1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/cam/scsi/scsi_ses.c
Poul-Henning Kamp dc08ffec87 Device megapatch 4/6:
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.

Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
2004-02-21 21:10:55 +00:00

2538 lines
60 KiB
C

/*
* Copyright (c) 2000 Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <machine/stdarg.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <sys/ioccom.h>
#include <cam/scsi/scsi_ses.h>
#include <opt_ses.h>
/*
* Platform Independent Driver Internal Definitions for SES devices.
*/
typedef enum {
SES_NONE,
SES_SES_SCSI2,
SES_SES,
SES_SES_PASSTHROUGH,
SES_SEN,
SES_SAFT
} enctyp;
struct ses_softc;
typedef struct ses_softc ses_softc_t;
typedef struct {
int (*softc_init)(ses_softc_t *, int);
int (*init_enc)(ses_softc_t *);
int (*get_encstat)(ses_softc_t *, int);
int (*set_encstat)(ses_softc_t *, ses_encstat, int);
int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
} encvec;
#define ENCI_SVALID 0x80
typedef struct {
uint32_t
enctype : 8, /* enclosure type */
subenclosure : 8, /* subenclosure id */
svalid : 1, /* enclosure information valid */
priv : 15; /* private data, per object */
uint8_t encstat[4]; /* state && stats */
} encobj;
#define SEN_ID "UNISYS SUN_SEN"
#define SEN_ID_LEN 24
static enctyp ses_type(void *, int);
/* Forward reference to Enclosure Functions */
static int ses_softc_init(ses_softc_t *, int);
static int ses_init_enc(ses_softc_t *);
static int ses_get_encstat(ses_softc_t *, int);
static int ses_set_encstat(ses_softc_t *, uint8_t, int);
static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
static int safte_softc_init(ses_softc_t *, int);
static int safte_init_enc(ses_softc_t *);
static int safte_get_encstat(ses_softc_t *, int);
static int safte_set_encstat(ses_softc_t *, uint8_t, int);
static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
/*
* Platform implementation defines/functions for SES internal kernel stuff
*/
#define STRNCMP strncmp
#define PRINTF printf
#define SES_LOG ses_log
#ifdef DEBUG
#define SES_DLOG ses_log
#else
#define SES_DLOG if (0) ses_log
#endif
#define SES_VLOG if (bootverbose) ses_log
#define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
#define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
#define MEMZERO bzero
#define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
static void ses_log(struct ses_softc *, const char *, ...);
/*
* Gerenal FreeBSD kernel stuff.
*/
#define ccb_state ppriv_field0
#define ccb_bp ppriv_ptr1
struct ses_softc {
enctyp ses_type; /* type of enclosure */
encvec ses_vec; /* vector to handlers */
void * ses_private; /* per-type private data */
encobj * ses_objmap; /* objects */
u_int32_t ses_nobjects; /* number of objects */
ses_encstat ses_encstat; /* overall status */
u_int8_t ses_flags;
union ccb ses_saved_ccb;
dev_t ses_dev;
struct cam_periph *periph;
};
#define SES_FLAG_INVALID 0x01
#define SES_FLAG_OPEN 0x02
#define SES_FLAG_INITIALIZED 0x04
#define SESUNIT(x) (minor((x)))
static d_open_t sesopen;
static d_close_t sesclose;
static d_ioctl_t sesioctl;
static periph_init_t sesinit;
static periph_ctor_t sesregister;
static periph_oninv_t sesoninvalidate;
static periph_dtor_t sescleanup;
static periph_start_t sesstart;
static void sesasync(void *, u_int32_t, struct cam_path *, void *);
static void sesdone(struct cam_periph *, union ccb *);
static int seserror(union ccb *, u_int32_t, u_int32_t);
static struct periph_driver sesdriver = {
sesinit, "ses",
TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(ses, sesdriver);
static struct cdevsw ses_cdevsw = {
.d_version = D_VERSION,
.d_open = sesopen,
.d_close = sesclose,
.d_ioctl = sesioctl,
.d_name = "ses",
.d_flags = D_NEEDGIANT,
};
static void
sesinit(void)
{
cam_status status;
struct cam_path *path;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status == CAM_REQ_CMP) {
struct ccb_setasync csa;
xpt_setup_ccb(&csa.ccb_h, path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_FOUND_DEVICE;
csa.callback = sesasync;
csa.callback_arg = NULL;
xpt_action((union ccb *)&csa);
status = csa.ccb_h.status;
xpt_free_path(path);
}
if (status != CAM_REQ_CMP) {
printf("ses: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
static void
sesoninvalidate(struct cam_periph *periph)
{
struct ses_softc *softc;
struct ccb_setasync csa;
softc = (struct ses_softc *)periph->softc;
/*
* Unregister any async callbacks.
*/
xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = 0;
csa.callback = sesasync;
csa.callback_arg = periph;
xpt_action((union ccb *)&csa);
softc->ses_flags |= SES_FLAG_INVALID;
xpt_print_path(periph->path);
printf("lost device\n");
}
static void
sescleanup(struct cam_periph *periph)
{
struct ses_softc *softc;
softc = (struct ses_softc *)periph->softc;
destroy_dev(softc->ses_dev);
xpt_print_path(periph->path);
printf("removing device entry\n");
free(softc, M_DEVBUF);
}
static void
sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
struct cam_periph *periph;
periph = (struct cam_periph *)callback_arg;
switch(code) {
case AC_FOUND_DEVICE:
{
cam_status status;
struct ccb_getdev *cgd;
int inq_len;
cgd = (struct ccb_getdev *)arg;
if (arg == NULL) {
break;
}
inq_len = cgd->inq_data.additional_length + 4;
/*
* PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
* PROBLEM: IS A SAF-TE DEVICE.
*/
switch (ses_type(&cgd->inq_data, inq_len)) {
case SES_SES:
case SES_SES_SCSI2:
case SES_SES_PASSTHROUGH:
case SES_SEN:
case SES_SAFT:
break;
default:
return;
}
status = cam_periph_alloc(sesregister, sesoninvalidate,
sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
printf("sesasync: Unable to probe new device due to "
"status 0x%x\n", status);
}
break;
}
default:
cam_periph_async(periph, code, path, arg);
break;
}
}
static cam_status
sesregister(struct cam_periph *periph, void *arg)
{
struct ses_softc *softc;
struct ccb_setasync csa;
struct ccb_getdev *cgd;
char *tname;
cgd = (struct ccb_getdev *)arg;
if (periph == NULL) {
printf("sesregister: periph was NULL!!\n");
return (CAM_REQ_CMP_ERR);
}
if (cgd == NULL) {
printf("sesregister: no getdev CCB, can't register device\n");
return (CAM_REQ_CMP_ERR);
}
softc = malloc(sizeof (struct ses_softc), M_DEVBUF, M_NOWAIT);
if (softc == NULL) {
printf("sesregister: Unable to probe new device. "
"Unable to allocate softc\n");
return (CAM_REQ_CMP_ERR);
}
bzero(softc, sizeof (struct ses_softc));
periph->softc = softc;
softc->periph = periph;
softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
switch (softc->ses_type) {
case SES_SES:
case SES_SES_SCSI2:
case SES_SES_PASSTHROUGH:
softc->ses_vec.softc_init = ses_softc_init;
softc->ses_vec.init_enc = ses_init_enc;
softc->ses_vec.get_encstat = ses_get_encstat;
softc->ses_vec.set_encstat = ses_set_encstat;
softc->ses_vec.get_objstat = ses_get_objstat;
softc->ses_vec.set_objstat = ses_set_objstat;
break;
case SES_SAFT:
softc->ses_vec.softc_init = safte_softc_init;
softc->ses_vec.init_enc = safte_init_enc;
softc->ses_vec.get_encstat = safte_get_encstat;
softc->ses_vec.set_encstat = safte_set_encstat;
softc->ses_vec.get_objstat = safte_get_objstat;
softc->ses_vec.set_objstat = safte_set_objstat;
break;
case SES_SEN:
break;
case SES_NONE:
default:
free(softc, M_DEVBUF);
return (CAM_REQ_CMP_ERR);
}
softc->ses_dev = make_dev(&ses_cdevsw, periph->unit_number,
UID_ROOT, GID_OPERATOR, 0600, "%s%d",
periph->periph_name, periph->unit_number);
softc->ses_dev->si_drv1 = periph;
/*
* Add an async callback so that we get
* notified if this device goes away.
