mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-15 15:06:42 +00:00
33ea30fed7
Reviewed by: scottl, Danny Braniss Approved by: re (rwatson)
5000 lines
126 KiB
C
5000 lines
126 KiB
C
/*-
|
|
* Implementation of the Common Access Method Transport (XPT) layer.
|
|
*
|
|
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/time.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/md5.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kthread.h>
|
|
|
|
#ifdef PC98
|
|
#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
|
|
#endif
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_xpt_internal.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
#include <machine/stdarg.h> /* for xpt_print below */
|
|
#include "opt_cam.h"
|
|
|
|
/*
|
|
* This is the maximum number of high powered commands (e.g. start unit)
|
|
* that can be outstanding at a particular time.
|
|
*/
|
|
#ifndef CAM_MAX_HIGHPOWER
|
|
#define CAM_MAX_HIGHPOWER 4
|
|
#endif
|
|
|
|
/* Datastructures internal to the xpt layer */
|
|
MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
|
|
|
|
/* Object for defering XPT actions to a taskqueue */
|
|
struct xpt_task {
|
|
struct task task;
|
|
void *data1;
|
|
uintptr_t data2;
|
|
};
|
|
|
|
typedef enum {
|
|
XPT_FLAG_OPEN = 0x01
|
|
} xpt_flags;
|
|
|
|
struct xpt_softc {
|
|
xpt_flags flags;
|
|
u_int32_t xpt_generation;
|
|
|
|
/* number of high powered commands that can go through right now */
|
|
STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
|
|
int num_highpower;
|
|
|
|
/* queue for handling async rescan requests. */
|
|
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
|
|
|
|
/* Registered busses */
|
|
TAILQ_HEAD(,cam_eb) xpt_busses;
|
|
u_int bus_generation;
|
|
|
|
struct intr_config_hook *xpt_config_hook;
|
|
|
|
struct mtx xpt_topo_lock;
|
|
struct mtx xpt_lock;
|
|
};
|
|
|
|
typedef enum {
|
|
DM_RET_COPY = 0x01,
|
|
DM_RET_FLAG_MASK = 0x0f,
|
|
DM_RET_NONE = 0x00,
|
|
DM_RET_STOP = 0x10,
|
|
DM_RET_DESCEND = 0x20,
|
|
DM_RET_ERROR = 0x30,
|
|
DM_RET_ACTION_MASK = 0xf0
|
|
} dev_match_ret;
|
|
|
|
typedef enum {
|
|
XPT_DEPTH_BUS,
|
|
XPT_DEPTH_TARGET,
|
|
XPT_DEPTH_DEVICE,
|
|
XPT_DEPTH_PERIPH
|
|
} xpt_traverse_depth;
|
|
|
|
struct xpt_traverse_config {
|
|
xpt_traverse_depth depth;
|
|
void *tr_func;
|
|
void *tr_arg;
|
|
};
|
|
|
|
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
|
|
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
|
|
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
|
|
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
|
|
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
|
|
|
|
/* Transport layer configuration information */
|
|
static struct xpt_softc xsoftc;
|
|
|
|
/* Queues for our software interrupt handler */
|
|
typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
|
|
typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
|
|
static cam_simq_t cam_simq;
|
|
static struct mtx cam_simq_lock;
|
|
|
|
/* Pointers to software interrupt handlers */
|
|
static void *cambio_ih;
|
|
|
|
struct cam_periph *xpt_periph;
|
|
|
|
static periph_init_t xpt_periph_init;
|
|
|
|
static struct periph_driver xpt_driver =
|
|
{
|
|
xpt_periph_init, "xpt",
|
|
TAILQ_HEAD_INITIALIZER(xpt_driver.units)
|
|
};
|
|
|
|
PERIPHDRIVER_DECLARE(xpt, xpt_driver);
|
|
|
|
static d_open_t xptopen;
|
|
static d_close_t xptclose;
|
|
static d_ioctl_t xptioctl;
|
|
|
|
static struct cdevsw xpt_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = 0,
|
|
.d_open = xptopen,
|
|
.d_close = xptclose,
|
|
.d_ioctl = xptioctl,
|
|
.d_name = "xpt",
|
|
};
|
|
|
|
/* Storage for debugging datastructures */
|
|
#ifdef CAMDEBUG
|
|
struct cam_path *cam_dpath;
|
|
u_int32_t cam_dflags;
|
|
u_int32_t cam_debug_delay;
|
|
#endif
|
|
|
|
/* Our boot-time initialization hook */
|
|
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
|
|
|
|
static moduledata_t cam_moduledata = {
|
|
"cam",
|
|
cam_module_event_handler,
|
|
NULL
|
|
};
|
|
|
|
static int xpt_init(void *);
|
|
|
|
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
|
|
MODULE_VERSION(cam, 1);
|
|
|
|
|
|
static void xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path,
|
|
void *async_arg);
|
|
static path_id_t xptnextfreepathid(void);
|
|
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
|
|
static union ccb *xpt_get_ccb(struct cam_ed *device);
|
|
static void xpt_run_dev_allocq(struct cam_eb *bus);
|
|
static timeout_t xpt_release_devq_timeout;
|
|
static void xpt_release_simq_timeout(void *arg) __unused;
|
|
static void xpt_release_bus(struct cam_eb *bus);
|
|
static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
|
|
int run_queue);
|
|
static struct cam_et*
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
|
|
static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
|
|
static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
|
|
struct cam_ed *device);
|
|
static struct cam_eb*
|
|
xpt_find_bus(path_id_t path_id);
|
|
static struct cam_et*
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
|
|
static struct cam_ed*
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
|
|
static xpt_busfunc_t xptconfigbuscountfunc;
|
|
static xpt_busfunc_t xptconfigfunc;
|
|
static void xpt_config(void *arg);
|
|
static xpt_devicefunc_t xptpassannouncefunc;
|
|
static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
|
|
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
|
|
static void xptpoll(struct cam_sim *sim);
|
|
static void camisr(void *);
|
|
static void camisr_runqueue(void *);
|
|
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns, struct cam_eb *bus);
|
|
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns,
|
|
struct cam_ed *device);
|
|
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
|
|
u_int num_patterns,
|
|
struct cam_periph *periph);
|
|
static xpt_busfunc_t xptedtbusfunc;
|
|
static xpt_targetfunc_t xptedttargetfunc;
|
|
static xpt_devicefunc_t xptedtdevicefunc;
|
|
static xpt_periphfunc_t xptedtperiphfunc;
|
|
static xpt_pdrvfunc_t xptplistpdrvfunc;
|
|
static xpt_periphfunc_t xptplistperiphfunc;
|
|
static int xptedtmatch(struct ccb_dev_match *cdm);
|
|
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
|
|
static int xptbustraverse(struct cam_eb *start_bus,
|
|
xpt_busfunc_t *tr_func, void *arg);
|
|
static int xpttargettraverse(struct cam_eb *bus,
|
|
struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg);
|
|
static int xptdevicetraverse(struct cam_et *target,
|
|
struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg);
|
|
static int xptperiphtraverse(struct cam_ed *device,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg);
|
|
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg);
|
|
static int xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func,
|
|
void *arg);
|
|
static xpt_busfunc_t xptdefbusfunc;
|
|
static xpt_targetfunc_t xptdeftargetfunc;
|
|
static xpt_devicefunc_t xptdefdevicefunc;
|
|
static xpt_periphfunc_t xptdefperiphfunc;
|
|
static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
|
|
static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
|
|
void *arg);
|
|
static void xpt_dev_async_default(u_int32_t async_code,
|
|
struct cam_eb *bus,
|
|
struct cam_et *target,
|
|
struct cam_ed *device,
|
|
void *async_arg);
|
|
static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
|
|
struct cam_et *target,
|
|
lun_id_t lun_id);
|
|
static xpt_devicefunc_t xptsetasyncfunc;
|
|
static xpt_busfunc_t xptsetasyncbusfunc;
|
|
static cam_status xptregister(struct cam_periph *periph,
|
|
void *arg);
|
|
static void xpt_start_tags(struct cam_path *path);
|
|
static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
|
|
struct cam_ed *dev);
|
|
static __inline int periph_is_queued(struct cam_periph *periph);
|
|
static __inline int device_is_alloc_queued(struct cam_ed *device);
|
|
static __inline int device_is_send_queued(struct cam_ed *device);
|
|
static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
|
|
|
|
static __inline int
|
|
xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
|
|
{
|
|
int retval;
|
|
|
|
if (dev->ccbq.devq_openings > 0) {
|
|
if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
|
|
cam_ccbq_resize(&dev->ccbq,
|
|
dev->ccbq.dev_openings
|
|
+ dev->ccbq.dev_active);
|
|
dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
|
|
}
|
|
/*
|
|
* The priority of a device waiting for CCB resources
|
|
* is that of the the highest priority peripheral driver
|
|
* enqueued.
|
|
*/
|
|
retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
|
|
&dev->alloc_ccb_entry.pinfo,
|
|
CAMQ_GET_HEAD(&dev->drvq)->priority);
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static __inline int
|
|
periph_is_queued(struct cam_periph *periph)
|
|
{
|
|
return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
device_is_alloc_queued(struct cam_ed *device)
|
|
{
|
|
return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
device_is_send_queued(struct cam_ed *device)
|
|
{
|
|
return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
|
|
}
|
|
|
|
static __inline int
|
|
dev_allocq_is_runnable(struct cam_devq *devq)
|
|
{
|
|
/*
|
|
* Have work to do.
|
|
* Have space to do more work.
|
|
* Allowed to do work.
|
|
*/
|
|
return ((devq->alloc_queue.qfrozen_cnt == 0)
|
|
&& (devq->alloc_queue.entries > 0)
|
|
&& (devq->alloc_openings > 0));
|
|
}
|
|
|
|
static void
|
|
xpt_periph_init()
|
|
{
|
|
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
|
|
}
|
|
|
|
static void
|
|
xptdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
/* Caller will release the CCB */
|
|
wakeup(&done_ccb->ccb_h.cbfcnp);
|
|
}
|
|
|
|
static int
|
|
xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
|
|
/*
|
|
* Only allow read-write access.
|
|
*/
|
|
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
|
|
return(EPERM);
|
|
|
|
/*
|
|
* We don't allow nonblocking access.
|
|
*/
|
|
if ((flags & O_NONBLOCK) != 0) {
|
|
printf("%s: can't do nonblocking access\n", devtoname(dev));
|
|
return(ENODEV);
|
|
}
|
|
|
|
/* Mark ourselves open */
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
xsoftc.flags |= XPT_FLAG_OPEN;
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
|
|
{
|
|
|
|
/* Mark ourselves closed */
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
xsoftc.flags &= ~XPT_FLAG_OPEN;
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Don't automatically grab the xpt softc lock here even though this is going
|
|
* through the xpt device. The xpt device is really just a back door for
|
|
* accessing other devices and SIMs, so the right thing to do is to grab
|
|
* the appropriate SIM lock once the bus/SIM is located.
|
|
*/
|
|
static int
|
|
xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
switch(cmd) {
|
|
/*
|
|
* For the transport layer CAMIOCOMMAND ioctl, we really only want
|
|
* to accept CCB types that don't quite make sense to send through a
|
|
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
|
|
* in the CAM spec.
|
|
*/
|
|
case CAMIOCOMMAND: {
|
|
union ccb *ccb;
|
|
union ccb *inccb;
|
|
struct cam_eb *bus;
|
|
|
|
inccb = (union ccb *)addr;
|
|
|
|
bus = xpt_find_bus(inccb->ccb_h.path_id);
|
|
if (bus == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
switch(inccb->ccb_h.func_code) {
|
|
case XPT_SCAN_BUS:
|
|
case XPT_RESET_BUS:
|
|
if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
|
|
|| (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_PATH_INQ:
|
|
case XPT_ENG_INQ:
|
|
case XPT_SCAN_LUN:
|
|
|
|
ccb = xpt_alloc_ccb();
|
|
|
|
CAM_SIM_LOCK(bus->sim);
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
xpt_free_ccb(ccb);
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(ccb, inccb);
|
|
ccb->ccb_h.cbfcnp = xptdone;
|
|
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
|
|
bcopy(ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
break;
|
|
|
|
case XPT_DEBUG: {
|
|
union ccb ccb;
|
|
|
|
/*
|
|
* This is an immediate CCB, so it's okay to
|
|
* allocate it on the stack.
|
|
*/
|
|
|
|
CAM_SIM_LOCK(bus->sim);
|
|
|
|
/*
|
|
* Create a path using the bus, target, and lun the
|
|
* user passed in.
|
|
*/
|
|
if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
|
|
inccb->ccb_h.path_id,
|
|
inccb->ccb_h.target_id,
|
|
inccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP){
|
|
error = EINVAL;
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
break;
|
|
}
|
|
/* Ensure all of our fields are correct */
|
|
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
|
|
inccb->ccb_h.pinfo.priority);
|
|
xpt_merge_ccb(&ccb, inccb);
|
|
ccb.ccb_h.cbfcnp = xptdone;
|
|
xpt_action(&ccb);
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
bcopy(&ccb, inccb, sizeof(union ccb));
|
|
xpt_free_path(ccb.ccb_h.path);
|
|
break;
|
|
|
|
}
|
|
case XPT_DEV_MATCH: {
|
|
struct cam_periph_map_info mapinfo;
|
|
struct cam_path *old_path;
|
|
|
|
/*
|
|
* We can't deal with physical addresses for this
|
|
* type of transaction.
|
|
*/
|
|
if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Save this in case the caller had it set to
|
|
* something in particular.
|
|
*/
|
|
old_path = inccb->ccb_h.path;
|
|
|
|
/*
|
|
* We really don't need a path for the matching
|
|
* code. The path is needed because of the
|
|
* debugging statements in xpt_action(). They
|
|
* assume that the CCB has a valid path.
|
|
*/
|
|
inccb->ccb_h.path = xpt_periph->path;
|
|
|
|
bzero(&mapinfo, sizeof(mapinfo));
|
|
|
|
/*
|
|
* Map the pattern and match buffers into kernel
|
|
* virtual address space.
|
|
*/
|
|
error = cam_periph_mapmem(inccb, &mapinfo);
|
|
|
|
if (error) {
|
|
inccb->ccb_h.path = old_path;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is an immediate CCB, we can send it on directly.
|
|
*/
|
|
xpt_action(inccb);
|
|
|
|
/*
|
|
* Map the buffers back into user space.
|
|
*/
|
|
cam_periph_unmapmem(inccb, &mapinfo);
|
|
|
|
inccb->ccb_h.path = old_path;
|
|
|
|
error = 0;
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTSUP;
|
|
break;
|
|
}
|
|
xpt_release_bus(bus);
|
|
break;
|
|
}
|
|
/*
|
|
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
|
|
* with the periphal driver name and unit name filled in. The other
|
|
* fields don't really matter as input. The passthrough driver name
|
|
* ("pass"), and unit number are passed back in the ccb. The current
|
|
* device generation number, and the index into the device peripheral
|
|
* driver list, and the status are also passed back. Note that
|
|
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
|
|
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
|
|
* (or rather should be) impossible for the device peripheral driver
|
|
* list to change since we look at the whole thing in one pass, and
|
|
* we do it with lock protection.
|
|
*
|
|
*/
|
|
case CAMGETPASSTHRU: {
|
|
union ccb *ccb;
|
|
struct cam_periph *periph;
|
|
struct periph_driver **p_drv;
|
|
char *name;
|
|
u_int unit;
|
|
u_int cur_generation;
|
|
int base_periph_found;
|
|
int splbreaknum;
|
|
|
|
ccb = (union ccb *)addr;
|
|
unit = ccb->cgdl.unit_number;
|
|
name = ccb->cgdl.periph_name;
|
|
/*
|
|
* Every 100 devices, we want to drop our lock protection to
|
|
* give the software interrupt handler a chance to run.
