1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00
freebsd/sys/net/radix.c
Garrett Wollman 3545b0484c radix.c: correct exit condition in rn_walktree_from()
route.c: be a little more careful when running deleting children of dying
.        routes
1995-03-23 18:07:29 +00:00

858 lines
21 KiB
C

/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.2 (Berkeley) 1/4/94
* $Id: radix.c,v 1.6 1995/03/20 21:30:12 wollman Exp $
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#ifndef RNF_NORMAL
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#define M_DONTWAIT M_NOWAIT
#ifdef KERNEL
#include <sys/domain.h>
#endif
#endif
#include <net/radix.h>
int max_keylen;
struct radix_mask *rn_mkfreelist;
struct radix_node_head *mask_rnhead;
static int gotOddMasks;
static char *maskedKey;
static char *rn_zeros, *rn_ones;
#define rn_masktop (mask_rnhead->rnh_treetop)
#undef Bcmp
#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* The present version of the code makes no use of normal routes,
* but similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*/
struct radix_node *
rn_search(v_arg, head)
void *v_arg;
struct radix_node *head;
{
register struct radix_node *x;
register caddr_t v;
for (x = head, v = v_arg; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
};
struct radix_node *
rn_search_m(v_arg, head, m_arg)
struct radix_node *head;
void *v_arg, *m_arg;
{
register struct radix_node *x;
register caddr_t v = v_arg, m = m_arg;
for (x = head; x->rn_b >= 0;) {
if ((x->rn_bmask & m[x->rn_off]) &&
(x->rn_bmask & v[x->rn_off]))
x = x->rn_r;
else
x = x->rn_l;
}
return x;
};
int
rn_refines(m_arg, n_arg)
void *m_arg, *n_arg;
{
register caddr_t m = m_arg, n = n_arg;
register caddr_t lim, lim2 = lim = n + *(u_char *)n;
int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
int masks_are_equal = 1;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return 1;
return (!masks_are_equal);
}
struct radix_node *
rn_match(v_arg, head)
void *v_arg;
struct radix_node_head *head;
{
caddr_t v = v_arg;
register struct radix_node *t = head->rnh_treetop, *x;
register caddr_t cp = v, cp2, cp3;
caddr_t cplim, mstart;
struct radix_node *saved_t, *top = t;
int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_b >= 0; ) {
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
}
/*
* See if we match exactly as a host destination
*/
cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto on1;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return t;
on1:
matched_off = cp - v;
saved_t = t;
do {
if (t->rn_mask) {
/*
* Even if we don't match exactly as a hosts;
* we may match if the leaf we wound up at is
* a route to a net.
*/
cp3 = matched_off + t->rn_mask;
cp2 = matched_off + t->rn_key;
for (; cp < cplim; cp++)
if ((*cp2++ ^ *cp) & *cp3++)
break;
if (cp == cplim)
return t;
cp = matched_off + v;
}
} while ((t = t->rn_dupedkey) != 0);
t = saved_t;
/* start searching up the tree */
do {
register struct radix_mask *m;
t = t->rn_p;
m = t->rn_mklist;
if (m) {
/*
* After doing measurements here, it may
* turn out to be faster to open code
* rn_search_m here instead of always
* copying and masking.
*/
off = min(t->rn_off, matched_off);
mstart = maskedKey + off;
do {
cp2 = mstart;
cp3 = m->rm_mask + off;
for (cp = v + off; cp < cplim;)
*cp2++ = *cp++ & *cp3++;
x = rn_search(maskedKey, t);
while (x && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x &&
(Bcmp(mstart, x->rn_key + off,
vlen - off) == 0))
return x;
} while ((m = m->rm_mklist) != 0);
}
} while (t != top);
return 0;
};
#ifdef RN_DEBUG
int rn_nodenum;
struct radix_node *rn_clist;
int rn_saveinfo;
int rn_debug = 1;
#endif
struct radix_node *
rn_newpair(v, b, nodes)
void *v;
int b;
struct radix_node nodes[2];
{
register struct radix_node *tt = nodes, *t = tt + 1;
t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt; t->rn_off = b >> 3;
tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
#ifdef RN_DEBUG
tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
return t;
}
struct radix_node *
rn_insert(v_arg, head, dupentry, nodes)
void *v_arg;
struct radix_node_head *head;
int *dupentry;
struct radix_node nodes[2];
{
caddr_t v = v_arg;
struct radix_node *top = head->rnh_treetop;
int head_off = top->rn_off, vlen = (int)*((u_char *)v);
register struct radix_node *t = rn_search(v_arg, top);
register caddr_t cp = v + head_off;
register int b;
struct radix_node *tt;
/*
*find first bit at which v and t->rn_key differ
*/
{
register caddr_t cp2 = t->rn_key + head_off;
register int cmp_res;
caddr_t cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
register struct radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else x = x->rn_l;
} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
#ifdef RN_DEBUG
if (rn_debug)
printf("Going In:\n"), traverse(p);
#endif
t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
if ((cp[p->rn_off] & p->rn_bmask) == 0)
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
t->rn_r = x;
} else {
t->rn_r = tt; t->rn_l = x;
}
#ifdef RN_DEBUG
if (rn_debug)
printf("Coming out:\n"), traverse(p);
#endif
}
return (tt);
}
struct radix_node *
rn_addmask(n_arg, search, skip)
int search, skip;
void *n_arg;
{
caddr_t netmask = (caddr_t)n_arg;
register struct radix_node *x;
register caddr_t cp, cplim;
register int b, mlen, j;
int maskduplicated;
mlen = *(u_char *)netmask;
if (search) {
x = rn_search(netmask, rn_masktop);
mlen = *(u_char *)netmask;
if (Bcmp(netmask, x->rn_key, mlen) == 0)
return (x);
}
R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
if (x == 0)
return (0);
Bzero(x, max_keylen + 2 * sizeof (*x));
cp = (caddr_t)(x + 2);
Bcopy(netmask, cp, mlen);
netmask = cp;
x = rn_insert(netmask, mask_rnhead, &maskduplicated, x);
/*
* Calculate index of mask.