*/
xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = sesasync;
csa.callback_arg = periph;
xpt_action((union ccb *)&csa);
switch (softc->ses_type) {
default:
case SES_NONE:
tname = "No SES device";
break;
case SES_SES_SCSI2:
tname = "SCSI-2 SES Device";
break;
case SES_SES:
tname = "SCSI-3 SES Device";
break;
case SES_SES_PASSTHROUGH:
tname = "SES Passthrough Device";
break;
case SES_SEN:
tname = "UNISYS SEN Device (NOT HANDLED YET)";
break;
case SES_SAFT:
tname = "SAF-TE Compliant Device";
break;
}
xpt_announce_periph(periph, tname);
return (CAM_REQ_CMP);
}
static int
sesopen(dev_t dev, int flags, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct ses_softc *softc;
int error, s;
s = splsoftcam();
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL) {
splx(s);
return (ENXIO);
}
if ((error = cam_periph_lock(periph, PRIBIO | PCATCH)) != 0) {
splx(s);
return (error);
}
splx(s);
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
cam_periph_unlock(periph);
return (ENXIO);
}
softc = (struct ses_softc *)periph->softc;
if (softc->ses_flags & SES_FLAG_INVALID) {
error = ENXIO;
goto out;
}
if (softc->ses_flags & SES_FLAG_OPEN) {
error = EBUSY;
goto out;
}
if (softc->ses_vec.softc_init == NULL) {
error = ENXIO;
goto out;
}
softc->ses_flags |= SES_FLAG_OPEN;
if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
error = (*softc->ses_vec.softc_init)(softc, 1);
if (error)
softc->ses_flags &= ~SES_FLAG_OPEN;
else
softc->ses_flags |= SES_FLAG_INITIALIZED;
}
out:
if (error) {
cam_periph_release(periph);
}
cam_periph_unlock(periph);
return (error);
}
static int
sesclose(dev_t dev, int flag, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct ses_softc *softc;
int error;
error = 0;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return (ENXIO);
softc = (struct ses_softc *)periph->softc;
if ((error = cam_periph_lock(periph, PRIBIO)) != 0)
return (error);
softc->ses_flags &= ~SES_FLAG_OPEN;
cam_periph_unlock(periph);
cam_periph_release(periph);
return (0);
}
static void
sesstart(struct cam_periph *p, union ccb *sccb)
{
int s = splbio();
if (p->immediate_priority <= p->pinfo.priority) {
SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
p->immediate_priority = CAM_PRIORITY_NONE;
wakeup(&p->ccb_list);
}
splx(s);
}
static void
sesdone(struct cam_periph *periph, union ccb *dccb)
{
wakeup(&dccb->ccb_h.cbfcnp);
}
static int
seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
{
struct ses_softc *softc;
struct cam_periph *periph;
periph = xpt_path_periph(ccb->ccb_h.path);
softc = (struct ses_softc *)periph->softc;
return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
}
static int
sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct thread *td)
{
struct cam_periph *periph;
ses_encstat tmp;
ses_objstat objs;
ses_object obj, *uobj;
struct ses_softc *ssc;
void *addr;
int error, i;
if (arg_addr)
addr = *((caddr_t *) arg_addr);
else
addr = NULL;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return (ENXIO);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
ssc = (struct ses_softc *)periph->softc;
/*
* Now check to see whether we're initialized or not.
*/
if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
return (ENXIO);
}
error = 0;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
("trying to do ioctl %#lx\n", cmd));
/*
* If this command can change the device's state,
* we must have the device open for writing.
*/
switch (cmd) {
case SESIOC_GETNOBJ:
case SESIOC_GETOBJMAP:
case SESIOC_GETENCSTAT:
case SESIOC_GETOBJSTAT:
break;
default:
if ((flag & FWRITE) == 0) {
return (EBADF);
}
}
switch (cmd) {
case SESIOC_GETNOBJ:
error = copyout(&ssc->ses_nobjects, addr,
sizeof (ssc->ses_nobjects));
break;
case SESIOC_GETOBJMAP:
for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
obj.obj_id = i;
obj.subencid = ssc->ses_objmap[i].subenclosure;
obj.object_type = ssc->ses_objmap[i].enctype;
error = copyout(&obj, uobj, sizeof (ses_object));
if (error) {
break;
}
}
break;
case SESIOC_GETENCSTAT:
error = (*ssc->ses_vec.get_encstat)(ssc, 1);
if (error)
break;
tmp = ssc->ses_encstat & ~ENCI_SVALID;
error = copyout(&tmp, addr, sizeof (ses_encstat));
ssc->ses_encstat = tmp;
break;
case SESIOC_SETENCSTAT:
error = copyin(addr, &tmp, sizeof (ses_encstat));
if (error)
break;
error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
break;
case SESIOC_GETOBJSTAT:
error = copyin(addr, &objs, sizeof (ses_objstat));
if (error)
break;
if (objs.obj_id >= ssc->ses_nobjects) {
error = EINVAL;
break;
}
error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
if (error)
break;
error = copyout(&objs, addr, sizeof (ses_objstat));
/*
* Always (for now) invalidate entry.
*/
ssc->ses_objmap[objs.obj_id].svalid = 0;
break;
case SESIOC_SETOBJSTAT:
error = copyin(addr, &objs, sizeof (ses_objstat));
if (error)
break;
if (objs.obj_id >= ssc->ses_nobjects) {
error = EINVAL;
break;
}
error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
/*
* Always (for now) invalidate entry.