|
|
* Most systems won't run into this check, but this should
|
|
* avoid starvation in the software interrupt handler in
|
|
* large systems.
|
|
*/
|
|
splbreaknum = 100;
|
|
|
|
ccb = (union ccb *)addr;
|
|
|
|
base_periph_found = 0;
|
|
|
|
/*
|
|
* Sanity check -- make sure we don't get a null peripheral
|
|
* driver name.
|
|
*/
|
|
if (*ccb->cgdl.periph_name == '\0') {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Keep the list from changing while we traverse it */
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
ptstartover:
|
|
cur_generation = xsoftc.xpt_generation;
|
|
|
|
/* first find our driver in the list of drivers */
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
|
|
if (*p_drv == NULL) {
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Run through every peripheral instance of this driver
|
|
* and check to see whether it matches the unit passed
|
|
* in by the user. If it does, get out of the loops and
|
|
* find the passthrough driver associated with that
|
|
* peripheral driver.
|
|
*/
|
|
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
|
|
periph = TAILQ_NEXT(periph, unit_links)) {
|
|
|
|
if (periph->unit_number == unit) {
|
|
break;
|
|
} else if (--splbreaknum == 0) {
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
splbreaknum = 100;
|
|
if (cur_generation != xsoftc.xpt_generation)
|
|
goto ptstartover;
|
|
}
|
|
}
|
|
/*
|
|
* If we found the peripheral driver that the user passed
|
|
* in, go through all of the peripheral drivers for that
|
|
* particular device and look for a passthrough driver.
|
|
*/
|
|
if (periph != NULL) {
|
|
struct cam_ed *device;
|
|
int i;
|
|
|
|
base_periph_found = 1;
|
|
device = periph->path->device;
|
|
for (i = 0, periph = SLIST_FIRST(&device->periphs);
|
|
periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++) {
|
|
/*
|
|
* Check to see whether we have a
|
|
* passthrough device or not.
|
|
*/
|
|
if (strcmp(periph->periph_name, "pass") == 0) {
|
|
/*
|
|
* Fill in the getdevlist fields.
|
|
*/
|
|
strcpy(ccb->cgdl.periph_name,
|
|
periph->periph_name);
|
|
ccb->cgdl.unit_number =
|
|
periph->unit_number;
|
|
if (SLIST_NEXT(periph, periph_links))
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_MORE_DEVS;
|
|
else
|
|
ccb->cgdl.status =
|
|
CAM_GDEVLIST_LAST_DEVICE;
|
|
ccb->cgdl.generation =
|
|
device->generation;
|
|
ccb->cgdl.index = i;
|
|
/*
|
|
* Fill in some CCB header fields
|
|
* that the user may want.
|
|
*/
|
|
ccb->ccb_h.path_id =
|
|
periph->path->bus->path_id;
|
|
ccb->ccb_h.target_id =
|
|
periph->path->target->target_id;
|
|
ccb->ccb_h.target_lun =
|
|
periph->path->device->lun_id;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the periph is null here, one of two things has
|
|
* happened. The first possibility is that we couldn't
|
|
* find the unit number of the particular peripheral driver
|
|
* that the user is asking about. e.g. the user asks for
|
|
* the passthrough driver for "da11". We find the list of
|
|
* "da" peripherals all right, but there is no unit 11.
|
|
* The other possibility is that we went through the list
|
|
* of peripheral drivers attached to the device structure,
|
|
* but didn't find one with the name "pass". Either way,
|
|
* we return ENOENT, since we couldn't find something.
|
|
*/
|
|
if (periph == NULL) {
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
|
|
*ccb->cgdl.periph_name = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
error = ENOENT;
|
|
/*
|
|
* It is unfortunate that this is even necessary,
|
|
* but there are many, many clueless users out there.
|
|
* If this is true, the user is looking for the
|
|
* passthrough driver, but doesn't have one in his
|
|
* kernel.
|
|
*/
|
|
if (base_periph_found == 1) {
|
|
printf("xptioctl: pass driver is not in the "
|
|
"kernel\n");
|
|
printf("xptioctl: put \"device pass\" in "
|
|
"your kernel config file\n");
|
|
}
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
cam_module_event_handler(module_t mod, int what, void *arg)
|
|
{
|
|
int error;
|
|
|
|
switch (what) {
|
|
case MOD_LOAD:
|
|
if ((error = xpt_init(NULL)) != 0)
|
|
return (error);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
return EBUSY;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* thread to handle bus rescans */
|
|
static void
|
|
xpt_scanner_thread(void *dummy)
|
|
{
|
|
cam_isrq_t queue;
|
|
union ccb *ccb;
|
|
struct cam_sim *sim;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Wait for a rescan request to come in. When it does, splice
|
|
* it onto a queue from local storage so that the xpt lock
|
|
* doesn't need to be held while the requests are being
|
|
* processed.
|
|
*/
|
|
xpt_lock_buses();
|
|
msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
|
|
"ccb_scanq", 0);
|
|
TAILQ_INIT(&queue);
|
|
TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
|
|
xpt_unlock_buses();
|
|
|
|
while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
|
|
TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
|
|
|
|
sim = ccb->ccb_h.path->bus->sim;
|
|
CAM_SIM_LOCK(sim);
|
|
|
|
ccb->ccb_h.func_code = XPT_SCAN_BUS;
|
|
ccb->ccb_h.cbfcnp = xptdone;
|
|
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
|
|
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
CAM_SIM_UNLOCK(sim);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_rescan(union ccb *ccb)
|
|
{
|
|
struct ccb_hdr *hdr;
|
|
|
|
/*
|
|
* Don't make duplicate entries for the same paths.
|
|
*/
|
|
xpt_lock_buses();
|
|
TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
|
|
if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
|
|
xpt_unlock_buses();
|
|
xpt_print(ccb->ccb_h.path, "rescan already queued\n");
|
|
xpt_free_path(ccb->ccb_h.path);
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
}
|
|
TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
|
|
wakeup(&xsoftc.ccb_scanq);
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
/* Functions accessed by the peripheral drivers */
|
|
static int
|
|
xpt_init(void *dummy)
|
|
{
|
|
struct cam_sim *xpt_sim;
|
|
struct cam_path *path;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
|
|
TAILQ_INIT(&xsoftc.xpt_busses);
|
|
TAILQ_INIT(&cam_simq);
|
|
TAILQ_INIT(&xsoftc.ccb_scanq);
|
|
STAILQ_INIT(&xsoftc.highpowerq);
|
|
xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
|
|
|
|
mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
|
|
mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
|
|
mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* The xpt layer is, itself, the equivelent of a SIM.
|
|
* Allow 16 ccbs in the ccb pool for it. This should
|
|
* give decent parallelism when we probe busses and
|
|
* perform other XPT functions.
|
|
*/
|
|
devq = cam_simq_alloc(16);
|
|
xpt_sim = cam_sim_alloc(xptaction,
|
|
xptpoll,
|
|
"xpt",
|
|
/*softc*/NULL,
|
|
/*unit*/0,
|
|
/*mtx*/&xsoftc.xpt_lock,
|
|
/*max_dev_transactions*/0,
|
|
/*max_tagged_dev_transactions*/0,
|
|
devq);
|
|
if (xpt_sim == NULL)
|
|
return (ENOMEM);
|
|
|
|
xpt_sim->max_ccbs = 16;
|
|
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
|
|
printf("xpt_init: xpt_bus_register failed with status %#x,"
|
|
" failing attach\n", status);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Looking at the XPT from the SIM layer, the XPT is
|
|
* the equivelent of a peripheral driver. Allocate
|
|
* a peripheral driver entry for us.
|
|
*/
|
|
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
|
|
printf("xpt_init: xpt_create_path failed with status %#x,"
|
|
" failing attach\n", status);
|
|
return (EINVAL);
|
|
}
|
|
|
|
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
|
|
path, NULL, 0, xpt_sim);
|
|
xpt_free_path(path);
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
|
|
/*
|
|
* Register a callback for when interrupts are enabled.
|
|
*/
|
|
xsoftc.xpt_config_hook =
|
|
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
|
|
M_CAMXPT, M_NOWAIT | M_ZERO);
|
|
if (xsoftc.xpt_config_hook == NULL) {
|
|
printf("xpt_init: Cannot malloc config hook "
|
|
"- failing attach\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
xsoftc.xpt_config_hook->ich_func = xpt_config;
|
|
if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
|
|
free (xsoftc.xpt_config_hook, M_CAMXPT);
|
|
printf("xpt_init: config_intrhook_establish failed "
|
|
"- failing attach\n");
|
|
}
|
|
|
|
/* fire up rescan thread */
|
|
if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
|
|
printf("xpt_init: failed to create rescan thread\n");
|
|
}
|
|
/* Install our software interrupt handlers */
|
|
swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static cam_status
|
|
xptregister(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct cam_sim *xpt_sim;
|
|
|
|
if (periph == NULL) {
|
|
printf("xptregister: periph was NULL!!\n");
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
xpt_sim = (struct cam_sim *)arg;
|
|
xpt_sim->softc = periph;
|
|
xpt_periph = periph;
|
|
periph->softc = NULL;
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
int32_t
|
|
xpt_add_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
int32_t status;
|
|
struct periph_list *periph_head;
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
|
|
device = periph->path->device;
|
|
|
|
periph_head = &device->periphs;
|
|
|
|
status = CAM_REQ_CMP;
|
|
|
|
if (device != NULL) {
|
|
/*
|
|
* Make room for this peripheral
|
|
* so it will fit in the queue
|
|
* when it's scheduled to run
|
|
*/
|
|
status = camq_resize(&device->drvq,
|
|
device->drvq.array_size + 1);
|
|
|
|
device->generation++;
|
|
|
|
SLIST_INSERT_HEAD(periph_head, periph, periph_links);
|
|
}
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
xsoftc.xpt_generation++;
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
xpt_remove_periph(struct cam_periph *periph)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
|
|
device = periph->path->device;
|
|
|
|
if (device != NULL) {
|
|
struct periph_list *periph_head;
|
|
|
|
periph_head = &device->periphs;
|
|
|
|
/* Release the slot for this peripheral */
|
|
camq_resize(&device->drvq, device->drvq.array_size - 1);
|
|
|
|
device->generation++;
|
|
|
|
SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
|
|
}
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
xsoftc.xpt_generation++;
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
|
|
|
|
void
|
|
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
|
|
{
|
|
struct ccb_pathinq cpi;
|
|
struct ccb_trans_settings cts;
|
|
struct cam_path *path;
|
|
u_int speed;
|
|
u_int freq;
|
|
u_int mb;
|
|
|
|
mtx_assert(periph->sim->mtx, MA_OWNED);
|
|
|
|
path = periph->path;
|
|
/*
|
|
* To ensure that this is printed in one piece,
|
|
* mask out CAM interrupts.
|
|
*/
|
|
printf("%s%d at %s%d bus %d target %d lun %d\n",
|
|
periph->periph_name, periph->unit_number,
|
|
path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id,
|
|
path->target->target_id,
|
|
path->device->lun_id);
|
|
printf("%s%d: ", periph->periph_name, periph->unit_number);
|
|
if (path->device->protocol == PROTO_SCSI)
|
|
scsi_print_inquiry(&path->device->inq_data);
|
|
else if (path->device->protocol == PROTO_ATA ||
|
|
path->device->protocol == PROTO_SATAPM)
|
|
ata_print_ident(&path->device->ident_data);
|
|
else
|
|
printf("Unknown protocol device\n");
|
|
if (bootverbose && path->device->serial_num_len > 0) {
|
|
/* Don't wrap the screen - print only the first 60 chars */
|
|
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
|
|
periph->unit_number, path->device->serial_num);
|
|
}
|
|
xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
|
|
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
|
|
cts.type = CTS_TYPE_CURRENT_SETTINGS;
|
|
xpt_action((union ccb*)&cts);
|
|
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
|
|
return;
|
|
}
|
|
|
|
/* Ask the SIM for its base transfer speed */
|
|
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
speed = cpi.base_transfer_speed;
|
|
freq = 0;
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
|
|
struct ccb_trans_settings_spi *spi;
|
|
|
|
spi = &cts.xport_specific.spi;
|
|
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
|
|
&& spi->sync_offset != 0) {
|
|
freq = scsi_calc_syncsrate(spi->sync_period);
|
|
speed = freq;
|
|
}
|
|
|
|
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
|
|
speed *= (0x01 << spi->bus_width);
|
|
}
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
|
|
struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
|
|
if (fc->valid & CTS_FC_VALID_SPEED)
|
|
speed = fc->bitrate;
|
|
}
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
|
|
struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
|
|
if (sas->valid & CTS_SAS_VALID_SPEED)
|
|
speed = sas->bitrate;
|
|
}
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) {
|
|
struct ccb_trans_settings_sata *sata = &cts.xport_specific.sata;
|
|
if (sata->valid & CTS_SATA_VALID_SPEED)
|
|
speed = sata->bitrate;
|
|
}
|
|
|
|
mb = speed / 1000;
|
|
if (mb > 0)
|
|
printf("%s%d: %d.%03dMB/s transfers",
|
|
periph->periph_name, periph->unit_number,
|
|
mb, speed % 1000);
|
|
else
|
|
printf("%s%d: %dKB/s transfers", periph->periph_name,
|
|
periph->unit_number, speed);
|
|
/* Report additional information about SPI connections */
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
|
|
struct ccb_trans_settings_spi *spi;
|
|
|
|
spi = &cts.xport_specific.spi;
|
|
if (freq != 0) {
|
|
printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
|
|
freq % 1000,
|
|
(spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
|
|
? " DT" : "",
|
|
spi->sync_offset);
|
|
}
|
|
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
|
|
&& spi->bus_width > 0) {
|
|
if (freq != 0) {
|
|
printf(", ");
|
|
} else {
|
|
printf(" (");
|
|
}
|
|
printf("%dbit)", 8 * (0x01 << spi->bus_width));
|
|
} else if (freq != 0) {
|
|
printf(")");
|
|
}
|
|
}
|
|
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
|
|
struct ccb_trans_settings_fc *fc;
|
|
|
|
fc = &cts.xport_specific.fc;
|
|
if (fc->valid & CTS_FC_VALID_WWNN)
|
|
printf(" WWNN 0x%llx", (long long) fc->wwnn);
|
|
if (fc->valid & CTS_FC_VALID_WWPN)
|
|
printf(" WWPN 0x%llx", (long long) fc->wwpn);
|
|
if (fc->valid & CTS_FC_VALID_PORT)
|
|
printf(" PortID 0x%x", fc->port);
|
|
}
|
|
|
|
if (path->device->inq_flags & SID_CmdQue
|
|
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
|
|
printf("\n%s%d: Command Queueing enabled",
|
|
periph->periph_name, periph->unit_number);
|
|
}
|
|
printf("\n");
|
|
|
|
/*
|
|
* We only want to print the caller's announce string if they've
|
|
* passed one in..
|
|
*/
|
|
if (announce_string != NULL)
|
|
printf("%s%d: %s\n", periph->periph_name,
|
|
periph->unit_number, announce_string);
|
|
}
|
|
|
|
static dev_match_ret
|
|
xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_eb *bus)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (bus == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this bus matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct bus_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a bus node, we
|
|
* aren't interested. However, we do indicate to the
|
|
* calling routine that we should continue descending the
|
|
* tree, since the user wants to match against lower-level
|
|
* EDT elements.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_BUS) {
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.bus_pattern;
|
|
|
|
/*
|
|
* If they want to match any bus node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If we've already decided on an action, go ahead
|
|
* and return.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == BUS_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
|
|
&& (cur_pattern->bus_id != bus->sim->bus_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != bus->sim->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this bus. So tell the caller to copy the
|
|
* data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a non-bus matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a non-bus
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen anything other than bus matching patterns. So
|
|
* tell the caller to stop descending the tree -- the user doesn't
|
|
* want to match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static dev_match_ret
|
|
xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_ed *device)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
retval = DM_RET_NONE;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (device == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this device matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_DESCEND | DM_RET_COPY);
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct device_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a device node, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_DEVICE) {
|
|
if ((patterns[i].type == DEV_MATCH_PERIPH)
|
|
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
|
|
retval |= DM_RET_DESCEND;
|
|
continue;
|
|
}
|
|
|
|
cur_pattern = &patterns[i].pattern.device_pattern;
|
|
|
|
/*
|
|
* If they want to match any device node, we give them any
|
|
* device node.
