1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-25 07:49:18 +00:00
freebsd/sys/net80211/ieee80211_proto.c
Gleb Smirnoff c414347bc5 mbufs: isolate max_linkhdr and max_protohdr handling in the mbuf code
o Statically initialize max_linkhdr to default value without relying
  on domain(9) code doing that.
o Statically initialize max_protohdr to a sane value, without relying
  on TCP being always compiled in.
o Retire max_datalen. Set, but not used.
o Don't make the domain(9) system responsible in validating these
  values and updating max_hdr.  Instead provide KPI max_linkhdr_grow()
  and max_protohdr_grow().
o Call max_linkhdr_grow() from IEEE802.11 and max_protohdr_grow() from
  TCP.  Those are the only protocols today that may want to grow.

Reviewed by:		tuexen
Differential revision:	https://reviews.freebsd.org/D36376
2022-08-29 19:14:25 -07:00

2826 lines
83 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2012 IEEE
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 protocol support.
*/
#include "opt_inet.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/ethernet.h> /* XXX for ether_sprintf */
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_adhoc.h>
#include <net80211/ieee80211_sta.h>
#include <net80211/ieee80211_hostap.h>
#include <net80211/ieee80211_wds.h>
#ifdef IEEE80211_SUPPORT_MESH
#include <net80211/ieee80211_mesh.h>
#endif
#include <net80211/ieee80211_monitor.h>
#include <net80211/ieee80211_input.h>
/* XXX tunables */
#define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
#define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
const char *mgt_subtype_name[] = {
"assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
"probe_req", "probe_resp", "timing_adv", "reserved#7",
"beacon", "atim", "disassoc", "auth",
"deauth", "action", "action_noack", "reserved#15"
};
const char *ctl_subtype_name[] = {
"reserved#0", "reserved#1", "reserved#2", "reserved#3",
"reserved#4", "reserved#5", "reserved#6", "control_wrap",
"bar", "ba", "ps_poll", "rts",
"cts", "ack", "cf_end", "cf_end_ack"
};
const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
"IBSS", /* IEEE80211_M_IBSS */
"STA", /* IEEE80211_M_STA */
"WDS", /* IEEE80211_M_WDS */
"AHDEMO", /* IEEE80211_M_AHDEMO */
"HOSTAP", /* IEEE80211_M_HOSTAP */
"MONITOR", /* IEEE80211_M_MONITOR */
"MBSS" /* IEEE80211_M_MBSS */
};
const char *ieee80211_state_name[IEEE80211_S_MAX] = {
"INIT", /* IEEE80211_S_INIT */
"SCAN", /* IEEE80211_S_SCAN */
"AUTH", /* IEEE80211_S_AUTH */
"ASSOC", /* IEEE80211_S_ASSOC */
"CAC", /* IEEE80211_S_CAC */
"RUN", /* IEEE80211_S_RUN */
"CSA", /* IEEE80211_S_CSA */
"SLEEP", /* IEEE80211_S_SLEEP */
};
const char *ieee80211_wme_acnames[] = {
"WME_AC_BE",
"WME_AC_BK",
"WME_AC_VI",
"WME_AC_VO",
"WME_UPSD",
};
/*
* Reason code descriptions were (mostly) obtained from
* IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
*/
const char *
ieee80211_reason_to_string(uint16_t reason)
{
switch (reason) {
case IEEE80211_REASON_UNSPECIFIED:
return ("unspecified");
case IEEE80211_REASON_AUTH_EXPIRE:
return ("previous authentication is expired");
case IEEE80211_REASON_AUTH_LEAVE:
return ("sending STA is leaving/has left IBSS or ESS");
case IEEE80211_REASON_ASSOC_EXPIRE:
return ("disassociated due to inactivity");
case IEEE80211_REASON_ASSOC_TOOMANY:
return ("too many associated STAs");
case IEEE80211_REASON_NOT_AUTHED:
return ("class 2 frame received from nonauthenticated STA");
case IEEE80211_REASON_NOT_ASSOCED:
return ("class 3 frame received from nonassociated STA");
case IEEE80211_REASON_ASSOC_LEAVE:
return ("sending STA is leaving/has left BSS");
case IEEE80211_REASON_ASSOC_NOT_AUTHED:
return ("STA requesting (re)association is not authenticated");
case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
return ("information in the Power Capability element is "
"unacceptable");
case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
return ("information in the Supported Channels element is "
"unacceptable");
case IEEE80211_REASON_IE_INVALID:
return ("invalid element");
case IEEE80211_REASON_MIC_FAILURE:
return ("MIC failure");
case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
return ("4-Way handshake timeout");
case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
return ("group key update timeout");
case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
return ("element in 4-Way handshake different from "
"(re)association request/probe response/beacon frame");
case IEEE80211_REASON_GROUP_CIPHER_INVALID:
return ("invalid group cipher");
case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
return ("invalid pairwise cipher");
case IEEE80211_REASON_AKMP_INVALID:
return ("invalid AKMP");
case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
return ("unsupported version in RSN IE");
case IEEE80211_REASON_INVALID_RSN_IE_CAP:
return ("invalid capabilities in RSN IE");
case IEEE80211_REASON_802_1X_AUTH_FAILED:
return ("IEEE 802.1X authentication failed");
case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
return ("cipher suite rejected because of the security "
"policy");
case IEEE80211_REASON_UNSPECIFIED_QOS:
return ("unspecified (QoS-related)");
case IEEE80211_REASON_INSUFFICIENT_BW:
return ("QoS AP lacks sufficient bandwidth for this QoS STA");
case IEEE80211_REASON_TOOMANY_FRAMES:
return ("too many frames need to be acknowledged");
case IEEE80211_REASON_OUTSIDE_TXOP:
return ("STA is transmitting outside the limits of its TXOPs");
case IEEE80211_REASON_LEAVING_QBSS:
return ("requested from peer STA (the STA is "
"resetting/leaving the BSS)");
case IEEE80211_REASON_BAD_MECHANISM:
return ("requested from peer STA (it does not want to use "
"the mechanism)");
case IEEE80211_REASON_SETUP_NEEDED:
return ("requested from peer STA (setup is required for the "
"used mechanism)");
case IEEE80211_REASON_TIMEOUT:
return ("requested from peer STA (timeout)");
case IEEE80211_REASON_PEER_LINK_CANCELED:
return ("SME cancels the mesh peering instance (not related "
"to the maximum number of peer mesh STAs)");
case IEEE80211_REASON_MESH_MAX_PEERS:
return ("maximum number of peer mesh STAs was reached");
case IEEE80211_REASON_MESH_CPVIOLATION:
return ("the received information violates the Mesh "
"Configuration policy configured in the mesh STA "
"profile");
case IEEE80211_REASON_MESH_CLOSE_RCVD:
return ("the mesh STA has received a Mesh Peering Close "
"message requesting to close the mesh peering");
case IEEE80211_REASON_MESH_MAX_RETRIES:
return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
"Peering Open messages, without receiving a Mesh "
"Peering Confirm message");
case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
return ("the confirmTimer for the mesh peering instance times "
"out");
case IEEE80211_REASON_MESH_INVALID_GTK:
return ("the mesh STA fails to unwrap the GTK or the values "
"in the wrapped contents do not match");
case IEEE80211_REASON_MESH_INCONS_PARAMS:
return ("the mesh STA receives inconsistent information about "
"the mesh parameters between Mesh Peering Management "
"frames");