*/
ssc->ses_objmap[objs.obj_id].svalid = 0;
break;
case SESIOC_INIT:
error = (*ssc->ses_vec.init_enc)(ssc);
break;
default:
error = cam_periph_ioctl(periph, cmd, arg_addr, seserror);
break;
}
return (error);
}
#define SES_CFLAGS CAM_RETRY_SELTO
#define SES_FLAGS SF_NO_PRINT | SF_RETRY_UA
static int
ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
{
int error, dlen;
ccb_flags ddf;
union ccb *ccb;
if (dptr) {
if ((dlen = *dlenp) < 0) {
dlen = -dlen;
ddf = CAM_DIR_OUT;
} else {
ddf = CAM_DIR_IN;
}
} else {
dlen = 0;
ddf = CAM_DIR_NONE;
}
if (cdbl > IOCDBLEN) {
cdbl = IOCDBLEN;
}
ccb = cam_periph_getccb(ssc->periph, 1);
cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
if (error) {
if (dptr) {
*dlenp = dlen;
}
} else {
if (dptr) {
*dlenp = ccb->csio.resid;
}
}
xpt_release_ccb(ccb);
return (error);
}
static void
ses_log(struct ses_softc *ssc, const char *fmt, ...)
{
va_list ap;
printf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
/*
* The code after this point runs on many platforms,
* so forgive the slightly awkward and nonconforming
* appearance.
*/
/*
* Is this a device that supports enclosure services?
*
* It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
* an SES device. If it happens to be an old UNISYS SEN device, we can
* handle that too.
*/
#define SAFTE_START 44
#define SAFTE_END 50
#define SAFTE_LEN SAFTE_END-SAFTE_START
static enctyp
ses_type(void *buf, int buflen)
{
unsigned char *iqd = buf;
if (buflen < 8+SEN_ID_LEN)
return (SES_NONE);
if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
return (SES_SEN);
} else if ((iqd[2] & 0x7) > 2) {
return (SES_SES);
} else {
return (SES_SES_SCSI2);
}
return (SES_NONE);
}
#ifdef SES_ENABLE_PASSTHROUGH
if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
/*
* PassThrough Device.
*/
return (SES_SES_PASSTHROUGH);
}
#endif
/*
* The comparison is short for a reason-
* some vendors were chopping it short.
*/
if (buflen < SAFTE_END - 2) {
return (SES_NONE);
}
if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
return (SES_SAFT);
}
return (SES_NONE);
}
/*
* SES Native Type Device Support
*/
/*
* SES Diagnostic Page Codes
*/
typedef enum {
SesConfigPage = 0x1,
SesControlPage,
#define SesStatusPage SesControlPage
SesHelpTxt,
SesStringOut,
#define SesStringIn SesStringOut
SesThresholdOut,
#define SesThresholdIn SesThresholdOut
SesArrayControl,
#define SesArrayStatus SesArrayControl
SesElementDescriptor,
SesShortStatus
} SesDiagPageCodes;
/*
* minimal amounts
*/
/*
* Minimum amount of data, starting from byte 0, to have
* the config header.
*/
#define SES_CFGHDR_MINLEN 12
/*
* Minimum amount of data, starting from byte 0, to have
* the config header and one enclosure header.
*/
#define SES_ENCHDR_MINLEN 48
/*
* Take this value, subtract it from VEnclen and you know
* the length of the vendor unique bytes.
*/
#define SES_ENCHDR_VMIN 36
/*
* SES Data Structures
*/
typedef struct {
uint32_t GenCode; /* Generation Code */
uint8_t Nsubenc; /* Number of Subenclosures */
} SesCfgHdr;
typedef struct {
uint8_t Subencid; /* SubEnclosure Identifier */
uint8_t Ntypes; /* # of supported types */
uint8_t VEnclen; /* Enclosure Descriptor Length */
} SesEncHdr;
typedef struct {
uint8_t encWWN[8]; /* XXX- Not Right Yet */
uint8_t encVid[8];
uint8_t encPid[16];
uint8_t encRev[4];
uint8_t encVen[1];
} SesEncDesc;
typedef struct {
uint8_t enc_type; /* type of element */
uint8_t enc_maxelt; /* maximum supported */
uint8_t enc_subenc; /* in SubEnc # N */
uint8_t enc_tlen; /* Type Descriptor Text Length */
} SesThdr;
typedef struct {
uint8_t comstatus;
uint8_t comstat[3];
} SesComStat;
struct typidx {
int ses_tidx;
int ses_oidx;
};
struct sscfg {
uint8_t ses_ntypes; /* total number of types supported */
/*
* We need to keep a type index as well as an
* object index for each object in an enclosure.
*/
struct typidx *ses_typidx;
/*
* We also need to keep track of the number of elements
* per type of element. This is needed later so that we
* can find precisely in the returned status data the
* status for the Nth element of the Kth type.
*/
uint8_t * ses_eltmap;
};
/*
* (de)canonicalization defines
*/
#define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
#define sbit(x, bit) (((uint32_t)(x)) << bit)
#define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
#define sset16(outp, idx, sval) \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
#define sset24(outp, idx, sval) \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
#define sset32(outp, idx, sval) \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
#define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
#define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
#define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
#define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
#define sget16(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
(((uint8_t *)(inp))[idx+1]), idx += 2
#define gget16(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
(((uint8_t *)(inp))[idx+1])
#define sget24(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
(((uint8_t *)(inp))[idx+2]), idx += 3
#define gget24(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
(((uint8_t *)(inp))[idx+2])
#define sget32(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
(((uint8_t *)(inp))[idx+3]), idx += 4
#define gget32(inp, idx, lval) \
lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
(((uint8_t *)(inp))[idx+3])
#define SCSZ 0x2000
#define CFLEN (256 + SES_ENCHDR_MINLEN)
/*
* Routines specific && private to SES only
*/
static int ses_getconfig(ses_softc_t *);
static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
static int ses_getthdr(uint8_t *, int, int, SesThdr *);
static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
static int
ses_softc_init(ses_softc_t *ssc, int doinit)
{
if (doinit == 0) {
struct sscfg *cc;
if (ssc->ses_nobjects) {
SES_FREE(ssc->ses_objmap,
ssc->ses_nobjects * sizeof (encobj));
ssc->ses_objmap = NULL;
}
if ((cc = ssc->ses_private) != NULL) {
if (cc->ses_eltmap && cc->ses_ntypes) {
SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
cc->ses_eltmap = NULL;
cc->ses_ntypes = 0;
}
if (cc->ses_typidx && ssc->ses_nobjects) {
SES_FREE(cc->ses_typidx,
ssc->ses_nobjects * sizeof (struct typidx));
cc->ses_typidx = NULL;
}
SES_FREE(cc, sizeof (struct sscfg));
ssc->ses_private = NULL;
}
ssc->ses_nobjects = 0;
return (0);
}
if (ssc->ses_private == NULL) {
ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
}
if (ssc->ses_private == NULL) {
return (ENOMEM);
}
ssc->ses_nobjects = 0;
ssc->ses_encstat = 0;
return (ses_getconfig(ssc));
}
static int
ses_init_enc(ses_softc_t *ssc)
{
return (0);
}
static int
ses_get_encstat(ses_softc_t *ssc, int slpflag)
{
SesComStat ComStat;
int status;
if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
return (status);
}
ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
return (0);
}
static int
ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
{
SesComStat ComStat;
int status;
ComStat.comstatus = encstat & 0xf;
if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
return (status);
}
ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
return (0);
}
static int
ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
{
int i = (int)obp->obj_id;
if (ssc->ses_objmap[i].svalid == 0) {
SesComStat ComStat;
int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
if (err)
return (err);
ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
ssc->ses_objmap[i].svalid = 1;
}
obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
return (0);
}
static int
ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
{
SesComStat ComStat;
int err;
/*
* If this is clear, we don't do diddly.