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
|
|
/*
|
|
* If we've already decided on an action, go ahead
|
|
* and return.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == DEV_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != device->target->bus->path_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
|
|
&& (cur_pattern->target_id != device->target->target_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
|
|
&& (cur_pattern->target_lun != device->lun_id))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
|
|
&& (cam_quirkmatch((caddr_t)&device->inq_data,
|
|
(caddr_t)&cur_pattern->inq_pat,
|
|
1, sizeof(cur_pattern->inq_pat),
|
|
scsi_static_inquiry_match) == NULL))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this device. So tell the caller to copy
|
|
* the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* If the return action has been set to descend, then we
|
|
* know that we've already seen a peripheral matching
|
|
* expression, therefore we need to further descend the tree.
|
|
* This won't change by continuing around the loop, so we
|
|
* go ahead and return. If we haven't seen a peripheral
|
|
* matching expression, we keep going around the loop until
|
|
* we exhaust the matching expressions. We'll set the stop
|
|
* flag once we fall out of the loop.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If the return action hasn't been set to descend yet, that means
|
|
* we haven't seen any peripheral matching patterns. So tell the
|
|
* caller to stop descending the tree -- the user doesn't want to
|
|
* match against lower level tree elements.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
|
|
retval |= DM_RET_STOP;
|
|
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Match a single peripheral against any number of match patterns.
|
|
*/
|
|
static dev_match_ret
|
|
xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
|
|
struct cam_periph *periph)
|
|
{
|
|
dev_match_ret retval;
|
|
int i;
|
|
|
|
/*
|
|
* If we aren't given something to match against, that's an error.
|
|
*/
|
|
if (periph == NULL)
|
|
return(DM_RET_ERROR);
|
|
|
|
/*
|
|
* If there are no match entries, then this peripheral matches no
|
|
* matter what.
|
|
*/
|
|
if ((patterns == NULL) || (num_patterns == 0))
|
|
return(DM_RET_STOP | DM_RET_COPY);
|
|
|
|
/*
|
|
* There aren't any nodes below a peripheral node, so there's no
|
|
* reason to descend the tree any further.
|
|
*/
|
|
retval = DM_RET_STOP;
|
|
|
|
for (i = 0; i < num_patterns; i++) {
|
|
struct periph_match_pattern *cur_pattern;
|
|
|
|
/*
|
|
* If the pattern in question isn't for a peripheral, we
|
|
* aren't interested.
|
|
*/
|
|
if (patterns[i].type != DEV_MATCH_PERIPH)
|
|
continue;
|
|
|
|
cur_pattern = &patterns[i].pattern.periph_pattern;
|
|
|
|
/*
|
|
* If they want to match on anything, then we will do so.
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
|
|
/* set the copy flag */
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* We've already set the return action to stop,
|
|
* since there are no nodes below peripherals in
|
|
* the tree.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* Not sure why someone would do this...
|
|
*/
|
|
if (cur_pattern->flags == PERIPH_MATCH_NONE)
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
|
|
&& (cur_pattern->path_id != periph->path->bus->path_id))
|
|
continue;
|
|
|
|
/*
|
|
* For the target and lun id's, we have to make sure the
|
|
* target and lun pointers aren't NULL. The xpt peripheral
|
|
* has a wildcard target and device.
|
|
*/
|
|
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
|
|
&& ((periph->path->target == NULL)
|
|
||(cur_pattern->target_id != periph->path->target->target_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
|
|
&& ((periph->path->device == NULL)
|
|
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
|
|
&& (cur_pattern->unit_number != periph->unit_number))
|
|
continue;
|
|
|
|
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
|
|
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
|
|
DEV_IDLEN) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* If we get to this point, the user definitely wants
|
|
* information on this peripheral. So tell the caller to
|
|
* copy the data out.
|
|
*/
|
|
retval |= DM_RET_COPY;
|
|
|
|
/*
|
|
* The return action has already been set to stop, since
|
|
* peripherals don't have any nodes below them in the EDT.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
* If we get to this point, the peripheral that was passed in
|
|
* doesn't match any of the patterns.
|
|
*/
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptedtbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
|
|
|
|
/*
|
|
* If we got an error, bail out of the search.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this bus out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
|
|
|
|
cdm->pos.cookie.bus = bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_BUS;
|
|
cdm->matches[j].result.bus_result.path_id = bus->path_id;
|
|
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
|
|
cdm->matches[j].result.bus_result.unit_number =
|
|
bus->sim->unit_number;
|
|
strncpy(cdm->matches[j].result.bus_result.dev_name,
|
|
bus->sim->sim_name, DEV_IDLEN);
|
|
}
|
|
|
|
/*
|
|
* If the user is only interested in busses, there's no
|
|
* reason to descend to the next level in the tree.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a target generation recorded, check it to
|
|
* make sure the target list hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (bus == cdm->pos.cookie.bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_TARGET_GENERATION] !=
|
|
bus->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target != NULL))
|
|
return(xpttargettraverse(bus,
|
|
(struct cam_et *)cdm->pos.cookie.target,
|
|
xptedttargetfunc, arg));
|
|
else
|
|
return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedttargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If there is a device list generation recorded, check it to
|
|
* make sure the device list hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_DEV_GENERATION] !=
|
|
target->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device != NULL))
|
|
return(xptdevicetraverse(target,
|
|
(struct cam_ed *)cdm->pos.cookie.device,
|
|
xptedtdevicefunc, arg));
|
|
else
|
|
return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
/*
|
|
* If our position is for something deeper in the tree, that means
|
|
* that we've already seen this node. So, we keep going down.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
retval = DM_RET_DESCEND;
|
|
else
|
|
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
|
|
device);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this device out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
|
|
|
|
cdm->pos.cookie.bus = device->target->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->pos.cookie.target = device->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
device->target->bus->generation;
|
|
cdm->pos.cookie.device = device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
device->target->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_DEVICE;
|
|
cdm->matches[j].result.device_result.path_id =
|
|
device->target->bus->path_id;
|
|
cdm->matches[j].result.device_result.target_id =
|
|
device->target->target_id;
|
|
cdm->matches[j].result.device_result.target_lun =
|
|
device->lun_id;
|
|
cdm->matches[j].result.device_result.protocol =
|
|
device->protocol;
|
|
bcopy(&device->inq_data,
|
|
&cdm->matches[j].result.device_result.inq_data,
|
|
sizeof(struct scsi_inquiry_data));
|
|
bcopy(&device->ident_data,
|
|
&cdm->matches[j].result.device_result.ident_data,
|
|
sizeof(struct ata_params));
|
|
|
|
/* Let the user know whether this device is unconfigured */
|
|
if (device->flags & CAM_DEV_UNCONFIGURED)
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_UNCONFIGURED;
|
|
else
|
|
cdm->matches[j].result.device_result.flags =
|
|
DEV_RESULT_NOFLAG;
|
|
}
|
|
|
|
/*
|
|
* If the user isn't interested in peripherals, don't descend
|
|
* the tree any further.
|
|
*/
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
|
|
return(1);
|
|
|
|
/*
|
|
* If there is a peripheral list generation recorded, make sure
|
|
* it hasn't changed.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (device->target->bus == cdm->pos.cookie.bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (device->target == cdm->pos.cookie.target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (device == cdm->pos.cookie.device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
device->generation)){
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus == device->target->bus)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
|
|
&& (cdm->pos.cookie.target == device->target)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
|
|
&& (cdm->pos.cookie.device == device)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
return(xptperiphtraverse(device,
|
|
(struct cam_periph *)cdm->pos.cookie.periph,
|
|
xptedtperiphfunc, arg));
|
|
else
|
|
return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptedtperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
|
|
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
cdm->pos.cookie.bus = periph->path->bus;
|
|
cdm->pos.generations[CAM_BUS_GENERATION]=
|
|
xsoftc.bus_generation;
|
|
cdm->pos.cookie.target = periph->path->target;
|
|
cdm->pos.generations[CAM_TARGET_GENERATION] =
|
|
periph->path->bus->generation;
|
|
cdm->pos.cookie.device = periph->path->device;
|
|
cdm->pos.generations[CAM_DEV_GENERATION] =
|
|
periph->path->target->generation;
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
periph->path->device->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptedtmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* Check the bus list generation. If it has changed, the user
|
|
* needs to reset everything and start over.
|
|
*/
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
|
|
&& (cdm->pos.cookie.bus != NULL))
|
|
ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
|
|
xptedtbusfunc, cdm);
|
|
else
|
|
ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the EDT. It also means that one of the subroutines
|
|
* has set the status field to the proper value. If we get back 1,
|
|
* we've fully traversed the EDT and copied out any matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv == pdrv)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
|
|
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
|
|
(*pdrv)->generation)) {
|
|
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
|
|
return(0);
|
|
}
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv == pdrv)
|
|
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
|
|
&& (cdm->pos.cookie.periph != NULL))
|
|
return(xptpdperiphtraverse(pdrv,
|
|
(struct cam_periph *)cdm->pos.cookie.periph,
|
|
xptplistperiphfunc, arg));
|
|
else
|
|
return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptplistperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ccb_dev_match *cdm;
|
|
dev_match_ret retval;
|
|
|
|
cdm = (struct ccb_dev_match *)arg;
|
|
|
|
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
|
|
|
|
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* If the copy flag is set, copy this peripheral out.
|
|
*/
|
|
if (retval & DM_RET_COPY) {
|
|
int spaceleft, j;
|
|
|
|
spaceleft = cdm->match_buf_len - (cdm->num_matches *
|
|
sizeof(struct dev_match_result));
|
|
|
|
/*
|
|
* If we don't have enough space to put in another
|
|
* match result, save our position and tell the
|
|
* user there are more devices to check.
|
|
*/
|
|
if (spaceleft < sizeof(struct dev_match_result)) {
|
|
struct periph_driver **pdrv;
|
|
|
|
pdrv = NULL;
|
|
bzero(&cdm->pos, sizeof(cdm->pos));
|
|
cdm->pos.position_type =
|
|
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
|
|
CAM_DEV_POS_PERIPH;
|
|
|
|
/*
|
|
* This may look a bit non-sensical, but it is
|
|
* actually quite logical. There are very few
|
|
* peripheral drivers, and bloating every peripheral
|
|
* structure with a pointer back to its parent
|
|
* peripheral driver linker set entry would cost
|
|
* more in the long run than doing this quick lookup.
|
|
*/
|
|
for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
|
|
if (strcmp((*pdrv)->driver_name,
|
|
periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (*pdrv == NULL) {
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
return(0);
|
|
}
|
|
|
|
cdm->pos.cookie.pdrv = pdrv;
|
|
/*
|
|
* The periph generation slot does double duty, as
|
|
* does the periph pointer slot. They are used for
|
|
* both edt and pdrv lookups and positioning.
|
|
*/
|
|
cdm->pos.cookie.periph = periph;
|
|
cdm->pos.generations[CAM_PERIPH_GENERATION] =
|
|
(*pdrv)->generation;
|
|
cdm->status = CAM_DEV_MATCH_MORE;
|
|
return(0);
|
|
}
|
|
|
|
j = cdm->num_matches;
|
|
cdm->num_matches++;
|
|
cdm->matches[j].type = DEV_MATCH_PERIPH;
|
|
cdm->matches[j].result.periph_result.path_id =
|
|
periph->path->bus->path_id;
|
|
|
|
/*
|
|
* The transport layer peripheral doesn't have a target or
|
|
* lun.
|
|
*/
|
|
if (periph->path->target)
|
|
cdm->matches[j].result.periph_result.target_id =
|
|
periph->path->target->target_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_id = -1;
|
|
|
|
if (periph->path->device)
|
|
cdm->matches[j].result.periph_result.target_lun =
|
|
periph->path->device->lun_id;
|
|
else
|
|
cdm->matches[j].result.periph_result.target_lun = -1;
|
|
|
|
cdm->matches[j].result.periph_result.unit_number =
|
|
periph->unit_number;
|
|
strncpy(cdm->matches[j].result.periph_result.periph_name,
|
|
periph->periph_name, DEV_IDLEN);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptperiphlistmatch(struct ccb_dev_match *cdm)
|
|
{
|
|
int ret;
|
|
|
|
cdm->num_matches = 0;
|
|
|
|
/*
|
|
* At this point in the edt traversal function, we check the bus
|
|
* list generation to make sure that no busses have been added or
|
|
* removed since the user last sent a XPT_DEV_MATCH ccb through.
|
|
* For the peripheral driver list traversal function, however, we
|
|
* don't have to worry about new peripheral driver types coming or
|
|
* going; they're in a linker set, and therefore can't change
|
|
* without a recompile.
|
|
*/
|
|
|
|
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
|
|
&& (cdm->pos.cookie.pdrv != NULL))
|
|
ret = xptpdrvtraverse(
|
|
(struct periph_driver **)cdm->pos.cookie.pdrv,
|
|
xptplistpdrvfunc, cdm);
|
|
else
|
|
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
|
|
|
|
/*
|
|
* If we get back 0, that means that we had to stop before fully
|
|
* traversing the peripheral driver tree. It also means that one of
|
|
* the subroutines has set the status field to the proper value. If
|
|
* we get back 1, we've fully traversed the EDT and copied out any
|
|
* matching entries.
|
|
*/
|
|
if (ret == 1)
|
|
cdm->status = CAM_DEV_MATCH_LAST;
|
|
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_eb *bus, *next_bus;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
|
|
bus != NULL;
|
|
bus = next_bus) {
|
|
next_bus = TAILQ_NEXT(bus, links);
|
|
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
CAM_SIM_LOCK(bus->sim);
|
|
retval = tr_func(bus, arg);
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
if (retval == 0)
|
|
return(retval);
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
|
|
return(retval);
|
|
}
|
|
|
|
int
|
|
xpt_sim_opened(struct cam_sim *sim)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target;
|
|
struct cam_ed *device;
|
|
struct cam_periph *periph;
|
|
|
|
KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
|
|
if (bus->sim != sim)
|
|
continue;
|
|
|
|
TAILQ_FOREACH(target, &bus->et_entries, links) {
|
|
TAILQ_FOREACH(device, &target->ed_entries, links) {
|
|
SLIST_FOREACH(periph, &device->periphs,
|
|
periph_links) {
|
|
if (periph->refcount > 0) {
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
return (1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
|
|
xpt_targetfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_et *target, *next_target;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
for (target = (start_target ? start_target :
|
|
TAILQ_FIRST(&bus->et_entries));
|
|
target != NULL; target = next_target) {
|
|
|
|
next_target = TAILQ_NEXT(target, links);
|
|
|
|
retval = tr_func(target, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
|
|
xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_ed *device, *next_device;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
for (device = (start_device ? start_device :
|
|
TAILQ_FIRST(&target->ed_entries));
|
|
device != NULL;
|
|
device = next_device) {
|
|
|
|
next_device = TAILQ_NEXT(device, links);
|
|
|
|
retval = tr_func(device, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
for (periph = (start_periph ? start_periph :
|
|
SLIST_FIRST(&device->periphs));
|
|
periph != NULL;
|
|
periph = next_periph) {
|
|
|
|
next_periph = SLIST_NEXT(periph, periph_links);
|
|
|
|
retval = tr_func(periph, arg);
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdrvtraverse(struct periph_driver **start_pdrv,
|
|
xpt_pdrvfunc_t *tr_func, void *arg)
|
|
{
|
|
struct periph_driver **pdrv;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
/*
|
|
* We don't traverse the peripheral driver list like we do the
|
|
* other lists, because it is a linker set, and therefore cannot be
|
|
* changed during runtime. If the peripheral driver list is ever
|
|
* re-done to be something other than a linker set (i.e. it can
|
|
* change while the system is running), the list traversal should
|
|
* be modified to work like the other traversal functions.