case IEEE80211_REASON_MESH_INVALID_SECURITY:
return ("the mesh STA fails the authenticated mesh peering "
"exchange because due to failure in selecting "
"pairwise/group ciphersuite");
case IEEE80211_REASON_MESH_PERR_NO_PROXY:
return ("the mesh STA does not have proxy information for "
"this external destination");
case IEEE80211_REASON_MESH_PERR_NO_FI:
return ("the mesh STA does not have forwarding information "
"for this destination");
case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
return ("the mesh STA determines that the link to the next "
"hop of an active path in its forwarding information "
"is no longer usable");
case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
return ("the MAC address of the STA already exists in the "
"mesh BSS");
case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
return ("the mesh STA performs channel switch to meet "
"regulatory requirements");
case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
return ("the mesh STA performs channel switch with "
"unspecified reason");
default:
return ("reserved/unknown");
}
}
static void beacon_miss(void *, int);
static void beacon_swmiss(void *, int);
static void parent_updown(void *, int);
static void update_mcast(void *, int);
static void update_promisc(void *, int);
static void update_channel(void *, int);
static void update_chw(void *, int);
static void vap_update_wme(void *, int);
static void vap_update_slot(void *, int);
static void restart_vaps(void *, int);
static void vap_update_erp_protmode(void *, int);
static void vap_update_preamble(void *, int);
static void vap_update_ht_protmode(void *, int);
static void ieee80211_newstate_cb(void *, int);
static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
struct ieee80211_node *);
static int
null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
m_freem(m);
return ENETDOWN;
}
void
ieee80211_proto_attach(struct ieee80211com *ic)
{
uint8_t hdrlen;
/* override the 802.3 setting */
hdrlen = ic->ic_headroom
+ sizeof(struct ieee80211_qosframe_addr4)
+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
+ IEEE80211_WEP_EXTIVLEN;
/* XXX no way to recalculate on ifdetach */
max_linkhdr_grow(ALIGN(hdrlen));
//ic->ic_protmode = IEEE80211_PROT_CTSONLY;
TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
ic->ic_wme.wme_hipri_switch_hysteresis =
AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
/* initialize management frame handlers */
ic->ic_send_mgmt = ieee80211_send_mgmt;
ic->ic_raw_xmit = null_raw_xmit;
ieee80211_adhoc_attach(ic);
ieee80211_sta_attach(ic);
ieee80211_wds_attach(ic);
ieee80211_hostap_attach(ic);
#ifdef IEEE80211_SUPPORT_MESH
ieee80211_mesh_attach(ic);
#endif
ieee80211_monitor_attach(ic);
}
void
ieee80211_proto_detach(struct ieee80211com *ic)
{
ieee80211_monitor_detach(ic);
#ifdef IEEE80211_SUPPORT_MESH
ieee80211_mesh_detach(ic);
#endif
ieee80211_hostap_detach(ic);
ieee80211_wds_detach(ic);
ieee80211_adhoc_detach(ic);
ieee80211_sta_detach(ic);
}
static void
null_update_beacon(struct ieee80211vap *vap, int item)
{
}
void
ieee80211_proto_vattach(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
int i;
/* override the 802.3 setting */
ifp->if_hdrlen = ic->ic_headroom
+ sizeof(struct ieee80211_qosframe_addr4)
+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
+ IEEE80211_WEP_EXTIVLEN;
vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
callout_init(&vap->iv_mgtsend, 1);
TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
/*
* Install default tx rate handling: no fixed rate, lowest
* supported rate for mgmt and multicast frames. Default
* max retry count. These settings can be changed by the
* driver and/or user applications.
*/
for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
if (isclr(ic->ic_modecaps, i))
continue;
const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
/*
* Setting the management rate to MCS 0 assumes that the
* BSS Basic rate set is empty and the BSS Basic MCS set
* is not.
*
* Since we're not checking this, default to the lowest
* defined rate for this mode.
*
* At least one 11n AP (DLINK DIR-825) is reported to drop
* some MCS management traffic (eg BA response frames.)
*
* See also: 9.6.0 of the 802.11n-2009 specification.
*/
#ifdef NOTYET
if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
} else {
vap->iv_txparms[i].mgmtrate =
rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].mcastrate =
rs->rs_rates[0] & IEEE80211_RATE_VAL;
}
#endif
vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
}
vap->iv_roaming = IEEE80211_ROAMING_AUTO;
vap->iv_update_beacon = null_update_beacon;
vap->iv_deliver_data = ieee80211_deliver_data;
vap->iv_protmode = IEEE80211_PROT_CTSONLY;
vap->iv_update_bss = vap_update_bss;
/* attach support for operating mode */
ic->ic_vattach[vap->iv_opmode](vap);
}
void
ieee80211_proto_vdetach(struct ieee80211vap *vap)
{
#define FREEAPPIE(ie) do { \
if (ie != NULL) \
IEEE80211_FREE(ie, M_80211_NODE_IE); \
} while (0)
/*
* Detach operating mode module.
*/
if (vap->iv_opdetach != NULL)
vap->iv_opdetach(vap);
/*
* This should not be needed as we detach when reseting
* the state but be conservative here since the
* authenticator may do things like spawn kernel threads.
*/
if (vap->iv_auth->ia_detach != NULL)
vap->iv_auth->ia_detach(vap);
/*
* Detach any ACL'ator.
*/
if (vap->iv_acl != NULL)
vap->iv_acl->iac_detach(vap);
FREEAPPIE(vap->iv_appie_beacon);
FREEAPPIE(vap->iv_appie_probereq);
FREEAPPIE(vap->iv_appie_proberesp);
FREEAPPIE(vap->iv_appie_assocreq);
FREEAPPIE(vap->iv_appie_assocresp);
FREEAPPIE(vap->iv_appie_wpa);
#undef FREEAPPIE
}
/*
* Simple-minded authenticator module support.
*/
#define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
/* XXX well-known names */
static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
"wlan_internal", /* IEEE80211_AUTH_NONE */
"wlan_internal", /* IEEE80211_AUTH_OPEN */
"wlan_internal", /* IEEE80211_AUTH_SHARED */
"wlan_xauth", /* IEEE80211_AUTH_8021X */
"wlan_internal", /* IEEE80211_AUTH_AUTO */
"wlan_xauth", /* IEEE80211_AUTH_WPA */
};
static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
static const struct ieee80211_authenticator auth_internal = {
.ia_name = "wlan_internal",
.ia_attach = NULL,
.ia_detach = NULL,
.ia_node_join = NULL,
.ia_node_leave = NULL,
};
/*
* Setup internal authenticators once; they are never unregistered.
*/
static void
ieee80211_auth_setup(void)
{
ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
}
SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
const struct ieee80211_authenticator *
ieee80211_authenticator_get(int auth)
{
if (auth >= IEEE80211_AUTH_MAX)
return NULL;
if (authenticators[auth] == NULL)
ieee80211_load_module(auth_modnames[auth]);
return authenticators[auth];
}
void
ieee80211_authenticator_register(int type,
const struct ieee80211_authenticator *auth)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = auth;
}
void
ieee80211_authenticator_unregister(int type)
{
if (type >= IEEE80211_AUTH_MAX)
return;
authenticators[type] = NULL;
}
/*
* Very simple-minded ACL module support.