*/
if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
return (0);
}
ComStat.comstatus = obp->cstat[0];
ComStat.comstat[0] = obp->cstat[1];
ComStat.comstat[1] = obp->cstat[2];
ComStat.comstat[2] = obp->cstat[3];
err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
return (err);
}
static int
ses_getconfig(ses_softc_t *ssc)
{
struct sscfg *cc;
SesCfgHdr cf;
SesEncHdr hd;
SesEncDesc *cdp;
SesThdr thdr;
int err, amt, i, nobj, ntype, maxima;
char storage[CFLEN], *sdata;
static char cdb[6] = {
RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
};
cc = ssc->ses_private;
if (cc == NULL) {
return (ENXIO);
}
sdata = SES_MALLOC(SCSZ);
if (sdata == NULL)
return (ENOMEM);
amt = SCSZ;
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
if (err) {
SES_FREE(sdata, SCSZ);
return (err);
}
amt = SCSZ - amt;
if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
SES_LOG(ssc, "Unable to parse SES Config Header\n");
SES_FREE(sdata, SCSZ);
return (EIO);
}
if (amt < SES_ENCHDR_MINLEN) {
SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
SES_FREE(sdata, SCSZ);
return (EIO);
}
SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
/*
* Now waltz through all the subenclosures toting up the
* number of types available in each. For this, we only
* really need the enclosure header. However, we get the
* enclosure descriptor for debug purposes, as well
* as self-consistency checking purposes.
*/
maxima = cf.Nsubenc + 1;
cdp = (SesEncDesc *) storage;
for (ntype = i = 0; i < maxima; i++) {
MEMZERO((caddr_t)cdp, sizeof (*cdp));
if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
SES_FREE(sdata, SCSZ);
return (EIO);
}
SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
"closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
SES_FREE(sdata, SCSZ);
return (EIO);
}
SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
cdp->encWWN[6], cdp->encWWN[7]);
ntype += hd.Ntypes;
}
/*
* Now waltz through all the types that are available, getting
* the type header so we can start adding up the number of
* objects available.
*/
for (nobj = i = 0; i < ntype; i++) {
if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
SES_FREE(sdata, SCSZ);
return (EIO);
}
SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
"%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
thdr.enc_subenc, thdr.enc_tlen);
nobj += thdr.enc_maxelt;
}
/*
* Now allocate the object array and type map.
*/
ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
cc->ses_eltmap = SES_MALLOC(ntype);
if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
cc->ses_eltmap == NULL) {
if (ssc->ses_objmap) {
SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
ssc->ses_objmap = NULL;
}
if (cc->ses_typidx) {
SES_FREE(cc->ses_typidx,
(nobj * sizeof (struct typidx)));
cc->ses_typidx = NULL;
}
if (cc->ses_eltmap) {
SES_FREE(cc->ses_eltmap, ntype);
cc->ses_eltmap = NULL;
}
SES_FREE(sdata, SCSZ);
return (ENOMEM);
}
MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
MEMZERO(cc->ses_eltmap, ntype);
cc->ses_ntypes = (uint8_t) ntype;
ssc->ses_nobjects = nobj;
/*
* Now waltz through the # of types again to fill in the types
* (and subenclosure ids) of the allocated objects.
*/
nobj = 0;
for (i = 0; i < ntype; i++) {
int j;
if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
continue;
}
cc->ses_eltmap[i] = thdr.enc_maxelt;
for (j = 0; j < thdr.enc_maxelt; j++) {
cc->ses_typidx[nobj].ses_tidx = i;
cc->ses_typidx[nobj].ses_oidx = j;
ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
}
}
SES_FREE(sdata, SCSZ);
return (0);
}
static int
ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
{
struct sscfg *cc;
int err, amt, bufsiz, tidx, oidx;
char cdb[6], *sdata;
cc = ssc->ses_private;
if (cc == NULL) {
return (ENXIO);
}
/*
* If we're just getting overall enclosure status,
* we only need 2 bytes of data storage.
*
* If we're getting anything else, we know how much
* storage we need by noting that starting at offset
* 8 in returned data, all object status bytes are 4
* bytes long, and are stored in chunks of types(M)
* and nth+1 instances of type M.
*/
if (objid == -1) {
bufsiz = 2;
} else {
bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
}
sdata = SES_MALLOC(bufsiz);
if (sdata == NULL)
return (ENOMEM);
cdb[0] = RECEIVE_DIAGNOSTIC;
cdb[1] = 1;
cdb[2] = SesStatusPage;
cdb[3] = bufsiz >> 8;
cdb[4] = bufsiz & 0xff;
cdb[5] = 0;
amt = bufsiz;
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
if (err) {
SES_FREE(sdata, bufsiz);
return (err);
}
amt = bufsiz - amt;
if (objid == -1) {
tidx = -1;
oidx = -1;
} else {
tidx = cc->ses_typidx[objid].ses_tidx;
oidx = cc->ses_typidx[objid].ses_oidx;
}
if (in) {
if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
err = ENODEV;
}
} else {
if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
err = ENODEV;
} else {
cdb[0] = SEND_DIAGNOSTIC;
cdb[1] = 0x10;
cdb[2] = 0;
cdb[3] = bufsiz >> 8;
cdb[4] = bufsiz & 0xff;
cdb[5] = 0;
amt = -bufsiz;
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
}
}
SES_FREE(sdata, bufsiz);
return (0);
}
/*
* Routines to parse returned SES data structures.
* Architecture and compiler independent.
*/
static int
ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
{
if (buflen < SES_CFGHDR_MINLEN) {
return (-1);
}
gget8(buffer, 1, cfp->Nsubenc);
gget32(buffer, 4, cfp->GenCode);
return (0);
}
static int
ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
{
int s, off = 8;
for (s = 0; s < SubEncId; s++) {
if (off + 3 > amt)
return (-1);
off += buffer[off+3] + 4;
}
if (off + 3 > amt) {
return (-1);
}
gget8(buffer, off+1, chp->Subencid);
gget8(buffer, off+2, chp->Ntypes);
gget8(buffer, off+3, chp->VEnclen);
return (0);
}
static int
ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
{
int s, e, enclen, off = 8;
for (s = 0; s < SubEncId; s++) {
if (off + 3 > amt)
return (-1);
off += buffer[off+3] + 4;
}
if (off + 3 > amt) {
return (-1);
}
gget8(buffer, off+3, enclen);
off += 4;
if (off >= amt)
return (-1);
e = off + enclen;
if (e > amt) {
e = amt;
}
MEMCPY(cdp, &buffer[off], e - off);
return (0);
}
static int
ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
{
int s, off = 8;
if (amt < SES_CFGHDR_MINLEN) {
return (-1);
}
for (s = 0; s < buffer[1]; s++) {
if (off + 3 > amt)
return (-1);
off += buffer[off+3] + 4;
}
if (off + 3 > amt) {
return (-1);
}
off += buffer[off+3] + 4 + (nth * 4);
if (amt < (off + 4))
return (-1);
gget8(buffer, off++, thp->enc_type);
gget8(buffer, off++, thp->enc_maxelt);
gget8(buffer, off++, thp->enc_subenc);
gget8(buffer, off, thp->enc_tlen);
return (0);
}
/*
* This function needs a little explanation.