|
|
*/
|
|
for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
|
|
*pdrv != NULL; pdrv++) {
|
|
retval = tr_func(pdrv, arg);
|
|
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptpdperiphtraverse(struct periph_driver **pdrv,
|
|
struct cam_periph *start_periph,
|
|
xpt_periphfunc_t *tr_func, void *arg)
|
|
{
|
|
struct cam_periph *periph, *next_periph;
|
|
int retval;
|
|
|
|
retval = 1;
|
|
|
|
for (periph = (start_periph ? start_periph :
|
|
TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
|
|
periph = next_periph) {
|
|
|
|
next_periph = TAILQ_NEXT(periph, unit_links);
|
|
|
|
retval = tr_func(periph, arg);
|
|
if (retval == 0)
|
|
return(retval);
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
static int
|
|
xptdefbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_BUS) {
|
|
xpt_busfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(bus, tr_config->tr_arg));
|
|
} else
|
|
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdeftargetfunc(struct cam_et *target, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_TARGET) {
|
|
xpt_targetfunc_t *tr_func;
|
|
|
|
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(target, tr_config->tr_arg));
|
|
} else
|
|
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefdevicefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
if (tr_config->depth == XPT_DEPTH_DEVICE) {
|
|
xpt_devicefunc_t *tr_func;
|
|
|
|
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
|
|
|
|
return(tr_func(device, tr_config->tr_arg));
|
|
} else
|
|
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
|
|
}
|
|
|
|
static int
|
|
xptdefperiphfunc(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct xpt_traverse_config *tr_config;
|
|
xpt_periphfunc_t *tr_func;
|
|
|
|
tr_config = (struct xpt_traverse_config *)arg;
|
|
|
|
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
|
|
|
|
/*
|
|
* Unlike the other default functions, we don't check for depth
|
|
* here. The peripheral driver level is the last level in the EDT,
|
|
* so if we're here, we should execute the function in question.
|
|
*/
|
|
return(tr_func(periph, tr_config->tr_arg));
|
|
}
|
|
|
|
/*
|
|
* Execute the given function for every bus in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_BUS;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
/*
|
|
* Execute the given function for every device in the EDT.
|
|
*/
|
|
static int
|
|
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
|
|
{
|
|
struct xpt_traverse_config tr_config;
|
|
|
|
tr_config.depth = XPT_DEPTH_DEVICE;
|
|
tr_config.tr_func = tr_func;
|
|
tr_config.tr_arg = arg;
|
|
|
|
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
|
|
}
|
|
|
|
static int
|
|
xptsetasyncfunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_getdev cgd;
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = (struct async_node *)arg;
|
|
|
|
/*
|
|
* Don't report unconfigured devices (Wildcard devs,
|
|
* devices only for target mode, device instances
|
|
* that have been invalidated but are waiting for
|
|
* their last reference count to be released).
|
|
*/
|
|
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
|
|
return (1);
|
|
|
|
xpt_compile_path(&path,
|
|
NULL,
|
|
device->target->bus->path_id,
|
|
device->target->target_id,
|
|
device->lun_id);
|
|
xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
AC_FOUND_DEVICE,
|
|
&path, &cgd);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct cam_path path;
|
|
struct ccb_pathinq cpi;
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = (struct async_node *)arg;
|
|
|
|
xpt_compile_path(&path, /*periph*/NULL,
|
|
bus->sim->path_id,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
AC_PATH_REGISTERED,
|
|
&path, &cpi);
|
|
xpt_release_path(&path);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_action_sasync_cb(void *context, int pending)
|
|
{
|
|
struct async_node *cur_entry;
|
|
struct xpt_task *task;
|
|
uint32_t added;
|
|
|
|
task = (struct xpt_task *)context;
|
|
cur_entry = (struct async_node *)task->data1;
|
|
added = task->data2;
|
|
|
|
if ((added & AC_FOUND_DEVICE) != 0) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing devices.
|
|
*/
|
|
xpt_for_all_devices(xptsetasyncfunc, cur_entry);
|
|
}
|
|
if ((added & AC_PATH_REGISTERED) != 0) {
|
|
/*
|
|
* Get this peripheral up to date with all
|
|
* the currently existing busses.
|
|
*/
|
|
xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
|
|
}
|
|
|
|
free(task, M_CAMXPT);
|
|
}
|
|
|
|
void
|
|
xpt_action(union ccb *start_ccb)
|
|
{
|
|
|
|
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
|
|
|
|
start_ccb->ccb_h.status = CAM_REQ_INPROG;
|
|
(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
|
|
}
|
|
|
|
void
|
|
xpt_action_default(union ccb *start_ccb)
|
|
{
|
|
|
|
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
|
|
|
|
|
|
switch (start_ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
{
|
|
struct cam_ed *device;
|
|
#ifdef CAMDEBUG
|
|
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
|
|
struct cam_path *path;
|
|
|
|
path = start_ccb->ccb_h.path;
|
|
#endif
|
|
|
|
/*
|
|
* For the sake of compatibility with SCSI-1
|
|
* devices that may not understand the identify
|
|
* message, we include lun information in the
|
|
* second byte of all commands. SCSI-1 specifies
|
|
* that luns are a 3 bit value and reserves only 3
|
|
* bits for lun information in the CDB. Later
|
|
* revisions of the SCSI spec allow for more than 8
|
|
* luns, but have deprecated lun information in the
|
|
* CDB. So, if the lun won't fit, we must omit.
|
|
*
|
|
* Also be aware that during initial probing for devices,
|
|
* the inquiry information is unknown but initialized to 0.
|
|
* This means that this code will be exercised while probing
|
|
* devices with an ANSI revision greater than 2.
|
|
*/
|
|
device = start_ccb->ccb_h.path->device;
|
|
if (device->protocol_version <= SCSI_REV_2
|
|
&& start_ccb->ccb_h.target_lun < 8
|
|
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
|
|
|
|
start_ccb->csio.cdb_io.cdb_bytes[1] |=
|
|
start_ccb->ccb_h.target_lun << 5;
|
|
}
|
|
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
|
|
CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
|
|
scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
|
|
&path->device->inq_data),
|
|
scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
|
|
cdb_str, sizeof(cdb_str))));
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_TARGET_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
start_ccb->csio.sense_resid = 0;
|
|
start_ccb->csio.resid = 0;
|
|
/* FALLTHROUGH */
|
|
case XPT_ATA_IO:
|
|
if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
|
|
start_ccb->ataio.resid = 0;
|
|
}
|
|
case XPT_RESET_DEV:
|
|
case XPT_ENG_EXEC:
|
|
{
|
|
struct cam_path *path;
|
|
int runq;
|
|
|
|
path = start_ccb->ccb_h.path;
|
|
|
|
cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
|
|
if (path->device->qfrozen_cnt == 0)
|
|
runq = xpt_schedule_dev_sendq(path->bus, path->device);
|
|
else
|
|
runq = 0;
|
|
if (runq != 0)
|
|
xpt_run_dev_sendq(path->bus);
|
|
break;
|
|
}
|
|
case XPT_CALC_GEOMETRY:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
/* Filter out garbage */
|
|
if (start_ccb->ccg.block_size == 0
|
|
|| start_ccb->ccg.volume_size == 0) {
|
|
start_ccb->ccg.cylinders = 0;
|
|
start_ccb->ccg.heads = 0;
|
|
start_ccb->ccg.secs_per_track = 0;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#ifdef PC98
|
|
/*
|
|
* In a PC-98 system, geometry translation depens on
|
|
* the "real" device geometry obtained from mode page 4.
|
|
* SCSI geometry translation is performed in the
|
|
* initialization routine of the SCSI BIOS and the result
|
|
* stored in host memory. If the translation is available
|
|
* in host memory, use it. If not, rely on the default
|
|
* translation the device driver performs.
|
|
*/
|
|
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
#endif
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_ABORT:
|
|
{
|
|
union ccb* abort_ccb;
|
|
|
|
abort_ccb = start_ccb->cab.abort_ccb;
|
|
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
|
|
|
|
if (abort_ccb->ccb_h.pinfo.index >= 0) {
|
|
struct cam_ccbq *ccbq;
|
|
|
|
ccbq = &abort_ccb->ccb_h.path->device->ccbq;
|
|
cam_ccbq_remove_ccb(ccbq, abort_ccb);
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
|
|
xpt_done(abort_ccb);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
|
|
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
|
|
/*
|
|
* We've caught this ccb en route to
|
|
* the SIM. Flag it for abort and the
|
|
* SIM will do so just before starting
|
|
* real work on the CCB.
|
|
*/
|
|
abort_ccb->ccb_h.status =
|
|
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
}
|
|
if (XPT_FC_IS_QUEUED(abort_ccb)
|
|
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
|
|
/*
|
|
* It's already completed but waiting
|
|
* for our SWI to get to it.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_UA_ABORT;
|
|
break;
|
|
}
|
|
/*
|
|
* If we weren't able to take care of the abort request
|
|
* in the XPT, pass the request down to the SIM for processing.
|
|
*/
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_ACCEPT_TARGET_IO:
|
|
case XPT_EN_LUN:
|
|
case XPT_IMMED_NOTIFY:
|
|
case XPT_NOTIFY_ACK:
|
|
case XPT_RESET_BUS:
|
|
case XPT_IMMEDIATE_NOTIFY:
|
|
case XPT_NOTIFY_ACKNOWLEDGE:
|
|
case XPT_GET_SIM_KNOB:
|
|
case XPT_SET_SIM_KNOB:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_PATH_INQ:
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, start_ccb);
|
|
break;
|
|
}
|
|
case XPT_PATH_STATS:
|
|
start_ccb->cpis.last_reset =
|
|
start_ccb->ccb_h.path->bus->last_reset;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
case XPT_GDEV_TYPE:
|
|
{
|
|
struct cam_ed *dev;
|
|
|
|
dev = start_ccb->ccb_h.path->device;
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdev *cgd;
|
|
struct cam_eb *bus;
|
|
struct cam_et *tar;
|
|
|
|
cgd = &start_ccb->cgd;
|
|
bus = cgd->ccb_h.path->bus;
|
|
tar = cgd->ccb_h.path->target;
|
|
cgd->protocol = dev->protocol;
|
|
cgd->inq_data = dev->inq_data;
|
|
cgd->ident_data = dev->ident_data;
|
|
cgd->ccb_h.status = CAM_REQ_CMP;
|
|
cgd->serial_num_len = dev->serial_num_len;
|
|
if ((dev->serial_num_len > 0)
|
|
&& (dev->serial_num != NULL))
|
|
bcopy(dev->serial_num, cgd->serial_num,
|
|
dev->serial_num_len);
|
|
}
|
|
break;
|
|
}
|
|
case XPT_GDEV_STATS:
|
|
{
|
|
struct cam_ed *dev;
|
|
|
|
dev = start_ccb->ccb_h.path->device;
|
|
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
|
|
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
} else {
|
|
struct ccb_getdevstats *cgds;
|
|
struct cam_eb *bus;
|
|
struct cam_et *tar;
|
|
|
|
cgds = &start_ccb->cgds;
|
|
bus = cgds->ccb_h.path->bus;
|
|
tar = cgds->ccb_h.path->target;
|
|
cgds->dev_openings = dev->ccbq.dev_openings;
|
|
cgds->dev_active = dev->ccbq.dev_active;
|
|
cgds->devq_openings = dev->ccbq.devq_openings;
|
|
cgds->devq_queued = dev->ccbq.queue.entries;
|
|
cgds->held = dev->ccbq.held;
|
|
cgds->last_reset = tar->last_reset;
|
|
cgds->maxtags = dev->maxtags;
|
|
cgds->mintags = dev->mintags;
|
|
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
|
|
cgds->last_reset = bus->last_reset;
|
|
cgds->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
break;
|
|
}
|
|
case XPT_GDEVLIST:
|
|
{
|
|
struct cam_periph *nperiph;
|
|
struct periph_list *periph_head;
|
|
struct ccb_getdevlist *cgdl;
|
|
u_int i;
|
|
struct cam_ed *device;
|
|
int found;
|
|
|
|
|
|
found = 0;
|
|
|
|
/*
|
|
* Don't want anyone mucking with our data.
|
|
*/
|
|
device = start_ccb->ccb_h.path->device;
|
|
periph_head = &device->periphs;
|
|
cgdl = &start_ccb->cgdl;
|
|
|
|
/*
|
|
* Check and see if the list has changed since the user
|
|
* last requested a list member. If so, tell them that the
|
|
* list has changed, and therefore they need to start over
|
|
* from the beginning.
|
|
*/
|
|
if ((cgdl->index != 0) &&
|
|
(cgdl->generation != device->generation)) {
|
|
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Traverse the list of peripherals and attempt to find
|
|
* the requested peripheral.
|
|
*/
|
|
for (nperiph = SLIST_FIRST(periph_head), i = 0;
|
|
(nperiph != NULL) && (i <= cgdl->index);
|
|
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
|
|
if (i == cgdl->index) {
|
|
strncpy(cgdl->periph_name,
|
|
nperiph->periph_name,
|
|
DEV_IDLEN);
|
|
cgdl->unit_number = nperiph->unit_number;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found == 0) {
|
|
cgdl->status = CAM_GDEVLIST_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (nperiph == NULL)
|
|
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
|
|
else
|
|
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
|
|
|
|
cgdl->index++;
|
|
cgdl->generation = device->generation;
|
|
|
|
cgdl->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_DEV_MATCH:
|
|
{
|
|
dev_pos_type position_type;
|
|
struct ccb_dev_match *cdm;
|
|
|
|
cdm = &start_ccb->cdm;
|
|
|
|
/*
|
|
* There are two ways of getting at information in the EDT.
|
|
* The first way is via the primary EDT tree. It starts
|
|
* with a list of busses, then a list of targets on a bus,
|
|
* then devices/luns on a target, and then peripherals on a
|
|
* device/lun. The "other" way is by the peripheral driver
|
|
* lists. The peripheral driver lists are organized by
|
|
* peripheral driver. (obviously) So it makes sense to
|
|
* use the peripheral driver list if the user is looking
|
|
* for something like "da1", or all "da" devices. If the
|
|
* user is looking for something on a particular bus/target
|
|
* or lun, it's generally better to go through the EDT tree.
|
|
*/
|
|
|
|
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
|
|
position_type = cdm->pos.position_type;
|
|
else {
|
|
u_int i;
|
|
|
|
position_type = CAM_DEV_POS_NONE;
|
|
|
|
for (i = 0; i < cdm->num_patterns; i++) {
|
|
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
|
|
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
|
|
position_type = CAM_DEV_POS_EDT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cdm->num_patterns == 0)
|
|
position_type = CAM_DEV_POS_EDT;
|
|
else if (position_type == CAM_DEV_POS_NONE)
|
|
position_type = CAM_DEV_POS_PDRV;
|
|
}
|
|
|
|
switch(position_type & CAM_DEV_POS_TYPEMASK) {
|
|
case CAM_DEV_POS_EDT:
|
|
xptedtmatch(cdm);
|
|
break;
|
|
case CAM_DEV_POS_PDRV:
|
|
xptperiphlistmatch(cdm);
|
|
break;
|
|
default:
|
|
cdm->status = CAM_DEV_MATCH_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (cdm->status == CAM_DEV_MATCH_ERROR)
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
else
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
|
|
break;
|
|
}
|
|
case XPT_SASYNC_CB:
|
|
{
|
|
struct ccb_setasync *csa;
|
|
struct async_node *cur_entry;
|
|
struct async_list *async_head;
|
|
u_int32_t added;
|
|
|
|
csa = &start_ccb->csa;
|
|
added = csa->event_enable;
|
|
async_head = &csa->ccb_h.path->device->asyncs;
|
|
|
|
/*
|
|
* If there is already an entry for us, simply
|
|
* update it.