*/
/* XXX just one for now */
static const struct ieee80211_aclator *acl = NULL;
void
ieee80211_aclator_register(const struct ieee80211_aclator *iac)
{
printf("wlan: %s acl policy registered\n", iac->iac_name);
acl = iac;
}
void
ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
{
if (acl == iac)
acl = NULL;
printf("wlan: %s acl policy unregistered\n", iac->iac_name);
}
const struct ieee80211_aclator *
ieee80211_aclator_get(const char *name)
{
if (acl == NULL)
ieee80211_load_module("wlan_acl");
return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
}
void
ieee80211_print_essid(const uint8_t *essid, int len)
{
const uint8_t *p;
int i;
if (len > IEEE80211_NWID_LEN)
len = IEEE80211_NWID_LEN;
/* determine printable or not */
for (i = 0, p = essid; i < len; i++, p++) {
if (*p < ' ' || *p > 0x7e)
break;
}
if (i == len) {
printf("\"");
for (i = 0, p = essid; i < len; i++, p++)
printf("%c", *p);
printf("\"");
} else {
printf("0x");
for (i = 0, p = essid; i < len; i++, p++)
printf("%02x", *p);
}
}
void
ieee80211_dump_pkt(struct ieee80211com *ic,
const uint8_t *buf, int len, int rate, int rssi)
{
const struct ieee80211_frame *wh;
int i;
wh = (const struct ieee80211_frame *)buf;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
printf("NODS %s", ether_sprintf(wh->i_addr2));
printf("->%s", ether_sprintf(wh->i_addr1));
printf("(%s)", ether_sprintf(wh->i_addr3));
break;
case IEEE80211_FC1_DIR_TODS:
printf("TODS %s", ether_sprintf(wh->i_addr2));
printf("->%s", ether_sprintf(wh->i_addr3));
printf("(%s)", ether_sprintf(wh->i_addr1));
break;
case IEEE80211_FC1_DIR_FROMDS:
printf("FRDS %s", ether_sprintf(wh->i_addr3));
printf("->%s", ether_sprintf(wh->i_addr1));
printf("(%s)", ether_sprintf(wh->i_addr2));
break;
case IEEE80211_FC1_DIR_DSTODS:
printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
printf("->%s", ether_sprintf(wh->i_addr3));
printf("(%s", ether_sprintf(wh->i_addr2));
printf("->%s)", ether_sprintf(wh->i_addr1));
break;
}
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_DATA:
printf(" data");
break;
case IEEE80211_FC0_TYPE_MGT:
printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
break;
default:
printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
break;
}
if (IEEE80211_QOS_HAS_SEQ(wh)) {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *)buf;
printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
}
if (IEEE80211_IS_PROTECTED(wh)) {
int off;
off = ieee80211_anyhdrspace(ic, wh);
printf(" WEP [IV %.02x %.02x %.02x",
buf[off+0], buf[off+1], buf[off+2]);
if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
printf(" %.02x %.02x %.02x",
buf[off+4], buf[off+5], buf[off+6]);
printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
}
if (rate >= 0)
printf(" %dM", rate / 2);
if (rssi >= 0)
printf(" +%d", rssi);
printf("\n");
if (len > 0) {
for (i = 0; i < len; i++) {
if ((i & 1) == 0)
printf(" ");
printf("%02x", buf[i]);
}
printf("\n");
}
}
static __inline int
findrix(const struct ieee80211_rateset *rs, int r)
{
int i;
for (i = 0; i < rs->rs_nrates; i++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
return i;
return -1;
}
int
ieee80211_fix_rate(struct ieee80211_node *ni,
struct ieee80211_rateset *nrs, int flags)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
int i, j, rix, error;
int okrate, badrate, fixedrate, ucastrate;
const struct ieee80211_rateset *srs;
uint8_t r;
error = 0;
okrate = badrate = 0;
ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
/*
* Workaround awkwardness with fixed rate. We are called
* to check both the legacy rate set and the HT rate set
* but we must apply any legacy fixed rate check only to the
* legacy rate set and vice versa. We cannot tell what type
* of rate set we've been given (legacy or HT) but we can
* distinguish the fixed rate type (MCS have 0x80 set).
* So to deal with this the caller communicates whether to
* check MCS or legacy rate using the flags and we use the
* type of any fixed rate to avoid applying an MCS to a
* legacy rate and vice versa.
*/
if (ucastrate & 0x80) {
if (flags & IEEE80211_F_DOFRATE)
flags &= ~IEEE80211_F_DOFRATE;
} else if ((ucastrate & 0x80) == 0) {
if (flags & IEEE80211_F_DOFMCS)
flags &= ~IEEE80211_F_DOFMCS;
}
/* NB: required to make MCS match below work */
ucastrate &= IEEE80211_RATE_VAL;
}
fixedrate = IEEE80211_FIXED_RATE_NONE;
/*
* XXX we are called to process both MCS and legacy rates;
* we must use the appropriate basic rate set or chaos will
* ensue; for now callers that want MCS must supply
* IEEE80211_F_DOBRS; at some point we'll need to split this
* function so there are two variants, one for MCS and one
* for legacy rates.
*/
if (flags & IEEE80211_F_DOBRS)
srs = (const struct ieee80211_rateset *)
ieee80211_get_suphtrates(ic, ni->ni_chan);
else
srs = ieee80211_get_suprates(ic, ni->ni_chan);
for (i = 0; i < nrs->rs_nrates; ) {
if (flags & IEEE80211_F_DOSORT) {
/*
* Sort rates.
*/
for (j = i + 1; j < nrs->rs_nrates; j++) {
if (IEEE80211_RV(nrs->rs_rates[i]) >
IEEE80211_RV(nrs->rs_rates[j])) {
r = nrs->rs_rates[i];
nrs->rs_rates[i] = nrs->rs_rates[j];
nrs->rs_rates[j] = r;
}
}
}
r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
badrate = r;
/*
* Check for fixed rate.
*/
if (r == ucastrate)
fixedrate = r;
/*
* Check against supported rates.
*/
rix = findrix(srs, r);
if (flags & IEEE80211_F_DONEGO) {
if (rix < 0) {
/*
* A rate in the node's rate set is not
* supported. If this is a basic rate and we
* are operating as a STA then this is an error.
* Otherwise we just discard/ignore the rate.
*/
if ((flags & IEEE80211_F_JOIN) &&
(nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
error++;
} else if ((flags & IEEE80211_F_JOIN) == 0) {
/*
* Overwrite with the supported rate
* value so any basic rate bit is set.
*/
nrs->rs_rates[i] = srs->rs_rates[rix];
}
}
if ((flags & IEEE80211_F_DODEL) && rix < 0) {
/*
* Delete unacceptable rates.
*/
nrs->rs_nrates--;
for (j = i; j < nrs->rs_nrates; j++)
nrs->rs_rates[j] = nrs->rs_rates[j + 1];
nrs->rs_rates[j] = 0;
continue;
}
if (rix >= 0)
okrate = nrs->rs_rates[i];
i++;
}
if (okrate == 0 || error != 0 ||
((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
fixedrate != ucastrate)) {
IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
"%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
"ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
return badrate | IEEE80211_RATE_BASIC;
} else
return IEEE80211_RV(okrate);
}
/*
* Reset 11g-related state.
*
* This is for per-VAP ERP/11g state.
*
* Eventually everything in ieee80211_reset_erp() will be
* per-VAP and in here.
*/
void
ieee80211_vap_reset_erp(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
vap->iv_nonerpsta = 0;
vap->iv_longslotsta = 0;
vap->iv_flags &= ~IEEE80211_F_USEPROT;
/*
* Set short preamble and ERP barker-preamble flags.
*/
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
vap->iv_flags &= ~IEEE80211_F_USEBARKER;
} else {
vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
vap->iv_flags |= IEEE80211_F_USEBARKER;
}
/*
* Short slot time is enabled only when operating in 11g
* and not in an IBSS. We must also honor whether or not
* the driver is capable of doing it.
*/
ieee80211_vap_set_shortslottime(vap,
IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
vap->iv_opmode == IEEE80211_M_HOSTAP &&
(ic->ic_caps & IEEE80211_C_SHSLOT)));
}
/*
* Reset 11g-related state.
*
* Note this resets the global state and a caller should schedule
* a re-check of all the VAPs after setup to update said state.
*/
void
ieee80211_reset_erp(struct ieee80211com *ic)
{
#if 0
ic->ic_flags &= ~IEEE80211_F_USEPROT;
/*
* Set short preamble and ERP barker-preamble flags.
*/
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
(ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
#endif
/* XXX TODO: schedule a new per-VAP ERP calculation */
}
static struct ieee80211_node *
vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
{
struct ieee80211_node *obss;
obss = vap->iv_bss;
vap->iv_bss = ni;
return (obss);
}
/*
* Deferred slot time update.
*
* For per-VAP slot time configuration, call the VAP
* method if the VAP requires it. Otherwise, just call the
* older global method.
*
* If the per-VAP method is called then it's expected that
* the driver/firmware will take care of turning the per-VAP
* flags into slot time configuration.
*
* If the per-VAP method is not called then the global flags will be
* flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
* be set only if all of the vaps will have it set.
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
*/
static void
vap_update_slot(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int num_shslot = 0, num_lgslot = 0;
/*
* Per-VAP path - we've already had the flags updated;
* so just notify the driver and move on.
*/
if (vap->iv_updateslot != NULL) {
vap->iv_updateslot(vap);
return;
}
/*
* Iterate over all of the VAP flags to update the
* global flag.
*
* If all vaps have short slot enabled then flip on
* short slot. If any vap has it disabled then
* we leave it globally disabled. This should provide
* correct behaviour in a multi-BSS scenario where
* at least one VAP has short slot disabled for some
* reason.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_SHSLOT)
num_shslot++;
else
num_lgslot++;
}
/*
* It looks backwards but - if the number of short slot VAPs
* is zero then we're not short slot. Else, we have one
* or more short slot VAPs and we're checking to see if ANY
* of them have short slot disabled.