*
* The arguments are:
*
*
* char *b, int amt
*
* These describes the raw input SES status data and length.
*
* uint8_t *ep
*
* This is a map of the number of types for each element type
* in the enclosure.
*
* int elt
*
* This is the element type being sought. If elt is -1,
* then overall enclosure status is being sought.
*
* int elm
*
* This is the ordinal Mth element of type elt being sought.
*
* SesComStat *sp
*
* This is the output area to store the status for
* the Mth element of type Elt.
*/
static int
ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
{
int idx, i;
/*
* If it's overall enclosure status being sought, get that.
* We need at least 2 bytes of status data to get that.
*/
if (elt == -1) {
if (amt < 2)
return (-1);
gget8(b, 1, sp->comstatus);
sp->comstat[0] = 0;
sp->comstat[1] = 0;
sp->comstat[2] = 0;
return (0);
}
/*
* Check to make sure that the Mth element is legal for type Elt.
*/
if (elm >= ep[elt])
return (-1);
/*
* Starting at offset 8, start skipping over the storage
* for the element types we're not interested in.
*/
for (idx = 8, i = 0; i < elt; i++) {
idx += ((ep[i] + 1) * 4);
}
/*
* Skip over Overall status for this element type.
*/
idx += 4;
/*
* And skip to the index for the Mth element that we're going for.
*/
idx += (4 * elm);
/*
* Make sure we haven't overflowed the buffer.
*/
if (idx+4 > amt)
return (-1);
/*
* Retrieve the status.
*/
gget8(b, idx++, sp->comstatus);
gget8(b, idx++, sp->comstat[0]);
gget8(b, idx++, sp->comstat[1]);
gget8(b, idx++, sp->comstat[2]);
#if 0
PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
#endif
return (0);
}
/*
* This is the mirror function to ses_decode, but we set the 'select'
* bit for the object which we're interested in. All other objects,
* after a status fetch, should have that bit off. Hmm. It'd be easy
* enough to ensure this, so we will.
*/
static int
ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
{
int idx, i;
/*
* If it's overall enclosure status being sought, get that.
* We need at least 2 bytes of status data to get that.
*/
if (elt == -1) {
if (amt < 2)
return (-1);
i = 0;
sset8(b, i, 0);
sset8(b, i, sp->comstatus & 0xf);
#if 0
PRINTF("set EncStat %x\n", sp->comstatus);
#endif
return (0);
}
/*
* Check to make sure that the Mth element is legal for type Elt.
*/
if (elm >= ep[elt])
return (-1);
/*
* Starting at offset 8, start skipping over the storage
* for the element types we're not interested in.
*/
for (idx = 8, i = 0; i < elt; i++) {
idx += ((ep[i] + 1) * 4);
}
/*
* Skip over Overall status for this element type.
*/
idx += 4;
/*
* And skip to the index for the Mth element that we're going for.
*/
idx += (4 * elm);
/*
* Make sure we haven't overflowed the buffer.
*/
if (idx+4 > amt)
return (-1);
/*
* Set the status.
*/
sset8(b, idx, sp->comstatus);
sset8(b, idx, sp->comstat[0]);
sset8(b, idx, sp->comstat[1]);
sset8(b, idx, sp->comstat[2]);
idx -= 4;
#if 0
PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
elt, elm, idx, sp->comstatus, sp->comstat[0],
sp->comstat[1], sp->comstat[2]);
#endif
/*
* Now make sure all other 'Select' bits are off.
*/
for (i = 8; i < amt; i += 4) {
if (i != idx)
b[i] &= ~0x80;
}
/*
* And make sure the INVOP bit is clear.
*/
b[2] &= ~0x10;
return (0);
}
/*
* SAF-TE Type Device Emulation
*/
static int safte_getconfig(ses_softc_t *);
static int safte_rdstat(ses_softc_t *, int);;
static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
static void wrslot_stat(ses_softc_t *, int);
static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
#define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
/*
* SAF-TE specific defines- Mandatory ones only...
*/
/*
* READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
*/
#define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
#define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
#define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
/*
* WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
*/
#define SAFTE_WT_DSTAT 0x10 /* write device slot status */
#define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
#define SAFTE_WT_FANSPD 0x13 /* set fan speed */
#define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
#define SAFTE_WT_GLOBAL 0x15 /* send global command */
#define SAFT_SCRATCH 64
#define NPSEUDO_THERM 16
#define NPSEUDO_ALARM 1
struct scfg {
/*
* Cached Configuration
*/
uint8_t Nfans; /* Number of Fans */
uint8_t Npwr; /* Number of Power Supplies */
uint8_t Nslots; /* Number of Device Slots */
uint8_t DoorLock; /* Door Lock Installed */
uint8_t Ntherm; /* Number of Temperature Sensors */
uint8_t Nspkrs; /* Number of Speakers */
uint8_t Nalarm; /* Number of Alarms (at least one) */
/*
* Cached Flag Bytes for Global Status
*/
uint8_t flag1;
uint8_t flag2;
/*
* What object index ID is where various slots start.
*/
uint8_t pwroff;
uint8_t slotoff;
#define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
};
#define SAFT_FLG1_ALARM 0x1
#define SAFT_FLG1_GLOBFAIL 0x2
#define SAFT_FLG1_GLOBWARN 0x4
#define SAFT_FLG1_ENCPWROFF 0x8
#define SAFT_FLG1_ENCFANFAIL 0x10
#define SAFT_FLG1_ENCPWRFAIL 0x20
#define SAFT_FLG1_ENCDRVFAIL 0x40
#define SAFT_FLG1_ENCDRVWARN 0x80
#define SAFT_FLG2_LOCKDOOR 0x4
#define SAFT_PRIVATE sizeof (struct scfg)
static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
#define SAFT_BAIL(r, x, k, l) \
if ((r) >= (x)) { \
SES_LOG(ssc, safte_2little, x, __LINE__);\
SES_FREE((k), (l)); \
return (EIO); \
}
static int
safte_softc_init(ses_softc_t *ssc, int doinit)
{
int err, i, r;
struct scfg *cc;
if (doinit == 0) {
if (ssc->ses_nobjects) {
if (ssc->ses_objmap) {
SES_FREE(ssc->ses_objmap,
ssc->ses_nobjects * sizeof (encobj));
ssc->ses_objmap = NULL;
}
ssc->ses_nobjects = 0;
}
if (ssc->ses_private) {
SES_FREE(ssc->ses_private, SAFT_PRIVATE);
ssc->ses_private = NULL;
}
return (0);
}
if (ssc->ses_private == NULL) {
ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
if (ssc->ses_private == NULL) {
return (ENOMEM);
}
MEMZERO(ssc->ses_private, SAFT_PRIVATE);
}
ssc->ses_nobjects = 0;
ssc->ses_encstat = 0;
if ((err = safte_getconfig(ssc)) != 0) {
return (err);
}
/*
* The number of objects here, as well as that reported by the
* READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
* that get reported during READ_BUFFER/READ_ENC_STATUS.
