1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/i386/isa/random.c
1995-11-20 12:12:02 +00:00

433 lines
12 KiB
C

/*
* random.c -- A strong random number generator
*
* $Id: random.c,v 1.2 1995/11/04 16:00:50 markm Exp $
*
* Version 0.92, last modified 21-Sep-95
*
* Copyright Theodore Ts'o, 1994, 1995. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <i386/isa/isa.h>
#include <i386/isa/icu.h>
#include <i386/isa/timerreg.h>
#include <i386/isa/isa_device.h>
#include <machine/random.h>
#define RANDPOOL 512
struct random_bucket {
int add_ptr;
int entropy_count;
int length;
int bit_length;
int delay_mix:1;
u_int8_t *pool;
};
struct timer_rand_state {
u_int32_t last_time;
int last_delta;
int nbits;
};
static struct random_bucket random_state;
static u_int32_t rand_pool_key[16];
static u_int8_t random_pool[RANDPOOL];
static u_int32_t random_counter[16];
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state irq_timer_state[ICU_LEN];
inthand2_t add_interrupt_randomness;
u_int16_t interrupt_allowed = 0;
#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
static void
flush_random(struct random_bucket *random_state)
{
random_state->add_ptr = 0;
random_state->bit_length = random_state->length * 8;
random_state->entropy_count = 0;
random_state->delay_mix = 0;
}
void
rand_initialize(void)
{
random_state.length = RANDPOOL;
random_state.pool = random_pool;
flush_random(&random_state);
#if 0
{
int irq;
long interrupts;
/* XXX Dreadful hack - should be replaced by something more elegant */
interrupts = RANDOM_INTERRUPTS;
for (irq = 0; irq < ICU_LEN; irq++) {
interrupt_allowed[irq] = interrupts & 0x0001;
interrupts >>= 1;
printf("Randomising irq %d %s\n", irq, interrupt_allowed[irq] ?
"on" : "off");
}
}
#endif
}
/*
* MD5 transform algorithm, taken from code written by Colin Plumb,
* and put into the public domain
*/
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
{
u_int32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
static void
mix_bucket(struct random_bucket *v)
{
struct random_bucket *r = v;
int i, num_passes;
u_int32_t *p;
u_int32_t iv[4];
r->delay_mix = 0;
/* Start IV from last block of the random pool */
memcpy(iv, r->pool + r->length - sizeof(iv), sizeof(iv));
num_passes = r->length / 16;
for (i = 0, p = (u_int32_t *) r->pool; i < num_passes; i++) {
MD5Transform(iv, rand_pool_key);
iv[0] = (*p++ ^= iv[0]);
iv[1] = (*p++ ^= iv[1]);
iv[2] = (*p++ ^= iv[2]);
iv[3] = (*p++ ^= iv[3]);
}
memcpy(rand_pool_key, r->pool, sizeof(rand_pool_key));
/* Wipe iv from memory */
bzero(iv, sizeof(iv));
r->add_ptr = 0;
}
/*
* This function adds a byte into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*/
static inline void
add_entropy_byte(struct random_bucket *r, const u_int8_t ch, int delay)
{
if (!delay && r->delay_mix)
mix_bucket(r);
r->pool[r->add_ptr++] ^= ch;
if (r->add_ptr >= r->length) {
if (delay) {
r->delay_mix = 1;
r->add_ptr = 0;
} else
mix_bucket(r);
}
}
/*
* This function adds some number of bytes into the entropy pool and
* updates the entropy count as appropriate.
*/
static void
add_entropy(struct random_bucket *r, const u_int8_t *ptr, int length,
int entropy_level, int delay)
{
while (length-- > 0)
add_entropy_byte(r, *ptr++, delay);
r->entropy_count += entropy_level;
if (r->entropy_count > r->length*8)
r->entropy_count = r->length * 8;
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
int delay)
{
int delta, delta2;
int nbits;
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* delta's in order to make our estimate.
*/
delta = ticks - state->last_time;
delta2 = delta - state->last_delta;
state->last_time = ticks;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), nbits, delay);
#if defined (__i386__)
/*
* On a 386, read the high resolution timer. We assume that
* this gives us 2 bits of randomness. XXX This needs
* investigation.
*/
outb(TIMER_LATCH|TIMER_SEL0, TIMER_MODE); /* latch the count ASAP */
add_entropy_byte(r, inb(TIMER_CNTR0), 1);
add_entropy_byte(r, inb(TIMER_CNTR0), 1);
r->entropy_count += 2;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
#endif
}
void
add_keyboard_randomness(u_char scancode)
{
struct random_bucket *r = &random_state;
add_timer_randomness(r, &keyboard_timer_state, 0);
add_entropy_byte(r, scancode, 0);
r->entropy_count += 6;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_interrupt_randomness(int irq)
{
static struct random_bucket *r = &random_state;
u_int16_t intbit = 1 << irq;
/* printf("Trapping interrupt %d\n", irq); */
if (interrupt_allowed & intbit)
add_timer_randomness(r, &irq_timer_state[irq], 1);
}
/*
* This function extracts randomness from the "entropy pool", and
* returns it in a buffer. This function computes how many remaining
* bits of entropy are left in the pool, but it does not restrict the
* number of bytes that are actually obtained.
*/
static inline u_int
extract_entropy(struct random_bucket *r, char *buf, u_int nbytes)
{
int passes, i;
u_int length, ret;
u_int32_t tmp[4];
u_int8_t *cp;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), 0, 0);
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
if (nbytes > 32768)
nbytes = 32768;
ret = nbytes;
r->entropy_count -= ret * 8;
if (r->entropy_count < 0)
r->entropy_count = 0;
passes = r->length / 64;
while (nbytes) {
length = MIN(nbytes, 16);
for (i=0; i < 16; i++) {
if (++random_counter[i] != 0)
break;
}
tmp[0] = 0x67452301;
tmp[1] = 0xefcdab89;
tmp[2] = 0x98badcfe;
tmp[3] = 0x10325476;
MD5Transform(tmp, random_counter);
for (i = 0, cp = r->pool; i < passes; i++, cp+=64)
MD5Transform(tmp, (u_int32_t *) cp);
memcpy(buf, tmp, length);
nbytes -= length;
buf += length;
}
return ret;
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for seeding TCP sequence
* numbers, etc.
*/
void
get_random_bytes(void *buf, u_int nbytes)
{
extract_entropy(&random_state, (char *) buf, nbytes);
}
u_int
read_random(char * buf, u_int nbytes)
{
if ((nbytes * 8) > random_state.entropy_count)
nbytes = random_state.entropy_count / 8;
return extract_entropy(&random_state, buf, nbytes);
}
u_int
read_random_unlimited(char * buf, u_int nbytes)
{
return extract_entropy(&random_state, buf, nbytes);
}