*/
if (num_shslot == 0)
ic->ic_flags &= ~IEEE80211_F_SHSLOT;
else if (num_lgslot == 0)
ic->ic_flags |= IEEE80211_F_SHSLOT;
IEEE80211_UNLOCK(ic);
/*
* Call the driver with our new global slot time flags.
*/
if (ic->ic_updateslot != NULL)
ic->ic_updateslot(ic);
}
/*
* Deferred ERP protmode update.
*
* This currently calculates the global ERP protection mode flag
* based on each of the VAPs. Any VAP with it enabled is enough
* for the global flag to be enabled. All VAPs with it disabled
* is enough for it to be disabled.
*
* This may make sense right now for the supported hardware where
* net80211 is controlling the single channel configuration, but
* offload firmware that's doing channel changes (eg off-channel
* TDLS, off-channel STA, off-channel P2P STA/AP) may get some
* silly looking flag updates.
*
* Ideally the protection mode calculation is done based on the
* channel, and all VAPs using that channel will inherit it.
* But until that's what net80211 does, this wil have to do.
*/
static void
vap_update_erp_protmode(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int enable_protmode = 0;
int non_erp_present = 0;
/*
* Iterate over all of the VAPs to calculate the overlapping
* ERP protection mode configuration and ERP present math.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_protmode variant and instead
* will look at the vap related flags.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_USEPROT)
enable_protmode = 1;
if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
non_erp_present = 1;
}
if (enable_protmode)
ic->ic_flags |= IEEE80211_F_USEPROT;
else
ic->ic_flags &= ~IEEE80211_F_USEPROT;
if (non_erp_present)
ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
else
ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
/* Beacon update on all VAPs */
ieee80211_notify_erp_locked(ic);
IEEE80211_UNLOCK(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; enable_protmode=%d, non_erp_present=%d\n",
__func__, enable_protmode, non_erp_present);
/*
* Now that the global configuration flags are calculated,
* notify the VAP about its configuration.
*
* The global flags will be used when assembling ERP IEs
* for multi-VAP operation, even if it's on a different
* channel. Yes, that's going to need fixing in the
* future.
*/
if (vap->iv_erp_protmode_update != NULL)
vap->iv_erp_protmode_update(vap);
}
/*
* Deferred ERP short preamble/barker update.
*
* All VAPs need to use short preamble for it to be globally
* enabled or not.
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
*/
static void
vap_update_preamble(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *iv;
int barker_count = 0, short_preamble_count = 0, count = 0;
/*
* Iterate over all of the VAPs to calculate the overlapping
* short or long preamble configuration.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_flags variant and instead
* will look at the vap related flags.
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
if (iv->iv_flags & IEEE80211_F_USEBARKER)
barker_count++;
if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
short_preamble_count++;
count++;
}
/*
* As with vap_update_erp_protmode(), the global flags are
* currently used for beacon IEs.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; barker_count=%d, short_preamble_count=%d\n",
__func__, barker_count, short_preamble_count);
/*
* Only flip on short preamble if all of the VAPs support
* it.
*/
if (barker_count == 0 && short_preamble_count == count) {
ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
ic->ic_flags &= ~IEEE80211_F_USEBARKER;
} else {
ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
ic->ic_flags |= IEEE80211_F_USEBARKER;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: global barker=%d preamble=%d\n",
__func__,
!! (ic->ic_flags & IEEE80211_F_USEBARKER),
!! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
/* Beacon update on all VAPs */
ieee80211_notify_erp_locked(ic);
IEEE80211_UNLOCK(ic);
/* Driver notification */
if (vap->iv_erp_protmode_update != NULL)
vap->iv_preamble_update(vap);
}
/*
* Deferred HT protmode update and beacon update.
*
* Look at the comments for vap_update_erp_protmode() for more
* background; this assumes all VAPs are on the same channel.
*/
static void
vap_update_ht_protmode(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211vap *iv;
struct ieee80211com *ic = vap->iv_ic;
int num_vaps = 0, num_pure = 0;
int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
int num_nonhtpr = 0;
/*
* Iterate over all of the VAPs to calculate everything.
*
* There are a few different flags to calculate:
*
* + whether there's HT only or HT+legacy stations;
* + whether there's HT20, HT40, or HT20+HT40 stations;
* + whether the desired protection mode is mixed, pure or
* one of the two above.
*
* For now we assume that if a driver can handle this per-VAP
* then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
* variant and instead will look at the vap related variables.
*
* XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
*/
IEEE80211_LOCK(ic);
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
num_vaps++;
/* overlapping BSSes advertising non-HT status present */
if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
num_nonht++;
/* Operating mode flags */
if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
num_nonhtpr++;
switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
case IEEE80211_HTINFO_OPMODE_PURE:
num_pure++;
break;
case IEEE80211_HTINFO_OPMODE_PROTOPT:
num_optional++;
break;
case IEEE80211_HTINFO_OPMODE_HT20PR:
num_ht2040++;
break;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
"%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
__func__,
ieee80211_get_vap_ifname(iv),
!! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
iv->iv_curhtprotmode);
num_ht_sta += iv->iv_ht_sta_assoc;
num_ht40_sta += iv->iv_ht40_sta_assoc;
num_sta += iv->iv_sta_assoc;
}
/*
* Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
* non-HT present), set it here. This shouldn't be used by
* anything but the old overlapping BSS logic so if any drivers
* consume it, it's up to date.
*/
if (num_nonht > 0)
ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
else
ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
/*
* Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
*
* + If all VAPs are PURE, we can stay PURE.
* + If all VAPs are PROTOPT, we can go to PROTOPT.
* + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
* Note that we may have a VAP with one HT20 and a VAP with one HT40;
* So we look at the sum ht and sum ht40 sta counts; if we have a
* HT station and the HT20 != HT40 count, we have to do HT20PR here.
* Note all stations need to be HT for this to be an option.
* + The fall-through is MIXED, because it means we have some odd
* non HT40-involved combination of opmode and this is the most
* sensible default.
*/
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
if (num_pure == num_vaps)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
if (num_optional == num_vaps)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
/*
* Note: we need /a/ HT40 station somewhere for this to
* be a possibility.
*/
if ((num_ht2040 > 0) ||
((num_ht_sta > 0) && (num_ht40_sta > 0) &&
(num_ht_sta != num_ht40_sta)))
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
/*
* Step 3 - if any of the stations across the VAPs are
* non-HT then this needs to be flipped back to MIXED.
*/
if (num_ht_sta != num_sta)
ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
/*
* Step 4 - If we see any overlapping BSS non-HT stations
* via beacons then flip on NONHT_PRESENT.
*/
if (num_nonhtpr > 0)
ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
/* Notify all VAPs to potentially update their beacons */
TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
ieee80211_htinfo_notify(iv);
IEEE80211_UNLOCK(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
"%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
__func__,
!! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
ic->ic_curhtprotmode);
/* Driver update */
if (vap->iv_erp_protmode_update != NULL)
vap->iv_ht_protmode_update(vap);
}
/*
* Set the short slot time state and notify the driver.
*
* This is the per-VAP slot time state.
*/
void
ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
/*
* Only modify the per-VAP slot time.
*/
if (onoff)
vap->iv_flags |= IEEE80211_F_SHSLOT;
else
vap->iv_flags &= ~IEEE80211_F_SHSLOT;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called; onoff=%d\n", __func__, onoff);
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_slot_task);
}
/*
* Update the VAP short /long / barker preamble state and
* update beacon state if needed.
*
* For now it simply copies the global flags into the per-vap
* flags and schedules the callback. Later this will support
* both global and per-VAP flags, especially useful for
* and STA+STA multi-channel operation (eg p2p).
*/
void
ieee80211_vap_update_preamble(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_preamble_task);
}
/*
* Update the VAP 11g protection mode and update beacon state
* if needed.
*/
void
ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred slot flag update and update */
ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
}
/*
* Update the VAP 11n protection mode and update beacon state
* if needed.
*/
void
ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
/* XXX lock? */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
"%s: called\n", __func__);
/* schedule the deferred protmode update */
ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
}
/*
* Check if the specified rate set supports ERP.