*/
cc = ssc->ses_private;
ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
ssc->ses_objmap = (encobj *)
SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
if (ssc->ses_objmap == NULL) {
return (ENOMEM);
}
MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
r = 0;
/*
* Note that this is all arranged for the convenience
* in later fetches of status.
*/
for (i = 0; i < cc->Nfans; i++)
ssc->ses_objmap[r++].enctype = SESTYP_FAN;
cc->pwroff = (uint8_t) r;
for (i = 0; i < cc->Npwr; i++)
ssc->ses_objmap[r++].enctype = SESTYP_POWER;
for (i = 0; i < cc->DoorLock; i++)
ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
for (i = 0; i < cc->Nspkrs; i++)
ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
for (i = 0; i < cc->Ntherm; i++)
ssc->ses_objmap[r++].enctype = SESTYP_THERM;
for (i = 0; i < NPSEUDO_THERM; i++)
ssc->ses_objmap[r++].enctype = SESTYP_THERM;
ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
cc->slotoff = (uint8_t) r;
for (i = 0; i < cc->Nslots; i++)
ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
return (0);
}
static int
safte_init_enc(ses_softc_t *ssc)
{
int err;
static char cdb0[6] = { SEND_DIAGNOSTIC };
err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
if (err) {
return (err);
}
DELAY(5000);
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
return (err);
}
static int
safte_get_encstat(ses_softc_t *ssc, int slpflg)
{
return (safte_rdstat(ssc, slpflg));
}
static int
safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
{
struct scfg *cc = ssc->ses_private;
if (cc == NULL)
return (0);
/*
* Since SAF-TE devices aren't necessarily sticky in terms
* of state, make our soft copy of enclosure status 'sticky'-
* that is, things set in enclosure status stay set (as implied
* by conditions set in reading object status) until cleared.
*/
ssc->ses_encstat &= ~ALL_ENC_STAT;
ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
ssc->ses_encstat |= ENCI_SVALID;
cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
cc->flag1 |= SAFT_FLG1_GLOBWARN;
}
return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
}
static int
safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
{
int i = (int)obp->obj_id;
if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
(ssc->ses_objmap[i].svalid) == 0) {
int err = safte_rdstat(ssc, slpflg);
if (err)
return (err);
}
obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
return (0);
}
static int
safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
{
int idx, err;
encobj *ep;
struct scfg *cc;
SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
(int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
obp->cstat[3]);
/*
* If this is clear, we don't do diddly.
*/
if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
return (0);
}
err = 0;
/*
* Check to see if the common bits are set and do them first.
*/
if (obp->cstat[0] & ~SESCTL_CSEL) {
err = set_objstat_sel(ssc, obp, slp);
if (err)
return (err);
}
cc = ssc->ses_private;
if (cc == NULL)
return (0);
idx = (int)obp->obj_id;
ep = &ssc->ses_objmap[idx];
switch (ep->enctype) {
case SESTYP_DEVICE:
{
uint8_t slotop = 0;
/*
* XXX: I should probably cache the previous state
* XXX: of SESCTL_DEVOFF so that when it goes from
* XXX: true to false I can then set PREPARE FOR OPERATION
* XXX: flag in PERFORM SLOT OPERATION write buffer command.
*/
if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
slotop |= 0x2;
}
if (obp->cstat[2] & SESCTL_RQSID) {
slotop |= 0x4;
}
err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
slotop, slp);
if (err)
return (err);
if (obp->cstat[3] & SESCTL_RQSFLT) {
ep->priv |= 0x2;
} else {
ep->priv &= ~0x2;
}
if (ep->priv & 0xc6) {
ep->priv &= ~0x1;
} else {
ep->priv |= 0x1; /* no errors */
}
wrslot_stat(ssc, slp);
break;
}
case SESTYP_POWER:
if (obp->cstat[3] & SESCTL_RQSTFAIL) {
cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
} else {
cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
}
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
if (err)
return (err);
if (obp->cstat[3] & SESCTL_RQSTON) {
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
idx - cc->pwroff, 0, 0, slp);
} else {
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
idx - cc->pwroff, 0, 1, slp);
}
break;
case SESTYP_FAN:
if (obp->cstat[3] & SESCTL_RQSTFAIL) {
cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
} else {
cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
}
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
if (err)
return (err);
if (obp->cstat[3] & SESCTL_RQSTON) {
uint8_t fsp;
if ((obp->cstat[3] & 0x7) == 7) {
fsp = 4;
} else if ((obp->cstat[3] & 0x7) == 6) {
fsp = 3;
} else if ((obp->cstat[3] & 0x7) == 4) {
fsp = 2;
} else {
fsp = 1;
}
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
} else {
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
}
break;
case SESTYP_DOORLOCK:
if (obp->cstat[3] & 0x1) {
cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
} else {
cc->flag2 |= SAFT_FLG2_LOCKDOOR;
}
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
break;
case SESTYP_ALARM:
/*
* On all nonzero but the 'muted' bit, we turn on the alarm,
*/
obp->cstat[3] &= ~0xa;
if (obp->cstat[3] & 0x40) {
cc->flag2 &= ~SAFT_FLG1_ALARM;
} else if (obp->cstat[3] != 0) {
cc->flag2 |= SAFT_FLG1_ALARM;
} else {
cc->flag2 &= ~SAFT_FLG1_ALARM;
}
ep->priv = obp->cstat[3];
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
break;
default:
break;
}
ep->svalid = 0;
return (0);
}
static int
safte_getconfig(ses_softc_t *ssc)
{
struct scfg *cfg;
int err, amt;
char *sdata;
static char cdb[10] =
{ READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
cfg = ssc->ses_private;
if (cfg == NULL)
return (ENXIO);
sdata = SES_MALLOC(SAFT_SCRATCH);
if (sdata == NULL)
return (ENOMEM);
amt = SAFT_SCRATCH;
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
if (err) {
SES_FREE(sdata, SAFT_SCRATCH);
return (err);
}
amt = SAFT_SCRATCH - amt;
if (amt < 6) {
SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
SES_FREE(sdata, SAFT_SCRATCH);
return (EIO);
}
SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
cfg->Nfans = sdata[0];
cfg->Npwr = sdata[1];
cfg->Nslots = sdata[2];
cfg->DoorLock = sdata[3];
cfg->Ntherm = sdata[4];
cfg->Nspkrs = sdata[5];
cfg->Nalarm = NPSEUDO_ALARM;
SES_FREE(sdata, SAFT_SCRATCH);
return (0);
}
static int
safte_rdstat(ses_softc_t *ssc, int slpflg)
{
int err, oid, r, i, hiwater, nitems, amt;
uint16_t tempflags;
size_t buflen;
uint8_t status, oencstat;
char *sdata, cdb[10];
struct scfg *cc = ssc->ses_private;
/*
* The number of objects overstates things a bit,
* both for the bogus 'thermometer' entries and
* the drive status (which isn't read at the same
* time as the enclosure status), but that's okay.