|
|
*/
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
if ((cur_entry->callback_arg == csa->callback_arg)
|
|
&& (cur_entry->callback == csa->callback))
|
|
break;
|
|
cur_entry = SLIST_NEXT(cur_entry, links);
|
|
}
|
|
|
|
if (cur_entry != NULL) {
|
|
/*
|
|
* If the request has no flags set,
|
|
* remove the entry.
|
|
*/
|
|
added &= ~cur_entry->event_enable;
|
|
if (csa->event_enable == 0) {
|
|
SLIST_REMOVE(async_head, cur_entry,
|
|
async_node, links);
|
|
csa->ccb_h.path->device->refcount--;
|
|
free(cur_entry, M_CAMXPT);
|
|
} else {
|
|
cur_entry->event_enable = csa->event_enable;
|
|
}
|
|
} else {
|
|
cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
|
|
M_NOWAIT);
|
|
if (cur_entry == NULL) {
|
|
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
break;
|
|
}
|
|
cur_entry->event_enable = csa->event_enable;
|
|
cur_entry->callback_arg = csa->callback_arg;
|
|
cur_entry->callback = csa->callback;
|
|
SLIST_INSERT_HEAD(async_head, cur_entry, links);
|
|
csa->ccb_h.path->device->refcount++;
|
|
}
|
|
|
|
/*
|
|
* Need to decouple this operation via a taqskqueue so that
|
|
* the locking doesn't become a mess.
|
|
*/
|
|
if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
|
|
struct xpt_task *task;
|
|
|
|
task = malloc(sizeof(struct xpt_task), M_CAMXPT,
|
|
M_NOWAIT);
|
|
if (task == NULL) {
|
|
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
break;
|
|
}
|
|
|
|
TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
|
|
task->data1 = cur_entry;
|
|
task->data2 = added;
|
|
taskqueue_enqueue(taskqueue_thread, &task->task);
|
|
}
|
|
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_REL_SIMQ:
|
|
{
|
|
struct ccb_relsim *crs;
|
|
struct cam_ed *dev;
|
|
|
|
crs = &start_ccb->crs;
|
|
dev = crs->ccb_h.path->device;
|
|
if (dev == NULL) {
|
|
|
|
crs->ccb_h.status = CAM_DEV_NOT_THERE;
|
|
break;
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
|
|
|
|
if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
|
|
/* Don't ever go below one opening */
|
|
if (crs->openings > 0) {
|
|
xpt_dev_ccbq_resize(crs->ccb_h.path,
|
|
crs->openings);
|
|
|
|
if (bootverbose) {
|
|
xpt_print(crs->ccb_h.path,
|
|
"tagged openings now %d\n",
|
|
crs->openings);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
|
|
/*
|
|
* Just extend the old timeout and decrement
|
|
* the freeze count so that a single timeout
|
|
* is sufficient for releasing the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
callout_stop(&dev->callout);
|
|
} else {
|
|
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
|
|
callout_reset(&dev->callout,
|
|
(crs->release_timeout * hz) / 1000,
|
|
xpt_release_devq_timeout, dev);
|
|
|
|
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
|
|
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
|
|
/*
|
|
* Decrement the freeze count so that a single
|
|
* completion is still sufficient to unfreeze
|
|
* the queue.
|
|
*/
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
|
|
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
|
|
|
|
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
|| (dev->ccbq.dev_active == 0)) {
|
|
|
|
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
|
|
} else {
|
|
|
|
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
|
|
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
}
|
|
}
|
|
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
|
|
|
|
xpt_release_devq(crs->ccb_h.path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
case XPT_DEBUG: {
|
|
#ifdef CAMDEBUG
|
|
#ifdef CAM_DEBUG_DELAY
|
|
cam_debug_delay = CAM_DEBUG_DELAY;
|
|
#endif
|
|
cam_dflags = start_ccb->cdbg.flags;
|
|
if (cam_dpath != NULL) {
|
|
xpt_free_path(cam_dpath);
|
|
cam_dpath = NULL;
|
|
}
|
|
|
|
if (cam_dflags != CAM_DEBUG_NONE) {
|
|
if (xpt_create_path(&cam_dpath, xpt_periph,
|
|
start_ccb->ccb_h.path_id,
|
|
start_ccb->ccb_h.target_id,
|
|
start_ccb->ccb_h.target_lun) !=
|
|
CAM_REQ_CMP) {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
} else {
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print(cam_dpath, "debugging flags now %x\n",
|
|
cam_dflags);
|
|
}
|
|
} else {
|
|
cam_dpath = NULL;
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
#else /* !CAMDEBUG */
|
|
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
|
|
#endif /* CAMDEBUG */
|
|
break;
|
|
}
|
|
case XPT_NOOP:
|
|
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
|
|
xpt_freeze_devq(start_ccb->ccb_h.path, 1);
|
|
start_ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
default:
|
|
case XPT_SDEV_TYPE:
|
|
case XPT_TERM_IO:
|
|
case XPT_ENG_INQ:
|
|
/* XXX Implement */
|
|
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_polled_action(union ccb *start_ccb)
|
|
{
|
|
u_int32_t timeout;
|
|
struct cam_sim *sim;
|
|
struct cam_devq *devq;
|
|
struct cam_ed *dev;
|
|
|
|
|
|
timeout = start_ccb->ccb_h.timeout;
|
|
sim = start_ccb->ccb_h.path->bus->sim;
|
|
devq = sim->devq;
|
|
dev = start_ccb->ccb_h.path->device;
|
|
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
/*
|
|
* Steal an opening so that no other queued requests
|
|
* can get it before us while we simulate interrupts.
|
|
*/
|
|
dev->ccbq.devq_openings--;
|
|
dev->ccbq.dev_openings--;
|
|
|
|
while(((devq != NULL && devq->send_openings <= 0) ||
|
|
dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
|
|
DELAY(1000);
|
|
(*(sim->sim_poll))(sim);
|
|
camisr_runqueue(&sim->sim_doneq);
|
|
}
|
|
|
|
dev->ccbq.devq_openings++;
|
|
dev->ccbq.dev_openings++;
|
|
|
|
if (timeout != 0) {
|
|
xpt_action(start_ccb);
|
|
while(--timeout > 0) {
|
|
(*(sim->sim_poll))(sim);
|
|
camisr_runqueue(&sim->sim_doneq);
|
|
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
|
|
!= CAM_REQ_INPROG)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (timeout == 0) {
|
|
/*
|
|
* XXX Is it worth adding a sim_timeout entry
|
|
* point so we can attempt recovery? If
|
|
* this is only used for dumps, I don't think
|
|
* it is.
|
|
*/
|
|
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
|
|
}
|
|
} else {
|
|
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule a peripheral driver to receive a ccb when it's
|
|
* target device has space for more transactions.
|
|
*/
|
|
void
|
|
xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
|
|
{
|
|
struct cam_ed *device;
|
|
int runq;
|
|
|
|
mtx_assert(perph->sim->mtx, MA_OWNED);
|
|
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
|
|
device = perph->path->device;
|
|
if (periph_is_queued(perph)) {
|
|
/* Simply reorder based on new priority */
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" change priority to %d\n", new_priority));
|
|
if (new_priority < perph->pinfo.priority) {
|
|
camq_change_priority(&device->drvq,
|
|
perph->pinfo.index,
|
|
new_priority);
|
|
}
|
|
runq = 0;
|
|
} else {
|
|
/* New entry on the queue */
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" added periph to queue\n"));
|
|
perph->pinfo.priority = new_priority;
|
|
perph->pinfo.generation = ++device->drvq.generation;
|
|
camq_insert(&device->drvq, &perph->pinfo);
|
|
runq = xpt_schedule_dev_allocq(perph->path->bus, device);
|
|
}
|
|
if (runq != 0) {
|
|
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
|
|
(" calling xpt_run_devq\n"));
|
|
xpt_run_dev_allocq(perph->path->bus);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Schedule a device to run on a given queue.
|
|
* If the device was inserted as a new entry on the queue,
|
|
* return 1 meaning the device queue should be run. If we
|
|
* were already queued, implying someone else has already
|
|
* started the queue, return 0 so the caller doesn't attempt
|
|
* to run the queue.
|
|
*/
|
|
int
|
|
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
|
|
u_int32_t new_priority)
|
|
{
|
|
int retval;
|
|
u_int32_t old_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
|
|
|
|
old_priority = pinfo->priority;
|
|
|
|
/*
|
|
* Are we already queued?
|
|
*/
|
|
if (pinfo->index != CAM_UNQUEUED_INDEX) {
|
|
/* Simply reorder based on new priority */
|
|
if (new_priority < old_priority) {
|
|
camq_change_priority(queue, pinfo->index,
|
|
new_priority);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("changed priority to %d\n",
|
|
new_priority));
|
|
}
|
|
retval = 0;
|
|
} else {
|
|
/* New entry on the queue */
|
|
if (new_priority < old_priority)
|
|
pinfo->priority = new_priority;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("Inserting onto queue\n"));
|
|
pinfo->generation = ++queue->generation;
|
|
camq_insert(queue, pinfo);
|
|
retval = 1;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
xpt_run_dev_allocq(struct cam_eb *bus)
|
|
{
|
|
struct cam_devq *devq;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
|
|
devq = bus->sim->devq;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
(" qfrozen_cnt == 0x%x, entries == %d, "
|
|
"openings == %d, active == %d\n",
|
|
devq->alloc_queue.qfrozen_cnt,
|
|
devq->alloc_queue.entries,
|
|
devq->alloc_openings,
|
|
devq->alloc_active));
|
|
|
|
devq->alloc_queue.qfrozen_cnt++;
|
|
while ((devq->alloc_queue.entries > 0)
|
|
&& (devq->alloc_openings > 0)
|
|
&& (devq->alloc_queue.qfrozen_cnt <= 1)) {
|
|
struct cam_ed_qinfo *qinfo;
|
|
struct cam_ed *device;
|
|
union ccb *work_ccb;
|
|
struct cam_periph *drv;
|
|
struct camq *drvq;
|
|
|
|
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
|
|
CAMQ_HEAD);
|
|
device = qinfo->device;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("running device %p\n", device));
|
|
|
|
drvq = &device->drvq;
|
|
|
|
#ifdef CAMDEBUG
|
|
if (drvq->entries <= 0) {
|
|
panic("xpt_run_dev_allocq: "
|
|
"Device on queue without any work to do");
|
|
}
|
|
#endif
|
|
if ((work_ccb = xpt_get_ccb(device)) != NULL) {
|
|
devq->alloc_openings--;
|
|
devq->alloc_active++;
|
|
drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
|
|
xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
|
|
drv->pinfo.priority);
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("calling periph start\n"));
|
|
drv->periph_start(drv, work_ccb);
|
|
} else {
|
|
/*
|
|
* Malloc failure in alloc_ccb
|
|
*/
|
|
/*
|
|
* XXX add us to a list to be run from free_ccb
|
|
* if we don't have any ccbs active on this
|
|
* device queue otherwise we may never get run
|
|
* again.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
if (drvq->entries > 0) {
|
|
/* We have more work. Attempt to reschedule */
|
|
xpt_schedule_dev_allocq(bus, device);
|
|
}
|
|
}
|
|
devq->alloc_queue.qfrozen_cnt--;
|
|
}
|
|
|
|
void
|
|
xpt_run_dev_sendq(struct cam_eb *bus)
|
|
{
|
|
struct cam_devq *devq;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
|
|
|
|
devq = bus->sim->devq;
|
|
|
|
devq->send_queue.qfrozen_cnt++;
|
|
while ((devq->send_queue.entries > 0)
|
|
&& (devq->send_openings > 0)) {
|
|
struct cam_ed_qinfo *qinfo;
|
|
struct cam_ed *device;
|
|
union ccb *work_ccb;
|
|
struct cam_sim *sim;
|
|
|
|
if (devq->send_queue.qfrozen_cnt > 1) {
|
|
break;
|
|
}
|
|
|
|
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
|
|
CAMQ_HEAD);
|
|
device = qinfo->device;
|
|
|
|
/*
|
|
* If the device has been "frozen", don't attempt
|
|
* to run it.
|
|
*/
|
|
if (device->qfrozen_cnt > 0) {
|
|
continue;
|
|
}
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
|
|
("running device %p\n", device));
|
|
|
|
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
|
|
if (work_ccb == NULL) {
|
|
printf("device on run queue with no ccbs???\n");
|
|
continue;
|
|
}
|
|
|
|
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
|
|
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
if (xsoftc.num_highpower <= 0) {
|
|
/*
|
|
* We got a high power command, but we
|
|
* don't have any available slots. Freeze
|
|
* the device queue until we have a slot
|
|
* available.
|
|
*/
|
|
device->qfrozen_cnt++;
|
|
STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
|
|
&work_ccb->ccb_h,
|
|
xpt_links.stqe);
|
|
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
continue;
|
|
} else {
|
|
/*
|
|
* Consume a high power slot while
|
|
* this ccb runs.
|
|
*/
|
|
xsoftc.num_highpower--;
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
}
|
|
devq->active_dev = device;
|
|
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
|
|
|
|
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
|
|
|
|
devq->send_openings--;
|
|
devq->send_active++;
|
|
|
|
if (device->ccbq.queue.entries > 0)
|
|
xpt_schedule_dev_sendq(bus, device);
|
|
|
|
if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
|
|
/*
|
|
* The client wants to freeze the queue
|
|
* after this CCB is sent.
|
|
*/
|
|
device->qfrozen_cnt++;
|
|
}
|
|
|
|
/* In Target mode, the peripheral driver knows best... */
|
|
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
if ((device->inq_flags & SID_CmdQue) != 0
|
|
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
|
|
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
|
|
else
|
|
/*
|
|
* Clear this in case of a retried CCB that
|
|
* failed due to a rejected tag.
|
|
*/
|
|
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
|
|
}
|
|
|
|
/*
|
|
* Device queues can be shared among multiple sim instances
|
|
* that reside on different busses. Use the SIM in the queue
|
|
* CCB's path, rather than the one in the bus that was passed
|
|
* into this function.
|
|
*/
|
|
sim = work_ccb->ccb_h.path->bus->sim;
|
|
(*(sim->sim_action))(sim, work_ccb);
|
|
|
|
devq->active_dev = NULL;
|
|
}
|
|
devq->send_queue.qfrozen_cnt--;
|
|
}
|
|
|
|
/*
|
|
* This function merges stuff from the slave ccb into the master ccb, while
|
|
* keeping important fields in the master ccb constant.
|
|
*/
|
|
void
|
|
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
|
|
{
|
|
|
|
/*
|
|
* Pull fields that are valid for peripheral drivers to set
|
|
* into the master CCB along with the CCB "payload".