* NB: the rate set is assumed to be sorted.
*/
int
ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
{
static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
int i, j;
if (rs->rs_nrates < nitems(rates))
return 0;
for (i = 0; i < nitems(rates); i++) {
for (j = 0; j < rs->rs_nrates; j++) {
int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
if (rates[i] == r)
goto next;
if (r > rates[i])
return 0;
}
return 0;
next:
;
}
return 1;
}
/*
* Mark the basic rates for the rate table based on the
* operating mode. For real 11g we mark all the 11b rates
* and 6, 12, and 24 OFDM. For 11b compatibility we mark only
* 11b rates. There's also a pseudo 11a-mode used to mark only
* the basic OFDM rates.
*/
static void
setbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode, int add)
{
static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_11B] = { 2, { 2, 4 } },
/* NB: mixed b/g */
[IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
[IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
[IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
[IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
/* NB: mixed b/g */
[IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
/* NB: mixed b/g */
[IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
[IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
};
int i, j;
for (i = 0; i < rs->rs_nrates; i++) {
if (!add)
rs->rs_rates[i] &= IEEE80211_RATE_VAL;
for (j = 0; j < basic[mode].rs_nrates; j++)
if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
break;
}
}
}
/*
* Set the basic rates in a rate set.
*/
void
ieee80211_setbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode)
{
setbasicrates(rs, mode, 0);
}
/*
* Add basic rates to a rate set.
*/
void
ieee80211_addbasicrates(struct ieee80211_rateset *rs,
enum ieee80211_phymode mode)
{
setbasicrates(rs, mode, 1);
}
/*
* WME protocol support.
*
* The default 11a/b/g/n parameters come from the WiFi Alliance WMM
* System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
* Draft 2.0 Test Plan (Appendix D).
*
* Static/Dynamic Turbo mode settings come from Atheros.
*/
typedef struct phyParamType {
uint8_t aifsn;
uint8_t logcwmin;
uint8_t logcwmax;
uint16_t txopLimit;
uint8_t acm;
} paramType;
static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
[IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
};
static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
[IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
};
static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
[IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
[IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
};
static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
[IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
[IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
[IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
};
static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
[IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
[IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
};
static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
[IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
[IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
[IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
[IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
[IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
[IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
};
static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
[IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
[IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
[IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
[IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
[IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
};
static void
_setifsparams(struct wmeParams *wmep, const paramType *phy)
{
wmep->wmep_aifsn = phy->aifsn;
wmep->wmep_logcwmin = phy->logcwmin;
wmep->wmep_logcwmax = phy->logcwmax;
wmep->wmep_txopLimit = phy->txopLimit;
}
static void
setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
struct wmeParams *wmep, const paramType *phy)
{
wmep->wmep_acm = phy->acm;
_setifsparams(wmep, phy);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
ieee80211_wme_acnames[ac], type,
wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
wmep->wmep_logcwmax, wmep->wmep_txopLimit);
}
static void
ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
const paramType *pPhyParam, *pBssPhyParam;
struct wmeParams *wmep;
enum ieee80211_phymode mode;
int i;
IEEE80211_LOCK_ASSERT(ic);
if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
return;
/*
* Clear the wme cap_info field so a qoscount from a previous
* vap doesn't confuse later code which only parses the beacon
* field and updates hardware when said field changes.
* Otherwise the hardware is programmed with defaults, not what
* the beacon actually announces.
*
* Note that we can't ever have 0xff as an actual value;
* the only valid values are 0..15.
*/
wme->wme_wmeChanParams.cap_info = 0xfe;
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
for (i = 0; i < WME_NUM_AC; i++) {
switch (i) {
case WME_AC_BK:
pPhyParam = &phyParamForAC_BK[mode];
pBssPhyParam = &phyParamForAC_BK[mode];
break;
case WME_AC_VI:
pPhyParam = &phyParamForAC_VI[mode];
pBssPhyParam = &bssPhyParamForAC_VI[mode];
break;
case WME_AC_VO:
pPhyParam = &phyParamForAC_VO[mode];
pBssPhyParam = &bssPhyParamForAC_VO[mode];
break;
case WME_AC_BE:
default:
pPhyParam = &phyParamForAC_BE[mode];
pBssPhyParam = &bssPhyParamForAC_BE[mode];
break;
}
wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
setwmeparams(vap, "chan", i, wmep, pPhyParam);
} else {
setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
}
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
}
/* NB: check ic_bss to avoid NULL deref on initial attach */
if (vap->iv_bss != NULL) {
/*
* Calculate aggressive mode switching threshold based
* on beacon interval. This doesn't need locking since
* we're only called before entering the RUN state at
* which point we start sending beacon frames.
*/
wme->wme_hipri_switch_thresh =
(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
wme->wme_flags &= ~WME_F_AGGRMODE;
ieee80211_wme_updateparams(vap);
}
}
void
ieee80211_wme_initparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
ieee80211_wme_initparams_locked(vap);
IEEE80211_UNLOCK(ic);
}
/*
* Update WME parameters for ourself and the BSS.
*/
void
ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
{
static const paramType aggrParam[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
[IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
[IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
[IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
[IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
[IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
};
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
const struct wmeParams *wmep;
struct wmeParams *chanp, *bssp;
enum ieee80211_phymode mode;
int i;
int do_aggrmode = 0;
/*
* Set up the channel access parameters for the physical
* device. First populate the configured settings.
*/
for (i = 0; i < WME_NUM_AC; i++) {
chanp = &wme->wme_chanParams.cap_wmeParams[i];
wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
chanp->wmep_aifsn = wmep->wmep_aifsn;
chanp->wmep_logcwmin = wmep->wmep_logcwmin;
chanp->wmep_logcwmax = wmep->wmep_logcwmax;
chanp->wmep_txopLimit = wmep->wmep_txopLimit;
chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
chanp->wmep_aifsn = wmep->wmep_aifsn;
chanp->wmep_logcwmin = wmep->wmep_logcwmin;
chanp->wmep_logcwmax = wmep->wmep_logcwmax;
chanp->wmep_txopLimit = wmep->wmep_txopLimit;
}
/*
* Select mode; we can be called early in which case we
* always use auto mode. We know we'll be called when
* entering the RUN state with bsschan setup properly
* so state will eventually get set correctly
*/
if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
mode = ieee80211_chan2mode(ic->ic_bsschan);
else
mode = IEEE80211_MODE_AUTO;
/*
* This implements aggressive mode as found in certain
* vendors' AP's. When there is significant high
* priority (VI/VO) traffic in the BSS throttle back BE
* traffic by using conservative parameters. Otherwise
* BE uses aggressive params to optimize performance of
* legacy/non-QoS traffic.
*/
/* Hostap? Only if aggressive mode is enabled */
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
(wme->wme_flags & WME_F_AGGRMODE) != 0)
do_aggrmode = 1;
/*
* Station? Only if we're in a non-QoS BSS.
*/
else if ((vap->iv_opmode == IEEE80211_M_STA &&
(vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
do_aggrmode = 1;
/*
* IBSS? Only if we we have WME enabled.
*/
else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
(vap->iv_flags & IEEE80211_F_WME))
do_aggrmode = 1;
/*
* If WME is disabled on this VAP, default to aggressive mode
* regardless of the configuration.
*/
if ((vap->iv_flags & IEEE80211_F_WME) == 0)
do_aggrmode = 1;
/* XXX WDS? */
/* XXX MBSS? */
if (do_aggrmode) {
chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
chanp->wmep_logcwmin = bssp->wmep_logcwmin =
aggrParam[mode].logcwmin;
chanp->wmep_logcwmax = bssp->wmep_logcwmax =
aggrParam[mode].logcwmax;
chanp->wmep_txopLimit = bssp->wmep_txopLimit =
(vap->iv_flags & IEEE80211_F_BURST) ?
aggrParam[mode].txopLimit : 0;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
"logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
chanp->wmep_logcwmax, chanp->wmep_txopLimit);
}
/*
* Change the contention window based on the number of associated
* stations. If the number of associated stations is 1 and
* aggressive mode is enabled, lower the contention window even
* further.