*/
buflen = 4 * cc->Nslots;
if (ssc->ses_nobjects > buflen)
buflen = ssc->ses_nobjects;
sdata = SES_MALLOC(buflen);
if (sdata == NULL)
return (ENOMEM);
cdb[0] = READ_BUFFER;
cdb[1] = 1;
cdb[2] = SAFTE_RD_RDESTS;
cdb[3] = 0;
cdb[4] = 0;
cdb[5] = 0;
cdb[6] = 0;
cdb[7] = (buflen >> 8) & 0xff;
cdb[8] = buflen & 0xff;
cdb[9] = 0;
amt = buflen;
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
if (err) {
SES_FREE(sdata, buflen);
return (err);
}
hiwater = buflen - amt;
/*
* invalidate all status bits.
*/
for (i = 0; i < ssc->ses_nobjects; i++)
ssc->ses_objmap[i].svalid = 0;
oencstat = ssc->ses_encstat & ALL_ENC_STAT;
ssc->ses_encstat = 0;
/*
* Now parse returned buffer.
* If we didn't get enough data back,
* that's considered a fatal error.
*/
oid = r = 0;
for (nitems = i = 0; i < cc->Nfans; i++) {
SAFT_BAIL(r, hiwater, sdata, buflen);
/*
* 0 = Fan Operational
* 1 = Fan is malfunctioning
* 2 = Fan is not present
* 0x80 = Unknown or Not Reportable Status
*/
ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
switch ((int)(uint8_t)sdata[r]) {
case 0:
nitems++;
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
/*
* We could get fancier and cache
* fan speeds that we have set, but
* that isn't done now.
*/
ssc->ses_objmap[oid].encstat[3] = 7;
break;
case 1:
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
/*
* FAIL and FAN STOPPED synthesized
*/
ssc->ses_objmap[oid].encstat[3] = 0x40;
/*
* Enclosure marked with CRITICAL error
* if only one fan or no thermometers,
* else the NONCRITICAL error is set.
*/
if (cc->Nfans == 1 || cc->Ntherm == 0)
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
else
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
break;
case 2:
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_NOTINSTALLED;
ssc->ses_objmap[oid].encstat[3] = 0;
/*
* Enclosure marked with CRITICAL error
* if only one fan or no thermometers,
* else the NONCRITICAL error is set.
*/
if (cc->Nfans == 1)
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
else
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
break;
case 0x80:
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
ssc->ses_objmap[oid].encstat[3] = 0;
ssc->ses_encstat |= SES_ENCSTAT_INFO;
break;
default:
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_UNSUPPORTED;
SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
sdata[r] & 0xff);
break;
}
ssc->ses_objmap[oid++].svalid = 1;
r++;
}
/*
* No matter how you cut it, no cooling elements when there
* should be some there is critical.
*/
if (cc->Nfans && nitems == 0) {
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
}
for (i = 0; i < cc->Npwr; i++) {
SAFT_BAIL(r, hiwater, sdata, buflen);
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
switch ((uint8_t)sdata[r]) {
case 0x00: /* pws operational and on */
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
break;
case 0x01: /* pws operational and off */
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[3] = 0x10;
ssc->ses_encstat |= SES_ENCSTAT_INFO;
break;
case 0x10: /* pws is malfunctioning and commanded on */
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
ssc->ses_objmap[oid].encstat[3] = 0x61;
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
break;
case 0x11: /* pws is malfunctioning and commanded off */
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
ssc->ses_objmap[oid].encstat[3] = 0x51;
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
break;
case 0x20: /* pws is not present */
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_NOTINSTALLED;
ssc->ses_objmap[oid].encstat[3] = 0;
ssc->ses_encstat |= SES_ENCSTAT_INFO;
break;
case 0x21: /* pws is present */
/*
* This is for enclosures that cannot tell whether the
* device is on or malfunctioning, but know that it is
* present. Just fall through.
*/
/* FALLTHROUGH */
case 0x80: /* Unknown or Not Reportable Status */
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
ssc->ses_objmap[oid].encstat[3] = 0;
ssc->ses_encstat |= SES_ENCSTAT_INFO;
break;
default:
SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
i, sdata[r] & 0xff);
break;
}
ssc->ses_objmap[oid++].svalid = 1;
r++;
}
/*
* Skip over Slot SCSI IDs
*/
r += cc->Nslots;
/*
* We always have doorlock status, no matter what,
* but we only save the status if we have one.
*/
SAFT_BAIL(r, hiwater, sdata, buflen);
if (cc->DoorLock) {
/*
* 0 = Door Locked
* 1 = Door Unlocked, or no Lock Installed
* 0x80 = Unknown or Not Reportable Status
*/
ssc->ses_objmap[oid].encstat[1] = 0;
ssc->ses_objmap[oid].encstat[2] = 0;
switch ((uint8_t)sdata[r]) {
case 0:
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[3] = 0;
break;
case 1:
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[3] = 1;
break;
case 0x80:
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
ssc->ses_objmap[oid].encstat[3] = 0;
ssc->ses_encstat |= SES_ENCSTAT_INFO;
break;
default:
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_UNSUPPORTED;
SES_LOG(ssc, "unknown lock status 0x%x\n",
sdata[r] & 0xff);
break;
}
ssc->ses_objmap[oid++].svalid = 1;
}
r++;
/*
* We always have speaker status, no matter what,
* but we only save the status if we have one.
*/
SAFT_BAIL(r, hiwater, sdata, buflen);
if (cc->Nspkrs) {
ssc->ses_objmap[oid].encstat[1] = 0;
ssc->ses_objmap[oid].encstat[2] = 0;
if (sdata[r] == 1) {
/*
* We need to cache tone urgency indicators.
* Someday.
*/
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
ssc->ses_objmap[oid].encstat[3] = 0x8;
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
} else if (sdata[r] == 0) {
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[3] = 0;
} else {
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_UNSUPPORTED;
ssc->ses_objmap[oid].encstat[3] = 0;
SES_LOG(ssc, "unknown spkr status 0x%x\n",
sdata[r] & 0xff);
}
ssc->ses_objmap[oid++].svalid = 1;
}
r++;
for (i = 0; i < cc->Ntherm; i++) {
SAFT_BAIL(r, hiwater, sdata, buflen);
/*
* Status is a range from -10 to 245 deg Celsius,
* which we need to normalize to -20 to -245 according
* to the latest SCSI spec, which makes little
* sense since this would overflow an 8bit value.
* Well, still, the base normalization is -20,
* not -10, so we have to adjust.
*
* So what's over and under temperature?
* Hmm- we'll state that 'normal' operating
* is 10 to 40 deg Celsius.
*/
/*
* Actually.... All of the units that people out in the world
* seem to have do not come even close to setting a value that
* complies with this spec.
*
* The closest explanation I could find was in an
* LSI-Logic manual, which seemed to indicate that
* this value would be set by whatever the I2C code
* would interpolate from the output of an LM75
* temperature sensor.
*
* This means that it is impossible to use the actual
* numeric value to predict anything. But we don't want
* to lose the value. So, we'll propagate the *uncorrected*
* value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
* temperature flags for warnings.