|
|
*/
|
|
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
|
|
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
|
|
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
|
|
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
|
|
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
|
|
sizeof(union ccb) - sizeof(struct ccb_hdr));
|
|
}
|
|
|
|
void
|
|
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
|
|
{
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
|
|
ccb_h->pinfo.priority = priority;
|
|
ccb_h->path = path;
|
|
ccb_h->path_id = path->bus->path_id;
|
|
if (path->target)
|
|
ccb_h->target_id = path->target->target_id;
|
|
else
|
|
ccb_h->target_id = CAM_TARGET_WILDCARD;
|
|
if (path->device) {
|
|
ccb_h->target_lun = path->device->lun_id;
|
|
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
|
|
} else {
|
|
ccb_h->target_lun = CAM_TARGET_WILDCARD;
|
|
}
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
ccb_h->flags = 0;
|
|
}
|
|
|
|
/* Path manipulation functions */
|
|
cam_status
|
|
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_path *path;
|
|
cam_status status;
|
|
|
|
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
|
|
|
|
if (path == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
return(status);
|
|
}
|
|
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP) {
|
|
free(path, M_CAMXPT);
|
|
path = NULL;
|
|
}
|
|
*new_path_ptr = path;
|
|
return (status);
|
|
}
|
|
|
|
cam_status
|
|
xpt_create_path_unlocked(struct cam_path **new_path_ptr,
|
|
struct cam_periph *periph, path_id_t path_id,
|
|
target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_path *path;
|
|
struct cam_eb *bus = NULL;
|
|
cam_status status;
|
|
int need_unlock = 0;
|
|
|
|
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
|
|
|
|
if (path_id != CAM_BUS_WILDCARD) {
|
|
bus = xpt_find_bus(path_id);
|
|
if (bus != NULL) {
|
|
need_unlock = 1;
|
|
CAM_SIM_LOCK(bus->sim);
|
|
}
|
|
}
|
|
status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
|
|
if (need_unlock)
|
|
CAM_SIM_UNLOCK(bus->sim);
|
|
if (status != CAM_REQ_CMP) {
|
|
free(path, M_CAMXPT);
|
|
path = NULL;
|
|
}
|
|
*new_path_ptr = path;
|
|
return (status);
|
|
}
|
|
|
|
cam_status
|
|
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
|
|
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target;
|
|
struct cam_ed *device;
|
|
cam_status status;
|
|
|
|
status = CAM_REQ_CMP; /* Completed without error */
|
|
target = NULL; /* Wildcarded */
|
|
device = NULL; /* Wildcarded */
|
|
|
|
/*
|
|
* We will potentially modify the EDT, so block interrupts
|
|
* that may attempt to create cam paths.
|
|
*/
|
|
bus = xpt_find_bus(path_id);
|
|
if (bus == NULL) {
|
|
status = CAM_PATH_INVALID;
|
|
} else {
|
|
target = xpt_find_target(bus, target_id);
|
|
if (target == NULL) {
|
|
/* Create one */
|
|
struct cam_et *new_target;
|
|
|
|
new_target = xpt_alloc_target(bus, target_id);
|
|
if (new_target == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
target = new_target;
|
|
}
|
|
}
|
|
if (target != NULL) {
|
|
device = xpt_find_device(target, lun_id);
|
|
if (device == NULL) {
|
|
/* Create one */
|
|
struct cam_ed *new_device;
|
|
|
|
new_device =
|
|
(*(bus->xport->alloc_device))(bus,
|
|
target,
|
|
lun_id);
|
|
if (new_device == NULL) {
|
|
status = CAM_RESRC_UNAVAIL;
|
|
} else {
|
|
device = new_device;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only touch the user's data if we are successful.
|
|
*/
|
|
if (status == CAM_REQ_CMP) {
|
|
new_path->periph = perph;
|
|
new_path->bus = bus;
|
|
new_path->target = target;
|
|
new_path->device = device;
|
|
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
|
|
} else {
|
|
if (device != NULL)
|
|
xpt_release_device(bus, target, device);
|
|
if (target != NULL)
|
|
xpt_release_target(bus, target);
|
|
if (bus != NULL)
|
|
xpt_release_bus(bus);
|
|
}
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
xpt_release_path(struct cam_path *path)
|
|
{
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
|
|
if (path->device != NULL) {
|
|
xpt_release_device(path->bus, path->target, path->device);
|
|
path->device = NULL;
|
|
}
|
|
if (path->target != NULL) {
|
|
xpt_release_target(path->bus, path->target);
|
|
path->target = NULL;
|
|
}
|
|
if (path->bus != NULL) {
|
|
xpt_release_bus(path->bus);
|
|
path->bus = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_free_path(struct cam_path *path)
|
|
{
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
|
|
xpt_release_path(path);
|
|
free(path, M_CAMXPT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
|
|
* in path1, 2 for match with wildcards in path2.
|
|
*/
|
|
int
|
|
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (path1->bus != path2->bus) {
|
|
if (path1->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 1;
|
|
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->target != path2->target) {
|
|
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
if (path1->device != path2->device) {
|
|
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
|
|
if (retval == 0)
|
|
retval = 1;
|
|
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
|
|
retval = 2;
|
|
else
|
|
return (-1);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
xpt_print_path(struct cam_path *path)
|
|
{
|
|
|
|
if (path == NULL)
|
|
printf("(nopath): ");
|
|
else {
|
|
if (path->periph != NULL)
|
|
printf("(%s%d:", path->periph->periph_name,
|
|
path->periph->unit_number);
|
|
else
|
|
printf("(noperiph:");
|
|
|
|
if (path->bus != NULL)
|
|
printf("%s%d:%d:", path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id);
|
|
else
|
|
printf("nobus:");
|
|
|
|
if (path->target != NULL)
|
|
printf("%d:", path->target->target_id);
|
|
else
|
|
printf("X:");
|
|
|
|
if (path->device != NULL)
|
|
printf("%d): ", path->device->lun_id);
|
|
else
|
|
printf("X): ");
|
|
}
|
|
}
|
|
|
|
void
|
|
xpt_print(struct cam_path *path, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
xpt_print_path(path);
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
int
|
|
xpt_path_string(struct cam_path *path, char *str, size_t str_len)
|
|
{
|
|
struct sbuf sb;
|
|
|
|
#ifdef INVARIANTS
|
|
if (path != NULL && path->bus != NULL)
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
#endif
|
|
|
|
sbuf_new(&sb, str, str_len, 0);
|
|
|
|
if (path == NULL)
|
|
sbuf_printf(&sb, "(nopath): ");
|
|
else {
|
|
if (path->periph != NULL)
|
|
sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
|
|
path->periph->unit_number);
|
|
else
|
|
sbuf_printf(&sb, "(noperiph:");
|
|
|
|
if (path->bus != NULL)
|
|
sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
|
|
path->bus->sim->unit_number,
|
|
path->bus->sim->bus_id);
|
|
else
|
|
sbuf_printf(&sb, "nobus:");
|
|
|
|
if (path->target != NULL)
|
|
sbuf_printf(&sb, "%d:", path->target->target_id);
|
|
else
|
|
sbuf_printf(&sb, "X:");
|
|
|
|
if (path->device != NULL)
|
|
sbuf_printf(&sb, "%d): ", path->device->lun_id);
|
|
else
|
|
sbuf_printf(&sb, "X): ");
|
|
}
|
|
sbuf_finish(&sb);
|
|
|
|
return(sbuf_len(&sb));
|
|
}
|
|
|
|
path_id_t
|
|
xpt_path_path_id(struct cam_path *path)
|
|
{
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
return(path->bus->path_id);
|
|
}
|
|
|
|
target_id_t
|
|
xpt_path_target_id(struct cam_path *path)
|
|
{
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
if (path->target != NULL)
|
|
return (path->target->target_id);
|
|
else
|
|
return (CAM_TARGET_WILDCARD);
|
|
}
|
|
|
|
lun_id_t
|
|
xpt_path_lun_id(struct cam_path *path)
|
|
{
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
if (path->device != NULL)
|
|
return (path->device->lun_id);
|
|
else
|
|
return (CAM_LUN_WILDCARD);
|
|
}
|
|
|
|
struct cam_sim *
|
|
xpt_path_sim(struct cam_path *path)
|
|
{
|
|
|
|
return (path->bus->sim);
|
|
}
|
|
|
|
struct cam_periph*
|
|
xpt_path_periph(struct cam_path *path)
|
|
{
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
return (path->periph);
|
|
}
|
|
|
|
/*
|
|
* Release a CAM control block for the caller. Remit the cost of the structure
|
|
* to the device referenced by the path. If the this device had no 'credits'
|
|
* and peripheral drivers have registered async callbacks for this notification
|
|
* call them now.
|
|
*/
|
|
void
|
|
xpt_release_ccb(union ccb *free_ccb)
|
|
{
|
|
struct cam_path *path;
|
|
struct cam_ed *device;
|
|
struct cam_eb *bus;
|
|
struct cam_sim *sim;
|
|
|
|
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
|
|
path = free_ccb->ccb_h.path;
|
|
device = path->device;
|
|
bus = path->bus;
|
|
sim = bus->sim;
|
|
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
cam_ccbq_release_opening(&device->ccbq);
|
|
if (sim->ccb_count > sim->max_ccbs) {
|
|
xpt_free_ccb(free_ccb);
|
|
sim->ccb_count--;
|
|
} else {
|
|
SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
|
|
xpt_links.sle);
|
|
}
|
|
if (sim->devq == NULL) {
|
|
return;
|
|
}
|
|
sim->devq->alloc_openings++;
|
|
sim->devq->alloc_active--;
|
|
/* XXX Turn this into an inline function - xpt_run_device?? */
|
|
if ((device_is_alloc_queued(device) == 0)
|
|
&& (device->drvq.entries > 0)) {
|
|
xpt_schedule_dev_allocq(bus, device);
|
|
}
|
|
if (dev_allocq_is_runnable(sim->devq))
|
|
xpt_run_dev_allocq(bus);
|
|
}
|
|
|
|
/* Functions accessed by SIM drivers */
|
|
|
|
static struct xpt_xport xport_default = {
|
|
.alloc_device = xpt_alloc_device_default,
|
|
.action = xpt_action_default,
|
|
.async = xpt_dev_async_default,
|
|
};
|
|
|
|
/*
|
|
* A sim structure, listing the SIM entry points and instance
|
|
* identification info is passed to xpt_bus_register to hook the SIM
|
|
* into the CAM framework. xpt_bus_register creates a cam_eb entry
|
|
* for this new bus and places it in the array of busses and assigns
|
|
* it a path_id. The path_id may be influenced by "hard wiring"
|
|
* information specified by the user. Once interrupt services are
|
|
* available, the bus will be probed.
|
|
*/
|
|
int32_t
|
|
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
|
|
{
|
|
struct cam_eb *new_bus;
|
|
struct cam_eb *old_bus;
|
|
struct ccb_pathinq cpi;
|
|
struct cam_path path;
|
|
cam_status status;
|
|
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
sim->bus_id = bus;
|
|
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
|
|
M_CAMXPT, M_NOWAIT);
|
|
if (new_bus == NULL) {
|
|
/* Couldn't satisfy request */
|
|
return (CAM_RESRC_UNAVAIL);
|
|
}
|
|
|
|
if (strcmp(sim->sim_name, "xpt") != 0) {
|
|
sim->path_id =
|
|
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
|
|
}
|
|
|
|
TAILQ_INIT(&new_bus->et_entries);
|
|
new_bus->path_id = sim->path_id;
|
|
cam_sim_hold(sim);
|
|
new_bus->sim = sim;
|
|
timevalclear(&new_bus->last_reset);
|
|
new_bus->flags = 0;
|
|
new_bus->refcount = 1; /* Held until a bus_deregister event */
|
|
new_bus->generation = 0;
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
while (old_bus != NULL
|
|
&& old_bus->path_id < new_bus->path_id)
|
|
old_bus = TAILQ_NEXT(old_bus, links);
|
|
if (old_bus != NULL)
|
|
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
|
|
else
|
|
TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
|
|
xsoftc.bus_generation++;
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
|
|
/*
|
|
* Set a default transport so that a PATH_INQ can be issued to
|
|
* the SIM. This will then allow for probing and attaching of
|
|
* a more appropriate transport.
|
|
*/
|
|
new_bus->xport = &xport_default;
|
|
|
|
bzero(&path, sizeof(path));
|
|
status = xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP)
|
|
printf("xpt_compile_path returned %d\n", status);
|
|
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
|
|
if (cpi.ccb_h.status == CAM_REQ_CMP) {
|
|
switch (cpi.transport) {
|
|
case XPORT_SPI:
|
|
case XPORT_SAS:
|
|
case XPORT_FC:
|
|
case XPORT_USB:
|
|
case XPORT_ISCSI:
|
|
case XPORT_PPB:
|
|
new_bus->xport = scsi_get_xport();
|
|
break;
|
|
case XPORT_ATA:
|
|
case XPORT_SATA:
|
|
new_bus->xport = ata_get_xport();
|
|
break;
|
|
default:
|
|
new_bus->xport = &xport_default;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Notify interested parties */
|
|
if (sim->path_id != CAM_XPT_PATH_ID) {
|
|
xpt_async(AC_PATH_REGISTERED, &path, &cpi);
|
|
}
|
|
xpt_release_path(&path);
|
|
return (CAM_SUCCESS);
|
|
}
|
|
|
|
int32_t
|
|
xpt_bus_deregister(path_id_t pathid)
|
|
{
|
|
struct cam_path bus_path;
|
|
cam_status status;
|
|
|
|
status = xpt_compile_path(&bus_path, NULL, pathid,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP)
|
|
return (status);
|
|
|
|
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
|
|
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
|
|
|
|
/* Release the reference count held while registered. */
|
|
xpt_release_bus(bus_path.bus);
|
|
xpt_release_path(&bus_path);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
static path_id_t
|
|
xptnextfreepathid(void)
|
|
{
|
|
struct cam_eb *bus;
|
|
path_id_t pathid;
|
|
const char *strval;
|
|
|
|
pathid = 0;
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
retry:
|
|
/* Find an unoccupied pathid */
|
|
while (bus != NULL && bus->path_id <= pathid) {
|
|
if (bus->path_id == pathid)
|
|
pathid++;
|
|
bus = TAILQ_NEXT(bus, links);
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
|
|
/*
|
|
* Ensure that this pathid is not reserved for
|
|
* a bus that may be registered in the future.
|
|
*/
|
|
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
|
|
++pathid;
|
|
/* Start the search over */
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
goto retry;
|
|
}
|
|
return (pathid);
|
|
}
|
|
|
|
static path_id_t
|
|
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
|
|
{
|
|
path_id_t pathid;
|
|
int i, dunit, val;
|
|
char buf[32];
|
|
const char *dname;
|
|
|
|
pathid = CAM_XPT_PATH_ID;
|
|
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
|
|
i = 0;
|
|
while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
|
|
if (strcmp(dname, "scbus")) {
|
|
/* Avoid a bit of foot shooting. */
|
|
continue;
|
|
}
|
|
if (dunit < 0) /* unwired?! */
|
|
continue;
|
|
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
|
|
if (sim_bus == val) {
|
|
pathid = dunit;
|
|
break;
|
|
}
|
|
} else if (sim_bus == 0) {
|
|
/* Unspecified matches bus 0 */
|
|
pathid = dunit;
|
|
break;
|
|
} else {
|
|
printf("Ambiguous scbus configuration for %s%d "
|
|
"bus %d, cannot wire down. The kernel "
|
|
"config entry for scbus%d should "
|
|
"specify a controller bus.\n"
|
|
"Scbus will be assigned dynamically.\n",
|
|
sim_name, sim_unit, sim_bus, dunit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pathid == CAM_XPT_PATH_ID)
|
|
pathid = xptnextfreepathid();
|
|
return (pathid);
|
|
}
|
|
|
|
void
|
|
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
|
|
{
|
|
struct cam_eb *bus;
|
|
struct cam_et *target, *next_target;
|
|
struct cam_ed *device, *next_device;
|
|
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
|
|
|
|
/*
|
|
* Most async events come from a CAM interrupt context. In
|
|
* a few cases, the error recovery code at the peripheral layer,
|
|
* which may run from our SWI or a process context, may signal
|
|
* deferred events with a call to xpt_async.