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = 3,
[IEEE80211_MODE_11A] = 3,
[IEEE80211_MODE_11B] = 4,
[IEEE80211_MODE_11G] = 3,
[IEEE80211_MODE_FH] = 4,
[IEEE80211_MODE_TURBO_A] = 3,
[IEEE80211_MODE_TURBO_G] = 3,
[IEEE80211_MODE_STURBO_A] = 3,
[IEEE80211_MODE_HALF] = 3,
[IEEE80211_MODE_QUARTER] = 3,
[IEEE80211_MODE_11NA] = 3,
[IEEE80211_MODE_11NG] = 3,
[IEEE80211_MODE_VHT_2GHZ] = 3,
[IEEE80211_MODE_VHT_5GHZ] = 3,
};
chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"update %s (chan+bss) logcwmin %u\n",
ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
}
/* schedule the deferred WME update */
ieee80211_runtask(ic, &vap->iv_wme_task);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: WME params updated, cap_info 0x%x\n", __func__,
vap->iv_opmode == IEEE80211_M_STA ?
wme->wme_wmeChanParams.cap_info :
wme->wme_bssChanParams.cap_info);
}
void
ieee80211_wme_updateparams(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if (ic->ic_caps & IEEE80211_C_WME) {
IEEE80211_LOCK(ic);
ieee80211_wme_updateparams_locked(vap);
IEEE80211_UNLOCK(ic);
}
}
/*
* Fetch the WME parameters for the given VAP.
*
* When net80211 grows p2p, etc support, this may return different
* parameters for each VAP.
*/
void
ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
{
memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
}
/*
* For NICs which only support one set of WME parameters (ie, softmac NICs)
* there may be different VAP WME parameters but only one is "active".
* This returns the "NIC" WME parameters for the currently active
* context.
*/
void
ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
{
memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
}
/*
* Return whether to use QoS on a given WME queue.
*
* This is intended to be called from the transmit path of softmac drivers
* which are setting NoAck bits in transmit descriptors.
*
* Ideally this would be set in some transmit field before the packet is
* queued to the driver but net80211 isn't quite there yet.
*/
int
ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
{
/* Bounds/sanity check */
if (ac < 0 || ac >= WME_NUM_AC)
return (0);
/* Again, there's only one global context for now */
return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
}
static void
parent_updown(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_parent(ic);
}
static void
update_mcast(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_update_mcast(ic);
}
static void
update_promisc(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_update_promisc(ic);
}
static void
update_channel(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ic->ic_set_channel(ic);
ieee80211_radiotap_chan_change(ic);
}
static void
update_chw(void *arg, int npending)
{
struct ieee80211com *ic = arg;
/*
* XXX should we defer the channel width _config_ update until now?
*/
ic->ic_update_chw(ic);
}
/*
* Deferred WME parameter and beacon update.
*
* In preparation for per-VAP WME configuration, call the VAP
* method if the VAP requires it. Otherwise, just call the
* older global method. There isn't a per-VAP WME configuration
* just yet so for now just use the global configuration.
*/
static void
vap_update_wme(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_wme_state *wme = &ic->ic_wme;
/* Driver update */
if (vap->iv_wme_update != NULL)
vap->iv_wme_update(vap,
ic->ic_wme.wme_chanParams.cap_wmeParams);
else
ic->ic_wme.wme_update(ic);
IEEE80211_LOCK(ic);
/*
* Arrange for the beacon update.
*
* XXX what about MBSS, WDS?
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP
|| vap->iv_opmode == IEEE80211_M_IBSS) {
/*
* Arrange for a beacon update and bump the parameter
* set number so associated stations load the new values.
*/
wme->wme_bssChanParams.cap_info =
(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
}
IEEE80211_UNLOCK(ic);
}
static void
restart_vaps(void *arg, int npending)
{
struct ieee80211com *ic = arg;
ieee80211_suspend_all(ic);
ieee80211_resume_all(ic);
}
/*
* Block until the parent is in a known state. This is
* used after any operations that dispatch a task (e.g.
* to auto-configure the parent device up/down).
*/
void
ieee80211_waitfor_parent(struct ieee80211com *ic)
{
taskqueue_block(ic->ic_tq);
ieee80211_draintask(ic, &ic->ic_parent_task);
ieee80211_draintask(ic, &ic->ic_mcast_task);
ieee80211_draintask(ic, &ic->ic_promisc_task);
ieee80211_draintask(ic, &ic->ic_chan_task);
ieee80211_draintask(ic, &ic->ic_bmiss_task);
ieee80211_draintask(ic, &ic->ic_chw_task);
taskqueue_unblock(ic->ic_tq);
}
/*
* Check to see whether the current channel needs reset.
*
* Some devices don't handle being given an invalid channel
* in their operating mode very well (eg wpi(4) will throw a
* firmware exception.)
*
* Return 0 if we're ok, 1 if the channel needs to be reset.
*
* See PR kern/202502.
*/
static int
ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if ((vap->iv_opmode == IEEE80211_M_IBSS &&
IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
(vap->iv_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
return (1);
return (0);
}
/*
* Reset the curchan to a known good state.
*/
static void
ieee80211_start_reset_chan(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
ic->ic_curchan = &ic->ic_channels[0];
}
/*
* Start a vap running. If this is the first vap to be
* set running on the underlying device then we
* automatically bring the device up.
*/
void
ieee80211_start_locked(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_ASSERT(ic);
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"start running, %d vaps running\n", ic->ic_nrunning);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
/*
* Mark us running. Note that it's ok to do this first;
* if we need to bring the parent device up we defer that
* to avoid dropping the com lock. We expect the device
* to respond to being marked up by calling back into us
* through ieee80211_start_all at which point we'll come
* back in here and complete the work.
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ieee80211_notify_ifnet_change(vap);
/*
* We are not running; if this we are the first vap
* to be brought up auto-up the parent if necessary.
*/
if (ic->ic_nrunning++ == 0) {
/* reset the channel to a known good channel */
if (ieee80211_start_check_reset_chan(vap))
ieee80211_start_reset_chan(vap);
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"%s: up parent %s\n", __func__, ic->ic_name);
ieee80211_runtask(ic, &ic->ic_parent_task);
return;
}
}
/*
* If the parent is up and running, then kick the
* 802.11 state machine as appropriate.
*/
if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
if (vap->iv_opmode == IEEE80211_M_STA) {
#if 0
/* XXX bypasses scan too easily; disable for now */
/*
* Try to be intelligent about clocking the state
* machine. If we're currently in RUN state then
* we should be able to apply any new state/parameters
* simply by re-associating. Otherwise we need to
* re-scan to select an appropriate ap.
*/
if (vap->iv_state >= IEEE80211_S_RUN)
ieee80211_new_state_locked(vap,
IEEE80211_S_ASSOC, 1);
else
#endif
ieee80211_new_state_locked(vap,
IEEE80211_S_SCAN, 0);
} else {
/*
* For monitor+wds mode there's nothing to do but
* start running. Otherwise if this is the first
* vap to be brought up, start a scan which may be
* preempted if the station is locked to a particular
* channel.
*/
vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
if (vap->iv_opmode == IEEE80211_M_MONITOR ||
vap->iv_opmode == IEEE80211_M_WDS)
ieee80211_new_state_locked(vap,
IEEE80211_S_RUN, -1);
else
ieee80211_new_state_locked(vap,
IEEE80211_S_SCAN, 0);
}
}
}
/*
* Start a single vap.
*/
void
ieee80211_init(void *arg)
{
struct ieee80211vap *vap = arg;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"%s\n", __func__);
IEEE80211_LOCK(vap->iv_ic);
ieee80211_start_locked(vap);
IEEE80211_UNLOCK(vap->iv_ic);
}
/*
* Start all runnable vap's on a device.
*/
void
ieee80211_start_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
ieee80211_start_locked(vap);
}
IEEE80211_UNLOCK(ic);
}
/*
* Stop a vap. We force it down using the state machine
* then mark it's ifnet not running. If this is the last
* vap running on the underlying device then we close it
* too to insure it will be properly initialized when the
* next vap is brought up.