*/
cplim = netmask + mlen;
for (cp = netmask + skip; cp < cplim; cp++)
if (*(u_char *)cp != 0xff)
break;
b = (cp - netmask) << 3;
if (cp != cplim) {
if (*cp != 0) {
gotOddMasks = 1;
for (j = 0x80; j; b++, j >>= 1)
if ((j & *cp) == 0)
break;
}
}
x->rn_b = -1 - b;
return (x);
}
struct radix_node *
rn_addroute(v_arg, n_arg, head, treenodes)
void *v_arg, *n_arg;
struct radix_node_head *head;
struct radix_node treenodes[2];
{
caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
register struct radix_node *t, *x = 0, *tt;
struct radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf;
int mlen, keyduplicated;
caddr_t cplim;
struct radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
x = rn_search(netmask, rn_masktop);
mlen = *(u_char *)netmask;
if (Bcmp(netmask, x->rn_key, mlen) != 0) {
x = rn_addmask(netmask, 0, top->rn_off);
if (x == 0)
return (0);
}
netmask = x->rn_key;
b = -1 - x->rn_b;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
do {
if (tt->rn_mask == netmask)
return (0);
t = tt;
if (netmask == 0 ||
(tt->rn_mask && rn_refines(netmask, tt->rn_mask)))
break;
} while ((tt = tt->rn_dupedkey) != 0);
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*/
if (tt && t == saved_tt) {
struct radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_p = x = t->rn_p;
if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
saved_tt = tt; x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
}
#ifdef RN_DEBUG
t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
t = saved_tt;
tt->rn_key = (caddr_t) v;
tt->rn_b = -1;
tt->rn_flags = t->rn_flags & ~RNF_ROOT;
}
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_b = x->rn_b;
}
t = saved_tt->rn_p;
b_leaf = -1 - t->rn_b;
if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
/* Promote general routes from below */
if (x->rn_b < 0) {
if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
MKGet(m);
if (m) {
Bzero(m, sizeof *m);
m->rm_b = x->rn_b;
m->rm_mask = x->rn_mask;
x->rn_mklist = t->rn_mklist = m;
}
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp) != 0; mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
t->rn_mklist = m; *mp = 0;
}
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (b > t->rn_b ))
return tt; /* can't lift at all */
b_leaf = tt->rn_b;
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* For nodes of equal index, place more specific
* masks first.
*/
cplim = netmask + mlen;
for (mp = &x->rn_mklist; (m = *mp) != 0; mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_mask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return tt;
}
if (rn_refines(netmask, m->rm_mask))
break;
}
MKGet(m);
if (m == 0) {
printf("Mask for route not entered\n");
return (tt);
}
Bzero(m, sizeof *m);
m->rm_b = b_leaf;
m->rm_mask = netmask;
m->rm_mklist = *mp;
*mp = m;
tt->rn_mklist = m;
return tt;
}
struct radix_node *
rn_delete(v_arg, netmask_arg, head)
void *v_arg, *netmask_arg;
struct radix_node_head *head;
{
register struct radix_node *t, *p, *x, *tt;
struct radix_mask *m, *saved_m, **mp;
struct radix_node *dupedkey, *saved_tt, *top;
caddr_t v, netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = rn_search(v, x);
head_off = x->rn_off;
vlen = *(u_char *)v;
saved_tt = tt;
top = x;
if (tt == 0 ||
Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
return (0);
/*
* Delete our route from mask lists.