*/
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
ssc->ses_objmap[oid].encstat[1] = 0;
ssc->ses_objmap[oid].encstat[2] = sdata[r];
ssc->ses_objmap[oid].encstat[3] = 0;;
ssc->ses_objmap[oid++].svalid = 1;
r++;
}
/*
* Now, for "pseudo" thermometers, we have two bytes
* of information in enclosure status- 16 bits. Actually,
* the MSB is a single TEMP ALERT flag indicating whether
* any other bits are set, but, thanks to fuzzy thinking,
* in the SAF-TE spec, this can also be set even if no
* other bits are set, thus making this really another
* binary temperature sensor.
*/
SAFT_BAIL(r, hiwater, sdata, buflen);
tempflags = sdata[r++];
SAFT_BAIL(r, hiwater, sdata, buflen);
tempflags |= (tempflags << 8) | sdata[r++];
for (i = 0; i < NPSEUDO_THERM; i++) {
ssc->ses_objmap[oid].encstat[1] = 0;
if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
ssc->ses_objmap[4].encstat[2] = 0xff;
/*
* Set 'over temperature' failure.
*/
ssc->ses_objmap[oid].encstat[3] = 8;
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
} else {
/*
* We used to say 'not available' and synthesize a
* nominal 30 deg (C)- that was wrong. Actually,
* Just say 'OK', and use the reserved value of
* zero.
*/
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[2] = 0;
ssc->ses_objmap[oid].encstat[3] = 0;
}
ssc->ses_objmap[oid++].svalid = 1;
}
/*
* Get alarm status.
*/
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
ssc->ses_objmap[oid++].svalid = 1;
/*
* Now get drive slot status
*/
cdb[2] = SAFTE_RD_RDDSTS;
amt = buflen;
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
if (err) {
SES_FREE(sdata, buflen);
return (err);
}
hiwater = buflen - amt;
for (r = i = 0; i < cc->Nslots; i++, r += 4) {
SAFT_BAIL(r+3, hiwater, sdata, buflen);
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
ssc->ses_objmap[oid].encstat[2] = 0;
ssc->ses_objmap[oid].encstat[3] = 0;
status = sdata[r+3];
if ((status & 0x1) == 0) { /* no device */
ssc->ses_objmap[oid].encstat[0] =
SES_OBJSTAT_NOTINSTALLED;
} else {
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
}
if (status & 0x2) {
ssc->ses_objmap[oid].encstat[2] = 0x8;
}
if ((status & 0x4) == 0) {
ssc->ses_objmap[oid].encstat[3] = 0x10;
}
ssc->ses_objmap[oid++].svalid = 1;
}
/* see comment below about sticky enclosure status */
ssc->ses_encstat |= ENCI_SVALID | oencstat;
SES_FREE(sdata, buflen);
return (0);
}
static int
set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
{
int idx;
encobj *ep;
struct scfg *cc = ssc->ses_private;
if (cc == NULL)
return (0);
idx = (int)obp->obj_id;
ep = &ssc->ses_objmap[idx];
switch (ep->enctype) {
case SESTYP_DEVICE:
if (obp->cstat[0] & SESCTL_PRDFAIL) {
ep->priv |= 0x40;
}
/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
if (obp->cstat[0] & SESCTL_DISABLE) {
ep->priv |= 0x80;
/*
* Hmm. Try to set the 'No Drive' flag.
* Maybe that will count as a 'disable'.
*/
}
if (ep->priv & 0xc6) {
ep->priv &= ~0x1;
} else {
ep->priv |= 0x1; /* no errors */
}
wrslot_stat(ssc, slp);
break;
case SESTYP_POWER:
/*
* Okay- the only one that makes sense here is to
* do the 'disable' for a power supply.
*/
if (obp->cstat[0] & SESCTL_DISABLE) {
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
idx - cc->pwroff, 0, 0, slp);
}
break;
case SESTYP_FAN:
/*
* Okay- the only one that makes sense here is to
* set fan speed to zero on disable.
*/
if (obp->cstat[0] & SESCTL_DISABLE) {
/* remember- fans are the first items, so idx works */
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
}
break;
case SESTYP_DOORLOCK:
/*
* Well, we can 'disable' the lock.
*/
if (obp->cstat[0] & SESCTL_DISABLE) {
cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
}
break;
case SESTYP_ALARM:
/*
* Well, we can 'disable' the alarm.
*/
if (obp->cstat[0] & SESCTL_DISABLE) {
cc->flag2 &= ~SAFT_FLG1_ALARM;
ep->priv |= 0x40; /* Muted */
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
cc->flag2, 0, slp);
}
break;
default:
break;
}
ep->svalid = 0;
return (0);
}
/*
* This function handles all of the 16 byte WRITE BUFFER commands.
*/
static int
wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
uint8_t b3, int slp)
{
int err, amt;
char *sdata;
struct scfg *cc = ssc->ses_private;
static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
if (cc == NULL)
return (0);
sdata = SES_MALLOC(16);
if (sdata == NULL)
return (ENOMEM);
SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
sdata[0] = op;
sdata[1] = b1;
sdata[2] = b2;
sdata[3] = b3;
MEMZERO(&sdata[4], 12);
amt = -16;
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
SES_FREE(sdata, 16);
return (err);
}
/*
* This function updates the status byte for the device slot described.
*
* Since this is an optional SAF-TE command, there's no point in
* returning an error.
*/
static void
wrslot_stat(ses_softc_t *ssc, int slp)
{
int i, amt;
encobj *ep;
char cdb[10], *sdata;
struct scfg *cc = ssc->ses_private;
if (cc == NULL)
return;
SES_DLOG(ssc, "saf_wrslot\n");
cdb[0] = WRITE_BUFFER;
cdb[1] = 1;
cdb[2] = 0;
cdb[3] = 0;
cdb[4] = 0;
cdb[5] = 0;
cdb[6] = 0;
cdb[7] = 0;
cdb[8] = cc->Nslots * 3 + 1;
cdb[9] = 0;
sdata = SES_MALLOC(cc->Nslots * 3 + 1);
if (sdata == NULL)
return;
MEMZERO(sdata, cc->Nslots * 3 + 1);
sdata[0] = SAFTE_WT_DSTAT;
for (i = 0; i < cc->Nslots; i++) {
ep = &ssc->ses_objmap[cc->slotoff + i];
SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
sdata[1 + (3 * i)] = ep->priv & 0xff;
}
amt = -(cc->Nslots * 3 + 1);
(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
SES_FREE(sdata, cc->Nslots * 3 + 1);
}
/*
* This function issues the "PERFORM SLOT OPERATION" command.
*/
static int
perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
{
int err, amt;
char *sdata;
struct scfg *cc = ssc->ses_private;
static char cdb[10] =
{ WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
if (cc == NULL)
return (0);
sdata = SES_MALLOC(SAFT_SCRATCH);
if (sdata == NULL)
return (ENOMEM);
MEMZERO(sdata, SAFT_SCRATCH);
sdata[0] = SAFTE_WT_SLTOP;
sdata[1] = slot;
sdata[2] = opflag;
SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
amt = -SAFT_SCRATCH;
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
SES_FREE(sdata, SAFT_SCRATCH);
return (err);
}