*/
void
ieee80211_stop_locked(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_LOCK_ASSERT(ic);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"stop running, %d vaps running\n", ic->ic_nrunning);
ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
ieee80211_notify_ifnet_change(vap);
if (--ic->ic_nrunning == 0) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
"down parent %s\n", ic->ic_name);
ieee80211_runtask(ic, &ic->ic_parent_task);
}
}
}
void
ieee80211_stop(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
ieee80211_stop_locked(vap);
IEEE80211_UNLOCK(ic);
}
/*
* Stop all vap's running on a device.
*/
void
ieee80211_stop_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
ieee80211_stop_locked(vap);
}
IEEE80211_UNLOCK(ic);
ieee80211_waitfor_parent(ic);
}
/*
* Stop all vap's running on a device and arrange
* for those that were running to be resumed.
*/
void
ieee80211_suspend_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
ieee80211_stop_locked(vap);
}
}
IEEE80211_UNLOCK(ic);
ieee80211_waitfor_parent(ic);
}
/*
* Start all vap's marked for resume.
*/
void
ieee80211_resume_all(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
if (!IFNET_IS_UP_RUNNING(ifp) &&
(vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
ieee80211_start_locked(vap);
}
}
IEEE80211_UNLOCK(ic);
}
/*
* Restart all vap's running on a device.
*/
void
ieee80211_restart_all(struct ieee80211com *ic)
{
/*
* NB: do not use ieee80211_runtask here, we will
* block & drain net80211 taskqueue.
*/
taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
}
void
ieee80211_beacon_miss(struct ieee80211com *ic)
{
IEEE80211_LOCK(ic);
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/* Process in a taskq, the handler may reenter the driver */
ieee80211_runtask(ic, &ic->ic_bmiss_task);
}
IEEE80211_UNLOCK(ic);
}
static void
beacon_miss(void *arg, int npending)
{
struct ieee80211com *ic = arg;
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
/*
* We only pass events through for sta vap's in RUN+ state;
* may be too restrictive but for now this saves all the
* handlers duplicating these checks.
*/
if (vap->iv_opmode == IEEE80211_M_STA &&
vap->iv_state >= IEEE80211_S_RUN &&
vap->iv_bmiss != NULL)
vap->iv_bmiss(vap);
}
IEEE80211_UNLOCK(ic);
}
static void
beacon_swmiss(void *arg, int npending)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (vap->iv_state >= IEEE80211_S_RUN) {
/* XXX Call multiple times if npending > zero? */
vap->iv_bmiss(vap);
}
IEEE80211_UNLOCK(ic);
}
/*
* Software beacon miss handling. Check if any beacons
* were received in the last period. If not post a
* beacon miss; otherwise reset the counter.
*/
void
ieee80211_swbmiss(void *arg)
{
struct ieee80211vap *vap = arg;
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_ASSERT(ic);
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
("wrong state %d", vap->iv_state));
if (ic->ic_flags & IEEE80211_F_SCAN) {
/*
* If scanning just ignore and reset state. If we get a
* bmiss after coming out of scan because we haven't had
* time to receive a beacon then we should probe the AP
* before posting a real bmiss (unless iv_bmiss_max has
* been artifiically lowered). A cleaner solution might
* be to disable the timer on scan start/end but to handle
* case of multiple sta vap's we'd need to disable the
* timers of all affected vap's.
*/
vap->iv_swbmiss_count = 0;
} else if (vap->iv_swbmiss_count == 0) {
if (vap->iv_bmiss != NULL)
ieee80211_runtask(ic, &vap->iv_swbmiss_task);
} else
vap->iv_swbmiss_count = 0;
callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
ieee80211_swbmiss, vap);
}
/*
* Start an 802.11h channel switch. We record the parameters,
* mark the operation pending, notify each vap through the
* beacon update mechanism so it can update the beacon frame
* contents, and then switch vap's to CSA state to block outbound
* traffic. Devices that handle CSA directly can use the state
* switch to do the right thing so long as they call
* ieee80211_csa_completeswitch when it's time to complete the
* channel change. Devices that depend on the net80211 layer can
* use ieee80211_beacon_update to handle the countdown and the
* channel switch.
*/
void
ieee80211_csa_startswitch(struct ieee80211com *ic,
struct ieee80211_channel *c, int mode, int count)
{
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
ic->ic_csa_newchan = c;
ic->ic_csa_mode = mode;
ic->ic_csa_count = count;
ic->ic_flags |= IEEE80211_F_CSAPENDING;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS)
ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
/* switch to CSA state to block outbound traffic */
if (vap->iv_state == IEEE80211_S_RUN)
ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
}
ieee80211_notify_csa(ic, c, mode, count);
}
/*
* Complete the channel switch by transitioning all CSA VAPs to RUN.
* This is called by both the completion and cancellation functions
* so each VAP is placed back in the RUN state and can thus transmit.
*/
static void
csa_completeswitch(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
ic->ic_csa_newchan = NULL;
ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CSA)
ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
}
/*
* Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
* We clear state and move all vap's in CSA state to RUN state
* so they can again transmit.
*
* Although this may not be completely correct, update the BSS channel
* for each VAP to the newly configured channel. The setcurchan sets
* the current operating channel for the interface (so the radio does
* switch over) but the VAP BSS isn't updated, leading to incorrectly
* reported information via ioctl.
*/
void
ieee80211_csa_completeswitch(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
ieee80211_setcurchan(ic, ic->ic_csa_newchan);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CSA)
vap->iv_bss->ni_chan = ic->ic_curchan;
csa_completeswitch(ic);
}
/*
* Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
* We clear state and move all vap's in CSA state to RUN state
* so they can again transmit.
*/
void
ieee80211_csa_cancelswitch(struct ieee80211com *ic)
{
IEEE80211_LOCK_ASSERT(ic);
csa_completeswitch(ic);
}
/*
* Complete a DFS CAC started by ieee80211_dfs_cac_start.
* We clear state and move all vap's in CAC state to RUN state.
*/
void
ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK(ic);
/*
* Complete CAC state change for lead vap first; then
* clock all the other vap's waiting.
*/
KASSERT(vap0->iv_state == IEEE80211_S_CAC,
("wrong state %d", vap0->iv_state));
ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
IEEE80211_UNLOCK(ic);
}
/*
* Force all vap's other than the specified vap to the INIT state
* and mark them as waiting for a scan to complete. These vaps
* will be brought up when the scan completes and the scanning vap
* reaches RUN state by wakeupwaiting.
*/
static void
markwaiting(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
/*
* A vap list entry can not disappear since we are running on the
* taskqueue and a vap destroy will queue and drain another state
* change task.
*/
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap == vap0)
continue;
if (vap->iv_state != IEEE80211_S_INIT) {
/* NB: iv_newstate may drop the lock */
vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
}
}
}
/*
* Wakeup all vap's waiting for a scan to complete. This is the
* companion to markwaiting (above) and is used to coordinate
* multiple vaps scanning.
* This is called from the state taskqueue.
*/
static void
wakeupwaiting(struct ieee80211vap *vap0)
{
struct ieee80211com *ic = vap0->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
/*
* A vap list entry can not disappear since we are running on the
* taskqueue and a vap destroy will queue and drain another state
* change task.
*/
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap == vap0)
continue;
if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
/* NB: sta's cannot go INIT->RUN */
/* NB: iv_newstate may drop the lock */
/*
* This is problematic if the interface has OACTIVE
* set. Only the deferred ieee80211_newstate_cb()
* will end up actually /clearing/ the OACTIVE
* flag on a state transition to RUN from a non-RUN
* state.
*
* But, we're not actually deferring this callback;
* and when the deferred call occurs it shows up as
* a RUN->RUN transition! So the flag isn't/wasn't
* cleared!
*
* I'm also not sure if it's correct to actually
* do the transitions here fully through the deferred
* paths either as other things can be invoked as
* part of that state machine.
*
* So just keep this in mind when looking at what
* the markwaiting/wakeupwaiting routines are doing
* and how they invoke vap state changes.
*/
vap->iv_newstate(vap,
vap->iv_opmode == IEEE80211_M_STA ?
IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
IEEE80211_LOCK_ASSERT(ic);
}
}
}
/*
* Handle post state change work common to all operating modes.