|
|
*/
|
|
|
|
bus = path->bus;
|
|
|
|
if (async_code == AC_BUS_RESET) {
|
|
/* Update our notion of when the last reset occurred */
|
|
microtime(&bus->last_reset);
|
|
}
|
|
|
|
for (target = TAILQ_FIRST(&bus->et_entries);
|
|
target != NULL;
|
|
target = next_target) {
|
|
|
|
next_target = TAILQ_NEXT(target, links);
|
|
|
|
if (path->target != target
|
|
&& path->target->target_id != CAM_TARGET_WILDCARD
|
|
&& target->target_id != CAM_TARGET_WILDCARD)
|
|
continue;
|
|
|
|
if (async_code == AC_SENT_BDR) {
|
|
/* Update our notion of when the last reset occurred */
|
|
microtime(&path->target->last_reset);
|
|
}
|
|
|
|
for (device = TAILQ_FIRST(&target->ed_entries);
|
|
device != NULL;
|
|
device = next_device) {
|
|
|
|
next_device = TAILQ_NEXT(device, links);
|
|
|
|
if (path->device != device
|
|
&& path->device->lun_id != CAM_LUN_WILDCARD
|
|
&& device->lun_id != CAM_LUN_WILDCARD)
|
|
continue;
|
|
|
|
(*(bus->xport->async))(async_code, bus,
|
|
target, device,
|
|
async_arg);
|
|
|
|
xpt_async_bcast(&device->asyncs, async_code,
|
|
path, async_arg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this wasn't a fully wildcarded async, tell all
|
|
* clients that want all async events.
|
|
*/
|
|
if (bus != xpt_periph->path->bus)
|
|
xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
|
|
path, async_arg);
|
|
}
|
|
|
|
static void
|
|
xpt_async_bcast(struct async_list *async_head,
|
|
u_int32_t async_code,
|
|
struct cam_path *path, void *async_arg)
|
|
{
|
|
struct async_node *cur_entry;
|
|
|
|
cur_entry = SLIST_FIRST(async_head);
|
|
while (cur_entry != NULL) {
|
|
struct async_node *next_entry;
|
|
/*
|
|
* Grab the next list entry before we call the current
|
|
* entry's callback. This is because the callback function
|
|
* can delete its async callback entry.
|
|
*/
|
|
next_entry = SLIST_NEXT(cur_entry, links);
|
|
if ((cur_entry->event_enable & async_code) != 0)
|
|
cur_entry->callback(cur_entry->callback_arg,
|
|
async_code, path,
|
|
async_arg);
|
|
cur_entry = next_entry;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
|
|
struct cam_et *target, struct cam_ed *device,
|
|
void *async_arg)
|
|
{
|
|
printf("xpt_dev_async called\n");
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_devq(struct cam_path *path, u_int count)
|
|
{
|
|
struct ccb_hdr *ccbh;
|
|
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
path->device->qfrozen_cnt += count;
|
|
|
|
/*
|
|
* Mark the last CCB in the queue as needing
|
|
* to be requeued if the driver hasn't
|
|
* changed it's state yet. This fixes a race
|
|
* where a ccb is just about to be queued to
|
|
* a controller driver when it's interrupt routine
|
|
* freezes the queue. To completly close the
|
|
* hole, controller drives must check to see
|
|
* if a ccb's status is still CAM_REQ_INPROG
|
|
* just before they queue
|
|
* the CCB. See ahc_action/ahc_freeze_devq for
|
|
* an example.
|
|
*/
|
|
ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
|
|
if (ccbh && ccbh->status == CAM_REQ_INPROG)
|
|
ccbh->status = CAM_REQUEUE_REQ;
|
|
return (path->device->qfrozen_cnt);
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_freeze_simq(struct cam_sim *sim, u_int count)
|
|
{
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
sim->devq->send_queue.qfrozen_cnt += count;
|
|
if (sim->devq->active_dev != NULL) {
|
|
struct ccb_hdr *ccbh;
|
|
|
|
ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
|
|
ccb_hdr_tailq);
|
|
if (ccbh && ccbh->status == CAM_REQ_INPROG)
|
|
ccbh->status = CAM_REQUEUE_REQ;
|
|
}
|
|
return (sim->devq->send_queue.qfrozen_cnt);
|
|
}
|
|
|
|
static void
|
|
xpt_release_devq_timeout(void *arg)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
device = (struct cam_ed *)arg;
|
|
|
|
xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
|
|
}
|
|
|
|
void
|
|
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
|
|
{
|
|
mtx_assert(path->bus->sim->mtx, MA_OWNED);
|
|
|
|
xpt_release_devq_device(path->device, count, run_queue);
|
|
}
|
|
|
|
static void
|
|
xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
|
|
{
|
|
int rundevq;
|
|
|
|
rundevq = 0;
|
|
if (dev->qfrozen_cnt > 0) {
|
|
|
|
count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
|
|
dev->qfrozen_cnt -= count;
|
|
if (dev->qfrozen_cnt == 0) {
|
|
|
|
/*
|
|
* No longer need to wait for a successful
|
|
* command completion.
|
|
*/
|
|
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
|
|
|
|
/*
|
|
* Remove any timeouts that might be scheduled
|
|
* to release this queue.
|
|
*/
|
|
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
|
|
callout_stop(&dev->callout);
|
|
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
|
|
}
|
|
|
|
/*
|
|
* Now that we are unfrozen schedule the
|
|
* device so any pending transactions are
|
|
* run.
|
|
*/
|
|
if ((dev->ccbq.queue.entries > 0)
|
|
&& (xpt_schedule_dev_sendq(dev->target->bus, dev))
|
|
&& (run_queue != 0)) {
|
|
rundevq = 1;
|
|
}
|
|
}
|
|
}
|
|
if (rundevq != 0)
|
|
xpt_run_dev_sendq(dev->target->bus);
|
|
}
|
|
|
|
void
|
|
xpt_release_simq(struct cam_sim *sim, int run_queue)
|
|
{
|
|
struct camq *sendq;
|
|
|
|
mtx_assert(sim->mtx, MA_OWNED);
|
|
|
|
sendq = &(sim->devq->send_queue);
|
|
if (sendq->qfrozen_cnt > 0) {
|
|
|
|
sendq->qfrozen_cnt--;
|
|
if (sendq->qfrozen_cnt == 0) {
|
|
struct cam_eb *bus;
|
|
|
|
/*
|
|
* If there is a timeout scheduled to release this
|
|
* sim queue, remove it. The queue frozen count is
|
|
* already at 0.
|
|
*/
|
|
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
|
|
callout_stop(&sim->callout);
|
|
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
|
|
}
|
|
bus = xpt_find_bus(sim->path_id);
|
|
|
|
if (run_queue) {
|
|
/*
|
|
* Now that we are unfrozen run the send queue.
|
|
*/
|
|
xpt_run_dev_sendq(bus);
|
|
}
|
|
xpt_release_bus(bus);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX Appears to be unused.
|
|
*/
|
|
static void
|
|
xpt_release_simq_timeout(void *arg)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
sim = (struct cam_sim *)arg;
|
|
xpt_release_simq(sim, /* run_queue */ TRUE);
|
|
}
|
|
|
|
void
|
|
xpt_done(union ccb *done_ccb)
|
|
{
|
|
struct cam_sim *sim;
|
|
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
|
|
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
|
|
/*
|
|
* Queue up the request for handling by our SWI handler
|
|
* any of the "non-immediate" type of ccbs.
|
|
*/
|
|
sim = done_ccb->ccb_h.path->bus->sim;
|
|
switch (done_ccb->ccb_h.path->periph->type) {
|
|
case CAM_PERIPH_BIO:
|
|
TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
|
|
sim_links.tqe);
|
|
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
|
|
if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
|
|
mtx_lock(&cam_simq_lock);
|
|
TAILQ_INSERT_TAIL(&cam_simq, sim,
|
|
links);
|
|
sim->flags |= CAM_SIM_ON_DONEQ;
|
|
mtx_unlock(&cam_simq_lock);
|
|
}
|
|
if ((done_ccb->ccb_h.path->periph->flags &
|
|
CAM_PERIPH_POLLED) == 0)
|
|
swi_sched(cambio_ih, 0);
|
|
break;
|
|
default:
|
|
panic("unknown periph type %d",
|
|
done_ccb->ccb_h.path->periph->type);
|
|
}
|
|
}
|
|
}
|
|
|
|
union ccb *
|
|
xpt_alloc_ccb()
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
|
|
return (new_ccb);
|
|
}
|
|
|
|
union ccb *
|
|
xpt_alloc_ccb_nowait()
|
|
{
|
|
union ccb *new_ccb;
|
|
|
|
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
|
|
return (new_ccb);
|
|
}
|
|
|
|
void
|
|
xpt_free_ccb(union ccb *free_ccb)
|
|
{
|
|
free(free_ccb, M_CAMXPT);
|
|
}
|
|
|
|
|
|
|
|
/* Private XPT functions */
|
|
|
|
/*
|
|
* Get a CAM control block for the caller. Charge the structure to the device
|
|
* referenced by the path. If the this device has no 'credits' then the
|
|
* device already has the maximum number of outstanding operations under way
|
|
* and we return NULL. If we don't have sufficient resources to allocate more
|
|
* ccbs, we also return NULL.
|
|
*/
|
|
static union ccb *
|
|
xpt_get_ccb(struct cam_ed *device)
|
|
{
|
|
union ccb *new_ccb;
|
|
struct cam_sim *sim;
|
|
|
|
sim = device->sim;
|
|
if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
|
|
new_ccb = xpt_alloc_ccb_nowait();
|
|
if (new_ccb == NULL) {
|
|
return (NULL);
|
|
}
|
|
if ((sim->flags & CAM_SIM_MPSAFE) == 0)
|
|
callout_handle_init(&new_ccb->ccb_h.timeout_ch);
|
|
SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
|
|
xpt_links.sle);
|
|
sim->ccb_count++;
|
|
}
|
|
cam_ccbq_take_opening(&device->ccbq);
|
|
SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
|
|
return (new_ccb);
|
|
}
|
|
|
|
static void
|
|
xpt_release_bus(struct cam_eb *bus)
|
|
{
|
|
|
|
if ((--bus->refcount == 0)
|
|
&& (TAILQ_FIRST(&bus->et_entries) == NULL)) {
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
|
|
xsoftc.bus_generation++;
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
cam_sim_release(bus->sim);
|
|
free(bus, M_CAMXPT);
|
|
}
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *target;
|
|
|
|
target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
|
|
if (target != NULL) {
|
|
struct cam_et *cur_target;
|
|
|
|
TAILQ_INIT(&target->ed_entries);
|
|
target->bus = bus;
|
|
target->target_id = target_id;
|
|
target->refcount = 1;
|
|
target->generation = 0;
|
|
timevalclear(&target->last_reset);
|
|
/*
|
|
* Hold a reference to our parent bus so it
|
|
* will not go away before we do.
|
|
*/
|
|
bus->refcount++;
|
|
|
|
/* Insertion sort into our bus's target list */
|
|
cur_target = TAILQ_FIRST(&bus->et_entries);
|
|
while (cur_target != NULL && cur_target->target_id < target_id)
|
|
cur_target = TAILQ_NEXT(cur_target, links);
|
|
|
|
if (cur_target != NULL) {
|
|
TAILQ_INSERT_BEFORE(cur_target, target, links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
|
|
}
|
|
bus->generation++;
|
|
}
|
|
return (target);
|
|
}
|
|
|
|
static void
|
|
xpt_release_target(struct cam_eb *bus, struct cam_et *target)
|
|
{
|
|
|
|
if ((--target->refcount == 0)
|
|
&& (TAILQ_FIRST(&target->ed_entries) == NULL)) {
|
|
TAILQ_REMOVE(&bus->et_entries, target, links);
|
|
bus->generation++;
|
|
free(target, M_CAMXPT);
|
|
xpt_release_bus(bus);
|
|
}
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
|
|
lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device, *cur_device;
|
|
|
|
device = xpt_alloc_device(bus, target, lun_id);
|
|
if (device == NULL)
|
|
return (NULL);
|
|
|
|
device->mintags = 1;
|
|
device->maxtags = 1;
|
|
bus->sim->max_ccbs = device->ccbq.devq_openings;
|
|
cur_device = TAILQ_FIRST(&target->ed_entries);
|
|
while (cur_device != NULL && cur_device->lun_id < lun_id)
|
|
cur_device = TAILQ_NEXT(cur_device, links);
|
|
if (cur_device != NULL) {
|
|
TAILQ_INSERT_BEFORE(cur_device, device, links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
|
|
}
|
|
target->generation++;
|
|
|
|
return (device);
|
|
}
|
|
|
|
struct cam_ed *
|
|
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
struct cam_devq *devq;
|
|
cam_status status;
|
|
|
|
/* Make space for us in the device queue on our bus */
|
|
devq = bus->sim->devq;
|
|
status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
device = NULL;
|
|
} else {
|
|
device = (struct cam_ed *)malloc(sizeof(*device),
|
|
M_CAMXPT, M_NOWAIT);
|
|
}
|
|
|
|
if (device != NULL) {
|
|
cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
|
|
device->alloc_ccb_entry.device = device;
|
|
cam_init_pinfo(&device->send_ccb_entry.pinfo);
|
|
device->send_ccb_entry.device = device;
|
|
device->target = target;
|
|
device->lun_id = lun_id;
|
|
device->sim = bus->sim;
|
|
/* Initialize our queues */
|
|
if (camq_init(&device->drvq, 0) != 0) {
|
|
free(device, M_CAMXPT);
|
|
return (NULL);
|
|
}
|
|
if (cam_ccbq_init(&device->ccbq,
|
|
bus->sim->max_dev_openings) != 0) {
|
|
camq_fini(&device->drvq);
|
|
free(device, M_CAMXPT);
|
|
return (NULL);
|
|
}
|
|
SLIST_INIT(&device->asyncs);
|
|
SLIST_INIT(&device->periphs);
|
|
device->generation = 0;
|
|
device->owner = NULL;
|
|
device->qfrozen_cnt = 0;
|
|
device->flags = CAM_DEV_UNCONFIGURED;
|
|
device->tag_delay_count = 0;
|
|
device->tag_saved_openings = 0;
|
|
device->refcount = 1;
|
|
if (bus->sim->flags & CAM_SIM_MPSAFE)
|
|
callout_init_mtx(&device->callout, bus->sim->mtx, 0);
|
|
else
|
|
callout_init_mtx(&device->callout, &Giant, 0);
|
|
|
|
/*
|
|
* Hold a reference to our parent target so it
|
|
* will not go away before we do.
