* the mode "group" bits with its permissions. If there isn't, we
|
|
* use the ACL_GROUP_OBJ permissions.
|
|
*/
|
|
if (acl_mask != NULL)
|
|
return (acl_posix1e_perms_to_mode(acl_user_obj, acl_mask,
|
|
acl_other));
|
|
else
|
|
return (acl_posix1e_perms_to_mode(acl_user_obj, acl_group_obj,
|
|
acl_other));
|
|
}
|
|
|
|
/*
|
|
* Perform a syntactic check of the ACL, sufficient to allow an implementing
|
|
* filesystem to determine if it should accept this and rely on the POSIX.1e
|
|
* ACL properties.
|
|
*/
|
|
int
|
|
acl_posix1e_check(struct acl *acl)
|
|
{
|
|
int num_acl_user_obj, num_acl_user, num_acl_group_obj, num_acl_group;
|
|
int num_acl_mask, num_acl_other, i;
|
|
|
|
/*
|
|
* Verify that the number of entries does not exceed the maximum
|
|
* defined for acl_t.
|
|
*
|
|
* Verify that the correct number of various sorts of ae_tags are
|
|
* present:
|
|
* Exactly one ACL_USER_OBJ
|
|
* Exactly one ACL_GROUP_OBJ
|
|
* Exactly one ACL_OTHER
|
|
* If any ACL_USER or ACL_GROUP entries appear, then exactly one
|
|
* ACL_MASK entry must also appear.
|
|
*
|
|
* Verify that all ae_perm entries are in ACL_PERM_BITS.
|
|
*
|
|
* Verify all ae_tag entries are understood by this implementation.
|
|
*
|
|
* Note: Does not check for uniqueness of qualifier (ae_id) field.
|
|
*/
|
|
num_acl_user_obj = num_acl_user = num_acl_group_obj = num_acl_group =
|
|
num_acl_mask = num_acl_other = 0;
|
|
if (acl->acl_cnt > ACL_MAX_ENTRIES)
|
|
return (EINVAL);
|
|
for (i = 0; i < acl->acl_cnt; i++) {
|
|
/*
|
|
* Check for a valid tag.
|
|
*/
|
|
switch(acl->acl_entry[i].ae_tag) {
|
|
case ACL_USER_OBJ:
|
|
acl->acl_entry[i].ae_id = ACL_UNDEFINED_ID; /* XXX */
|
|
if (acl->acl_entry[i].ae_id != ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_user_obj++;
|
|
break;
|
|
case ACL_GROUP_OBJ:
|
|
acl->acl_entry[i].ae_id = ACL_UNDEFINED_ID; /* XXX */
|
|
if (acl->acl_entry[i].ae_id != ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_group_obj++;
|
|
break;
|
|
case ACL_USER:
|
|
if (acl->acl_entry[i].ae_id == ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_user++;
|
|
break;
|
|
case ACL_GROUP:
|
|
if (acl->acl_entry[i].ae_id == ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_group++;
|
|
break;
|
|
case ACL_OTHER:
|
|
acl->acl_entry[i].ae_id = ACL_UNDEFINED_ID; /* XXX */
|
|
if (acl->acl_entry[i].ae_id != ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_other++;
|
|
break;
|
|
case ACL_MASK:
|
|
acl->acl_entry[i].ae_id = ACL_UNDEFINED_ID; /* XXX */
|
|
if (acl->acl_entry[i].ae_id != ACL_UNDEFINED_ID)
|
|
return (EINVAL);
|
|
num_acl_mask++;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* Check for valid perm entries.
|
|
*/
|
|
if ((acl->acl_entry[i].ae_perm | ACL_PERM_BITS) !=
|
|
ACL_PERM_BITS)
|
|
return (EINVAL);
|
|
}
|
|
if ((num_acl_user_obj != 1) || (num_acl_group_obj != 1) ||
|
|
(num_acl_other != 1) || (num_acl_mask != 0 && num_acl_mask != 1))
|
|
return (EINVAL);
|
|
if (((num_acl_group != 0) || (num_acl_user != 0)) &&
|
|
(num_acl_mask != 1))
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a requested mode for a new object, and a default ACL, combine the
|
|
* two to produce a new mode. Be careful not to clear any bits that aren't
|
|
* intended to be affected by the POSIX.1e ACL. Eventually, this might also
|
|
* take the cmask as an argument, if we push that down into
|
|
* per-filesystem-code.
|
|
*/
|
|
mode_t
|
|
acl_posix1e_newfilemode(mode_t cmode, struct acl *dacl)
|
|
{
|
|
mode_t mode;
|
|
|
|
mode = cmode;
|
|
/*
|
|
* The current composition policy is that a permission bit must be
|
|
* set in *both* the ACL and the requested creation mode for it to
|
|
* appear in the resulting mode/ACL. First clear any possibly
|
|
* effected bits, then reconstruct.
|
|
*/
|
|
mode &= ACL_PRESERVE_MASK;
|
|
mode |= (ACL_OVERRIDE_MASK & cmode & acl_posix1e_acl_to_mode(dacl));
|
|
|
|
return (mode);
|
|
}
|