*/
static void
ieee80211_newstate_cb(void *xvap, int npending)
{
struct ieee80211vap *vap = xvap;
struct ieee80211com *ic = vap->iv_ic;
enum ieee80211_state nstate, ostate;
int arg, rc;
IEEE80211_LOCK(ic);
nstate = vap->iv_nstate;
arg = vap->iv_nstate_arg;
if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
/*
* We have been requested to drop back to the INIT before
* proceeding to the new state.
*/
/* Deny any state changes while we are here. */
vap->iv_nstate = IEEE80211_S_INIT;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s arg %d\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate], arg);
vap->iv_newstate(vap, vap->iv_nstate, 0);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
IEEE80211_FEXT_STATEWAIT);
/* enqueue new state transition after cancel_scan() task */
ieee80211_new_state_locked(vap, nstate, arg);
goto done;
}
ostate = vap->iv_state;
if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
/*
* SCAN was forced; e.g. on beacon miss. Force other running
* vap's to INIT state and mark them as waiting for the scan to
* complete. This insures they don't interfere with our
* scanning. Since we are single threaded the vaps can not
* transition again while we are executing.
*
* XXX not always right, assumes ap follows sta
*/
markwaiting(vap);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s arg %d\n", __func__,
ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
rc = vap->iv_newstate(vap, nstate, arg);
IEEE80211_LOCK_ASSERT(ic);
vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
if (rc != 0) {
/* State transition failed */
KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
KASSERT(nstate != IEEE80211_S_INIT,
("INIT state change failed"));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s returned error %d\n", __func__,
ieee80211_state_name[nstate], rc);
goto done;
}
/*
* Handle the case of a RUN->RUN transition occuring when STA + AP
* VAPs occur on the same radio.
*
* The mark and wakeup waiting routines call iv_newstate() directly,
* but they do not end up deferring state changes here.
* Thus, although the VAP newstate method sees a transition
* of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
* transition. If OACTIVE is set then it is never cleared.
*
* So, if we're here and the state is RUN, just clear OACTIVE.
* At some point if the markwaiting/wakeupwaiting paths end up
* also invoking the deferred state updates then this will
* be no-op code - and also if OACTIVE is finally retired, it'll
* also be no-op code.
*/
if (nstate == IEEE80211_S_RUN) {
/*
* OACTIVE may be set on the vap if the upper layer
* tried to transmit (e.g. IPv6 NDP) before we reach
* RUN state. Clear it and restart xmit.
*
* Note this can also happen as a result of SLEEP->RUN
* (i.e. coming out of power save mode).
*
* Historically this was done only for a state change
* but is needed earlier; see next comment. The 2nd half
* of the work is still only done in case of an actual
* state change below.
*/
/*
* Unblock the VAP queue; a RUN->RUN state can happen
* on a STA+AP setup on the AP vap. See wakeupwaiting().
*/
vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* XXX TODO Kick-start a VAP queue - this should be a method!
*/
}
/* No actual transition, skip post processing */
if (ostate == nstate)
goto done;
if (nstate == IEEE80211_S_RUN) {
/* bring up any vaps waiting on us */
wakeupwaiting(vap);
} else if (nstate == IEEE80211_S_INIT) {
/*
* Flush the scan cache if we did the last scan (XXX?)
* and flush any frames on send queues from this vap.
* Note the mgt q is used only for legacy drivers and
* will go away shortly.
*/
ieee80211_scan_flush(vap);
/*
* XXX TODO: ic/vap queue flush
*/
}
done:
IEEE80211_UNLOCK(ic);
}
/*
* Public interface for initiating a state machine change.
* This routine single-threads the request and coordinates
* the scheduling of multiple vaps for the purpose of selecting
* an operating channel. Specifically the following scenarios
* are handled:
* o only one vap can be selecting a channel so on transition to
* SCAN state if another vap is already scanning then
* mark the caller for later processing and return without
* doing anything (XXX? expectations by caller of synchronous operation)
* o only one vap can be doing CAC of a channel so on transition to
* CAC state if another vap is already scanning for radar then
* mark the caller for later processing and return without
* doing anything (XXX? expectations by caller of synchronous operation)
* o if another vap is already running when a request is made
* to SCAN then an operating channel has been chosen; bypass
* the scan and just join the channel
*
* Note that the state change call is done through the iv_newstate
* method pointer so any driver routine gets invoked. The driver
* will normally call back into operating mode-specific
* ieee80211_newstate routines (below) unless it needs to completely
* bypass the state machine (e.g. because the firmware has it's
* own idea how things should work). Bypassing the net80211 layer
* is usually a mistake and indicates lack of proper integration
* with the net80211 layer.
*/
int
ieee80211_new_state_locked(struct ieee80211vap *vap,
enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211vap *vp;
enum ieee80211_state ostate;
int nrunning, nscanning;
IEEE80211_LOCK_ASSERT(ic);
if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
if (vap->iv_nstate == IEEE80211_S_INIT ||
((vap->iv_state == IEEE80211_S_INIT ||
(vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
vap->iv_nstate == IEEE80211_S_SCAN &&
nstate > IEEE80211_S_SCAN)) {
/*
* XXX The vap is being stopped/started,
* do not allow any other state changes
* until this is completed.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s (%s) transition discarded\n",
__func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate],
ieee80211_state_name[vap->iv_nstate]);
return -1;
} else if (vap->iv_state != vap->iv_nstate) {
#if 0
/* Warn if the previous state hasn't completed. */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: pending %s -> %s transition lost\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate]);
#else
/* XXX temporarily enable to identify issues */
if_printf(vap->iv_ifp,
"%s: pending %s -> %s transition lost\n",
__func__, ieee80211_state_name[vap->iv_state],
ieee80211_state_name[vap->iv_nstate]);
#endif
}
}
nrunning = nscanning = 0;
/* XXX can track this state instead of calculating */
TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
if (vp != vap) {
if (vp->iv_state >= IEEE80211_S_RUN)
nrunning++;
/* XXX doesn't handle bg scan */
/* NB: CAC+AUTH+ASSOC treated like SCAN */
else if (vp->iv_state > IEEE80211_S_INIT)
nscanning++;
}
}
ostate = vap->iv_state;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
nrunning, nscanning);
switch (nstate) {
case IEEE80211_S_SCAN:
if (ostate == IEEE80211_S_INIT) {
/*
* INIT -> SCAN happens on initial bringup.
*/
KASSERT(!(nscanning && nrunning),
("%d scanning and %d running", nscanning, nrunning));
if (nscanning) {
/*
* Someone is scanning, defer our state
* change until the work has completed.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: defer %s -> %s\n",
__func__, ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
return 0;
}
if (nrunning) {
/*
* Someone is operating; just join the channel
* they have chosen.
*/
/* XXX kill arg? */
/* XXX check each opmode, adhoc? */
if (vap->iv_opmode == IEEE80211_M_STA)
nstate = IEEE80211_S_SCAN;
else
nstate = IEEE80211_S_RUN;
#ifdef IEEE80211_DEBUG
if (nstate != IEEE80211_S_SCAN) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_STATE,
"%s: override, now %s -> %s\n",
__func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
}
#endif
}
}
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_WDS &&
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
nscanning) {
/*
* Legacy WDS with someone else scanning; don't
* go online until that completes as we should
* follow the other vap to the channel they choose.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: defer %s -> %s (legacy WDS)\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
return 0;
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
!IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
/*
* This is a DFS channel, transition to CAC state
* instead of RUN. This allows us to initiate
* Channel Availability Check (CAC) as specified
* by 11h/DFS.
*/
nstate = IEEE80211_S_CAC;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: override %s -> %s (DFS)\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
}
break;
case IEEE80211_S_INIT:
/* cancel any scan in progress */
ieee80211_cancel_scan(vap);
if (ostate == IEEE80211_S_INIT ) {
/* XXX don't believe this */
/* INIT -> INIT. nothing to do */
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
}
/* fall thru... */
default:
break;
}
/* defer the state change to a thread */
vap->iv_nstate = nstate;
vap->iv_nstate_arg = arg;
vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
ieee80211_runtask(ic, &vap->iv_nstate_task);
return EINPROGRESS;
}
int
ieee80211_new_state(struct ieee80211vap *vap,
enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
int rc;
IEEE80211_LOCK(ic);
rc = ieee80211_new_state_locked(vap, nstate, arg);
IEEE80211_UNLOCK(ic);
return rc;
}