*/
dupedkey = tt->rn_dupedkey;
if (dupedkey) {
if (netmask)
netmask = rn_search(netmask, rn_masktop)->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == 0)
return (0);
}
if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
goto on1;
if (m->rm_mask != tt->rn_mask) {
printf("rn_delete: inconsistent annotation\n");
goto on1;
}
if (--m->rm_refs >= 0)
goto on1;
b = -1 - tt->rn_b;
t = saved_tt->rn_p;
if (b > t->rn_b)
goto on1; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
for (mp = &x->rn_mklist; (m = *mp) != 0; mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
MKFree(m);
break;
}
if (m == 0)
printf("rn_delete: couldn't find our annotation\n");
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return (0);
#ifdef RN_DEBUG
/* Get us out of the creation list */
for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
if (t) t->rn_ybro = tt->rn_ybro;
#endif
t = tt->rn_p;
if (dupedkey) {
if (tt == saved_tt) {
x = dupedkey; x->rn_p = t;
if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
} else {
for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
p = p->rn_dupedkey;
if (p) p->rn_dupedkey = tt->rn_dupedkey;
else printf("rn_delete: couldn't find us\n");
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
#ifndef RN_DEBUG
*++x = *t; p = t->rn_p;
#else
b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
#endif
if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
x->rn_l->rn_p = x; x->rn_r->rn_p = x;
}
goto out;
}
if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp) != 0;)
mp = &m->rm_mklist;
*mp = t->rn_mklist;
} else {
for (m = t->rn_mklist; m;) {
struct radix_mask *mm = m->rm_mklist;
if (m == x->rn_mklist && (--(m->rm_refs) < 0)) {
x->rn_mklist = 0;
MKFree(m);
} else
printf("%s %p at %p\n",
"rn_delete: Orphaned Mask", m, x);
m = mm;
}
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
#ifndef RN_DEBUG
*t = *x;
#else
b = t->rn_info; *t = *x; t->rn_info = b;
#endif
t->rn_l->rn_p = t; t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
/*
* This is the same as rn_walktree() except for the parameters and the
* exit.
*/
int
rn_walktree_from(h, a, m, f, w)
struct radix_node_head *h;
void *a, *m;
register int (*f)();
void *w;
{
int error;
struct radix_node *base, *next;
u_char *xa = (u_char *)a;
u_char *xm = (u_char *)m;
register struct radix_node *rn, *last = 0 /* shut up gcc */;
int stopping = 0;
int lastb;
/*
* rn_search_m is sort-of-open-coded here.
*/
/* printf("about to search\n"); */
for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
last = rn;
/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
if (!(rn->rn_bmask & xm[rn->rn_off])) {
break;
}
if (rn->rn_bmask & xa[rn->rn_off]) {
rn = rn->rn_r;
} else {
rn = rn->rn_l;
}
}
/* printf("done searching\n"); */
/*
* Two cases: either we stepped off the end of our mask,
* in which case last == rn, or we reached a leaf, in which
* case we want to start from the last node we looked at.
* Either way, last is the node we want to start from.
*/
rn = last;
lastb = rn->rn_b;
/* printf("rn %p, lastb %d\n", rn, lastb);*/
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
while (rn->rn_b >= 0)
rn = rn->rn_l;
while (!stopping) {
/* printf("node %p (%d)\n", rn, rn->rn_b); */
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
rn = rn->rn_p;
/* if went up beyond last, stop */
if (rn->rn_b < lastb) {
stopping = 1;
/* printf("up too far\n"); */
}
}
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base) != 0) {
base = rn->rn_dupedkey;
/* printf("leaf %p\n", rn); */
if (!(rn->rn_flags & RNF_ROOT)
&& (error = (*f)(rn, w)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT) {
/* printf("root, stopping"); */
stopping = 1;
}
}
return 0;
}
int
rn_walktree(h, f, w)
struct radix_node_head *h;
register int (*f)();
void *w;
{
int error;
struct radix_node *base, *next;
register struct radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base) != 0) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return (0);
}
/* NOTREACHED */
}
int
rn_inithead(head, off)
void **head;
int off;
{
register struct radix_node_head *rnh;
register struct radix_node *t, *tt, *ttt;
if (*head)
return (1);
R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
if (rnh == 0)
return (0);
Bzero(rnh, sizeof (*rnh));
*head = rnh;
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_walktree = rn_walktree;
rnh->rnh_walktree_from = rn_walktree_from;
rnh->rnh_treetop = t;
return (1);
}
void
rn_init()
{
char *cp, *cplim;
#ifdef KERNEL
struct domain *dom;
for (dom = domains; dom; dom = dom->dom_next)
if (dom->dom_maxrtkey > max_keylen)
max_keylen = dom->dom_maxrtkey;
#endif
if (max_keylen == 0) {
#ifdef DEBUG
printf("rn_init: radix functions require max_keylen be set\n");
#endif
return;
}
R_Malloc(rn_zeros, char *, 3 * max_keylen);
if (rn_zeros == NULL)
panic("rn_init");
Bzero(rn_zeros, 3 * max_keylen);
rn_ones = cp = rn_zeros + max_keylen;
maskedKey = cplim = rn_ones + max_keylen;
while (cp < cplim)
*cp++ = -1;
if (rn_inithead((void **)&mask_rnhead, 0) == 0)
panic("rn_init 2");
}