|
|
*/
|
|
target->refcount++;
|
|
|
|
}
|
|
return (device);
|
|
}
|
|
|
|
static void
|
|
xpt_release_device(struct cam_eb *bus, struct cam_et *target,
|
|
struct cam_ed *device)
|
|
{
|
|
|
|
if ((--device->refcount == 0)
|
|
&& ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
|
|
struct cam_devq *devq;
|
|
|
|
if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
|
|
|| device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
|
|
panic("Removing device while still queued for ccbs");
|
|
|
|
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
|
|
callout_stop(&device->callout);
|
|
|
|
TAILQ_REMOVE(&target->ed_entries, device,links);
|
|
target->generation++;
|
|
bus->sim->max_ccbs -= device->ccbq.devq_openings;
|
|
/* Release our slot in the devq */
|
|
devq = bus->sim->devq;
|
|
cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
|
|
camq_fini(&device->drvq);
|
|
camq_fini(&device->ccbq.queue);
|
|
free(device, M_CAMXPT);
|
|
xpt_release_target(bus, target);
|
|
}
|
|
}
|
|
|
|
u_int32_t
|
|
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
|
|
{
|
|
int diff;
|
|
int result;
|
|
struct cam_ed *dev;
|
|
|
|
dev = path->device;
|
|
|
|
diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
|
|
result = cam_ccbq_resize(&dev->ccbq, newopenings);
|
|
if (result == CAM_REQ_CMP && (diff < 0)) {
|
|
dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
|
|
}
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
|| (dev->inq_flags & SID_CmdQue) != 0)
|
|
dev->tag_saved_openings = newopenings;
|
|
/* Adjust the global limit */
|
|
dev->sim->max_ccbs += diff;
|
|
return (result);
|
|
}
|
|
|
|
static struct cam_eb *
|
|
xpt_find_bus(path_id_t path_id)
|
|
{
|
|
struct cam_eb *bus;
|
|
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
|
|
bus != NULL;
|
|
bus = TAILQ_NEXT(bus, links)) {
|
|
if (bus->path_id == path_id) {
|
|
bus->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
return (bus);
|
|
}
|
|
|
|
static struct cam_et *
|
|
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
|
|
{
|
|
struct cam_et *target;
|
|
|
|
for (target = TAILQ_FIRST(&bus->et_entries);
|
|
target != NULL;
|
|
target = TAILQ_NEXT(target, links)) {
|
|
if (target->target_id == target_id) {
|
|
target->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (target);
|
|
}
|
|
|
|
static struct cam_ed *
|
|
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
|
|
{
|
|
struct cam_ed *device;
|
|
|
|
for (device = TAILQ_FIRST(&target->ed_entries);
|
|
device != NULL;
|
|
device = TAILQ_NEXT(device, links)) {
|
|
if (device->lun_id == lun_id) {
|
|
device->refcount++;
|
|
break;
|
|
}
|
|
}
|
|
return (device);
|
|
}
|
|
|
|
static void
|
|
xpt_start_tags(struct cam_path *path)
|
|
{
|
|
struct ccb_relsim crs;
|
|
struct cam_ed *device;
|
|
struct cam_sim *sim;
|
|
int newopenings;
|
|
|
|
device = path->device;
|
|
sim = path->bus->sim;
|
|
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
|
|
xpt_freeze_devq(path, /*count*/1);
|
|
device->inq_flags |= SID_CmdQue;
|
|
if (device->tag_saved_openings != 0)
|
|
newopenings = device->tag_saved_openings;
|
|
else
|
|
newopenings = min(device->maxtags,
|
|
sim->max_tagged_dev_openings);
|
|
xpt_dev_ccbq_resize(path, newopenings);
|
|
xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
|
|
crs.openings
|
|
= crs.release_timeout
|
|
= crs.qfrozen_cnt
|
|
= 0;
|
|
xpt_action((union ccb *)&crs);
|
|
}
|
|
|
|
static int busses_to_config;
|
|
static int busses_to_reset;
|
|
|
|
static int
|
|
xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
|
|
mtx_assert(bus->sim->mtx, MA_OWNED);
|
|
|
|
if (bus->path_id != CAM_XPT_PATH_ID) {
|
|
struct cam_path path;
|
|
struct ccb_pathinq cpi;
|
|
int can_negotiate;
|
|
|
|
busses_to_config++;
|
|
xpt_compile_path(&path, NULL, bus->path_id,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
|
|
cpi.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action((union ccb *)&cpi);
|
|
can_negotiate = cpi.hba_inquiry;
|
|
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
|
|
if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
|
|
&& can_negotiate)
|
|
busses_to_reset++;
|
|
xpt_release_path(&path);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
xptconfigfunc(struct cam_eb *bus, void *arg)
|
|
{
|
|
struct cam_path *path;
|
|
union ccb *work_ccb;
|
|
|
|
mtx_assert(bus->sim->mtx, MA_OWNED);
|
|
|
|
if (bus->path_id != CAM_XPT_PATH_ID) {
|
|
cam_status status;
|
|
int can_negotiate;
|
|
|
|
work_ccb = xpt_alloc_ccb_nowait();
|
|
if (work_ccb == NULL) {
|
|
busses_to_config--;
|
|
xpt_finishconfig(xpt_periph, NULL);
|
|
return(0);
|
|
}
|
|
if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
|
|
printf("xptconfigfunc: xpt_create_path failed with "
|
|
"status %#x for bus %d\n", status, bus->path_id);
|
|
printf("xptconfigfunc: halting bus configuration\n");
|
|
xpt_free_ccb(work_ccb);
|
|
busses_to_config--;
|
|
xpt_finishconfig(xpt_periph, NULL);
|
|
return(0);
|
|
}
|
|
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
|
|
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_action(work_ccb);
|
|
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
printf("xptconfigfunc: CPI failed on bus %d "
|
|
"with status %d\n", bus->path_id,
|
|
work_ccb->ccb_h.status);
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
return(1);
|
|
}
|
|
|
|
can_negotiate = work_ccb->cpi.hba_inquiry;
|
|
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
|
|
if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
|
|
&& (can_negotiate != 0)) {
|
|
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
|
|
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
|
|
work_ccb->ccb_h.cbfcnp = NULL;
|
|
CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
|
|
("Resetting Bus\n"));
|
|
xpt_action(work_ccb);
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
} else {
|
|
/* Act as though we performed a successful BUS RESET */
|
|
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
|
|
xpt_finishconfig(xpt_periph, work_ccb);
|
|
}
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_config(void *arg)
|
|
{
|
|
/*
|
|
* Now that interrupts are enabled, go find our devices
|
|
*/
|
|
|
|
#ifdef CAMDEBUG
|
|
/* Setup debugging flags and path */
|
|
#ifdef CAM_DEBUG_FLAGS
|
|
cam_dflags = CAM_DEBUG_FLAGS;
|
|
#else /* !CAM_DEBUG_FLAGS */
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
#endif /* CAM_DEBUG_FLAGS */
|
|
#ifdef CAM_DEBUG_BUS
|
|
if (cam_dflags != CAM_DEBUG_NONE) {
|
|
/*
|
|
* Locking is specifically omitted here. No SIMs have
|
|
* registered yet, so xpt_create_path will only be searching
|
|
* empty lists of targets and devices.
|
|
*/
|
|
if (xpt_create_path(&cam_dpath, xpt_periph,
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
|
|
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
|
|
printf("xpt_config: xpt_create_path() failed for debug"
|
|
" target %d:%d:%d, debugging disabled\n",
|
|
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
|
|
cam_dflags = CAM_DEBUG_NONE;
|
|
}
|
|
} else
|
|
cam_dpath = NULL;
|
|
#else /* !CAM_DEBUG_BUS */
|
|
cam_dpath = NULL;
|
|
#endif /* CAM_DEBUG_BUS */
|
|
#endif /* CAMDEBUG */
|
|
|
|
/*
|
|
* Scan all installed busses.
|
|
*/
|
|
xpt_for_all_busses(xptconfigbuscountfunc, NULL);
|
|
|
|
if (busses_to_config == 0) {
|
|
/* Call manually because we don't have any busses */
|
|
xpt_finishconfig(xpt_periph, NULL);
|
|
} else {
|
|
if (busses_to_reset > 0 && scsi_delay >= 2000) {
|
|
printf("Waiting %d seconds for SCSI "
|
|
"devices to settle\n", scsi_delay/1000);
|
|
}
|
|
xpt_for_all_busses(xptconfigfunc, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the given device only has one peripheral attached to it, and if that
|
|
* peripheral is the passthrough driver, announce it. This insures that the
|
|
* user sees some sort of announcement for every peripheral in their system.
|
|
*/
|
|
static int
|
|
xptpassannouncefunc(struct cam_ed *device, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
int i;
|
|
|
|
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
|
|
periph = SLIST_NEXT(periph, periph_links), i++);
|
|
|
|
periph = SLIST_FIRST(&device->periphs);
|
|
if ((i == 1)
|
|
&& (strncmp(periph->periph_name, "pass", 4) == 0))
|
|
xpt_announce_periph(periph, NULL);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
xpt_finishconfig_task(void *context, int pending)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
int i;
|
|
|
|
if (busses_to_config == 0) {
|
|
/* Register all the peripheral drivers */
|
|
/* XXX This will have to change when we have loadable modules */
|
|
p_drv = periph_drivers;
|
|
for (i = 0; p_drv[i] != NULL; i++) {
|
|
(*p_drv[i]->init)();
|
|
}
|
|
|
|
/*
|
|
* Check for devices with no "standard" peripheral driver
|
|
* attached. For any devices like that, announce the
|
|
* passthrough driver so the user will see something.
|
|
*/
|
|
xpt_for_all_devices(xptpassannouncefunc, NULL);
|
|
|
|
/* Release our hook so that the boot can continue. */
|
|
config_intrhook_disestablish(xsoftc.xpt_config_hook);
|
|
free(xsoftc.xpt_config_hook, M_CAMXPT);
|
|
xsoftc.xpt_config_hook = NULL;
|
|
}
|
|
|
|
free(context, M_CAMXPT);
|
|
}
|
|
|
|
static void
|
|
xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
struct xpt_task *task;
|
|
|
|
if (done_ccb != NULL) {
|
|
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
|
|
("xpt_finishconfig\n"));
|
|
switch(done_ccb->ccb_h.func_code) {
|
|
case XPT_RESET_BUS:
|
|
if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
|
|
done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
|
|
done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
|
|
done_ccb->crcn.flags = 0;
|
|
xpt_action(done_ccb);
|
|
return;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case XPT_SCAN_BUS:
|
|
default:
|
|
xpt_free_path(done_ccb->ccb_h.path);
|
|
busses_to_config--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (busses_to_config == 0) {
|
|
task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
|
|
if (task != NULL) {
|
|
TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
|
|
taskqueue_enqueue(taskqueue_thread, &task->task);
|
|
}
|
|
}
|
|
|
|
if (done_ccb != NULL)
|
|
xpt_free_ccb(done_ccb);
|
|
}
|
|
|
|
cam_status
|
|
xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
|
|
struct cam_path *path)
|
|
{
|
|
struct ccb_setasync csa;
|
|
cam_status status;
|
|
int xptpath = 0;
|
|
|
|
if (path == NULL) {
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
if (status != CAM_REQ_CMP) {
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
return (status);
|
|
}
|
|
xptpath = 1;
|
|
}
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = event;
|
|
csa.callback = cbfunc;
|
|
csa.callback_arg = cbarg;
|
|
xpt_action((union ccb *)&csa);
|
|
status = csa.ccb_h.status;
|
|
if (xptpath) {
|
|
xpt_free_path(path);
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
}
|
|
return (status);
|
|
}
|
|
|
|
static void
|
|
xptaction(struct cam_sim *sim, union ccb *work_ccb)
|
|
{
|
|
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
|
|
|
|
switch (work_ccb->ccb_h.func_code) {
|
|
/* Common cases first */
|
|
case XPT_PATH_INQ: /* Path routing inquiry */
|
|
{
|
|
struct ccb_pathinq *cpi;
|
|
|
|
cpi = &work_ccb->cpi;
|
|
cpi->version_num = 1; /* XXX??? */
|
|
cpi->hba_inquiry = 0;
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
cpi->hba_eng_cnt = 0;
|
|
cpi->max_target = 0;
|
|
cpi->max_lun = 0;
|
|
cpi->initiator_id = 0;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
|
|
cpi->unit_number = sim->unit_number;
|
|
cpi->bus_id = sim->bus_id;
|
|
cpi->base_transfer_speed = 0;
|
|
cpi->protocol = PROTO_UNSPECIFIED;
|
|
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
|
|
cpi->transport = XPORT_UNSPECIFIED;
|
|
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
|
|
cpi->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
default:
|
|
work_ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(work_ccb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The xpt as a "controller" has no interrupt sources, so polling
|
|
* is a no-op.
|
|
*/
|
|
static void
|
|
xptpoll(struct cam_sim *sim)
|
|
{
|
|
}
|
|
|
|
void
|
|
xpt_lock_buses(void)
|
|
{
|
|
mtx_lock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
|
|
void
|
|
xpt_unlock_buses(void)
|
|
{
|
|
mtx_unlock(&xsoftc.xpt_topo_lock);
|
|
}
|
|
|
|
static void
|
|
camisr(void *dummy)
|
|
{
|
|
cam_simq_t queue;
|
|
struct cam_sim *sim;
|
|
|
|
mtx_lock(&cam_simq_lock);
|
|
TAILQ_INIT(&queue);
|
|
TAILQ_CONCAT(&queue, &cam_simq, links);
|
|
mtx_unlock(&cam_simq_lock);
|
|
|
|
while ((sim = TAILQ_FIRST(&queue)) != NULL) {
|
|
TAILQ_REMOVE(&queue, sim, links);
|
|
CAM_SIM_LOCK(sim);
|
|
sim->flags &= ~CAM_SIM_ON_DONEQ;
|
|
camisr_runqueue(&sim->sim_doneq);
|
|
CAM_SIM_UNLOCK(sim);
|
|
}
|
|
}
|
|
|
|
static void
|
|
camisr_runqueue(void *V_queue)
|
|
{
|
|
cam_isrq_t *queue = V_queue;
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
|
|
int runq;
|
|
|
|
TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
|
|
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
|
|
|
|
CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
|
|
("camisr\n"));
|
|
|
|
runq = FALSE;
|
|
|
|
if (ccb_h->flags & CAM_HIGH_POWER) {
|
|
struct highpowerlist *hphead;
|
|
union ccb *send_ccb;
|
|
|
|
mtx_lock(&xsoftc.xpt_lock);
|
|
hphead = &xsoftc.highpowerq;
|
|
|
|
send_ccb = (union ccb *)STAILQ_FIRST(hphead);
|
|
|
|
/*
|
|
* Increment the count since this command is done.
|
|
*/
|
|
xsoftc.num_highpower++;
|
|
|
|
/*
|
|
* Any high powered commands queued up?
|
|
*/
|
|
if (send_ccb != NULL) {
|
|
|
|
STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
|
|
xpt_release_devq(send_ccb->ccb_h.path,
|
|
/*count*/1, /*runqueue*/TRUE);
|
|
} else
|
|
mtx_unlock(&xsoftc.xpt_lock);
|
|
}
|
|
|
|
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
|
|
struct cam_ed *dev;
|
|
|
|
dev = ccb_h->path->device;
|
|
|
|
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
|
|
ccb_h->path->bus->sim->devq->send_active--;
|
|
ccb_h->path->bus->sim->devq->send_openings++;
|
|
|
|
if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
|
|
&& (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
|
|
|| ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|
|
&& (dev->ccbq.dev_active == 0))) {
|
|
|
|
xpt_release_devq(ccb_h->path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
}
|
|
|
|
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|
|
&& (--dev->tag_delay_count == 0))
|
|
xpt_start_tags(ccb_h->path);
|
|
|
|
if ((dev->ccbq.queue.entries > 0)
|
|
&& (dev->qfrozen_cnt == 0)
|
|
&& (device_is_send_queued(dev) == 0)) {
|
|
runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
|
|
dev);
|
|
}
|
|
}
|
|
|
|
if (ccb_h->status & CAM_RELEASE_SIMQ) {
|
|
xpt_release_simq(ccb_h->path->bus->sim,
|
|
/*run_queue*/TRUE);
|
|
ccb_h->status &= ~CAM_RELEASE_SIMQ;
|
|
runq = FALSE;
|
|
}
|
|
|
|
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
|
|
&& (ccb_h->status & CAM_DEV_QFRZN)) {
|
|
xpt_release_devq(ccb_h->path, /*count*/1,
|
|
/*run_queue*/TRUE);
|
|
ccb_h->status &= ~CAM_DEV_QFRZN;
|
|
} else if (runq) {
|
|
xpt_run_dev_sendq(ccb_h->path->bus);
|
|
}
|
|
|
|
/* Call the peripheral driver's callback */
|
|
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
|
|
}
|
|
}
|
|
|