1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-04 09:09:56 +00:00
freebsd/contrib/gcc/gimplify.c
Pedro F. Giffuni b078889a6b Revert r259619:
Fixes GCC libstdc++/29286

The fix seems to work for amd64 but causes segfaults on powerpc.
At this time gcc is much more important on powerpc than on amd64.

Reported by:	andreast
2013-12-20 18:16:02 +00:00

6485 lines
188 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Tree lowering pass. This pass converts the GENERIC functions-as-trees
tree representation into the GIMPLE form.
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
Major work done by Sebastian Pop <s.pop@laposte.net>,
Diego Novillo <dnovillo@redhat.com> and Jason Merrill <jason@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "varray.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "tree-flow.h"
#include "cgraph.h"
#include "timevar.h"
#include "except.h"
#include "hashtab.h"
#include "flags.h"
#include "real.h"
#include "function.h"
#include "output.h"
#include "expr.h"
#include "ggc.h"
#include "toplev.h"
#include "target.h"
#include "optabs.h"
#include "pointer-set.h"
enum gimplify_omp_var_data
{
GOVD_SEEN = 1,
GOVD_EXPLICIT = 2,
GOVD_SHARED = 4,
GOVD_PRIVATE = 8,
GOVD_FIRSTPRIVATE = 16,
GOVD_LASTPRIVATE = 32,
GOVD_REDUCTION = 64,
GOVD_LOCAL = 128,
GOVD_DEBUG_PRIVATE = 256,
GOVD_DATA_SHARE_CLASS = (GOVD_SHARED | GOVD_PRIVATE | GOVD_FIRSTPRIVATE
| GOVD_LASTPRIVATE | GOVD_REDUCTION | GOVD_LOCAL)
};
struct gimplify_omp_ctx
{
struct gimplify_omp_ctx *outer_context;
splay_tree variables;
struct pointer_set_t *privatized_types;
location_t location;
enum omp_clause_default_kind default_kind;
bool is_parallel;
bool is_combined_parallel;
};
struct gimplify_ctx
{
struct gimplify_ctx *prev_context;
tree current_bind_expr;
tree temps;
tree conditional_cleanups;
tree exit_label;
tree return_temp;
VEC(tree,heap) *case_labels;
/* The formal temporary table. Should this be persistent? */
htab_t temp_htab;
int conditions;
bool save_stack;
bool into_ssa;
};
static struct gimplify_ctx *gimplify_ctxp;
static struct gimplify_omp_ctx *gimplify_omp_ctxp;
/* Formal (expression) temporary table handling: Multiple occurrences of
the same scalar expression are evaluated into the same temporary. */
typedef struct gimple_temp_hash_elt
{
tree val; /* Key */
tree temp; /* Value */
} elt_t;
/* Forward declarations. */
static enum gimplify_status gimplify_compound_expr (tree *, tree *, bool);
#ifdef ENABLE_CHECKING
static bool cpt_same_type (tree a, tree b);
#endif
/* Return a hash value for a formal temporary table entry. */
static hashval_t
gimple_tree_hash (const void *p)
{
tree t = ((const elt_t *) p)->val;
return iterative_hash_expr (t, 0);
}
/* Compare two formal temporary table entries. */
static int
gimple_tree_eq (const void *p1, const void *p2)
{
tree t1 = ((const elt_t *) p1)->val;
tree t2 = ((const elt_t *) p2)->val;
enum tree_code code = TREE_CODE (t1);
if (TREE_CODE (t2) != code
|| TREE_TYPE (t1) != TREE_TYPE (t2))
return 0;
if (!operand_equal_p (t1, t2, 0))
return 0;
/* Only allow them to compare equal if they also hash equal; otherwise
results are nondeterminate, and we fail bootstrap comparison. */
gcc_assert (gimple_tree_hash (p1) == gimple_tree_hash (p2));
return 1;
}
/* Set up a context for the gimplifier. */
void
push_gimplify_context (void)
{
struct gimplify_ctx *c;
c = (struct gimplify_ctx *) xcalloc (1, sizeof (struct gimplify_ctx));
c->prev_context = gimplify_ctxp;
if (optimize)
c->temp_htab = htab_create (1000, gimple_tree_hash, gimple_tree_eq, free);
gimplify_ctxp = c;
}
/* Tear down a context for the gimplifier. If BODY is non-null, then
put the temporaries into the outer BIND_EXPR. Otherwise, put them
in the unexpanded_var_list. */
void
pop_gimplify_context (tree body)
{
struct gimplify_ctx *c = gimplify_ctxp;
tree t;
gcc_assert (c && !c->current_bind_expr);
gimplify_ctxp = c->prev_context;
for (t = c->temps; t ; t = TREE_CHAIN (t))
DECL_GIMPLE_FORMAL_TEMP_P (t) = 0;
if (body)
declare_vars (c->temps, body, false);
else
record_vars (c->temps);
if (optimize)
htab_delete (c->temp_htab);
free (c);
}
static void
gimple_push_bind_expr (tree bind)
{
TREE_CHAIN (bind) = gimplify_ctxp->current_bind_expr;
gimplify_ctxp->current_bind_expr = bind;
}
static void
gimple_pop_bind_expr (void)
{
gimplify_ctxp->current_bind_expr
= TREE_CHAIN (gimplify_ctxp->current_bind_expr);
}
tree
gimple_current_bind_expr (void)
{
return gimplify_ctxp->current_bind_expr;
}
/* Returns true iff there is a COND_EXPR between us and the innermost
CLEANUP_POINT_EXPR. This info is used by gimple_push_cleanup. */
static bool
gimple_conditional_context (void)
{
return gimplify_ctxp->conditions > 0;
}
/* Note that we've entered a COND_EXPR. */
static void
gimple_push_condition (void)
{
#ifdef ENABLE_CHECKING
if (gimplify_ctxp->conditions == 0)
gcc_assert (!gimplify_ctxp->conditional_cleanups);
#endif
++(gimplify_ctxp->conditions);
}
/* Note that we've left a COND_EXPR. If we're back at unconditional scope
now, add any conditional cleanups we've seen to the prequeue. */
static void
gimple_pop_condition (tree *pre_p)
{
int conds = --(gimplify_ctxp->conditions);
gcc_assert (conds >= 0);
if (conds == 0)
{
append_to_statement_list (gimplify_ctxp->conditional_cleanups, pre_p);
gimplify_ctxp->conditional_cleanups = NULL_TREE;
}
}
/* A stable comparison routine for use with splay trees and DECLs. */
static int
splay_tree_compare_decl_uid (splay_tree_key xa, splay_tree_key xb)
{
tree a = (tree) xa;
tree b = (tree) xb;
return DECL_UID (a) - DECL_UID (b);
}
/* Create a new omp construct that deals with variable remapping. */
static struct gimplify_omp_ctx *
new_omp_context (bool is_parallel, bool is_combined_parallel)
{
struct gimplify_omp_ctx *c;
c = XCNEW (struct gimplify_omp_ctx);
c->outer_context = gimplify_omp_ctxp;
c->variables = splay_tree_new (splay_tree_compare_decl_uid, 0, 0);
c->privatized_types = pointer_set_create ();
c->location = input_location;
c->is_parallel = is_parallel;
c->is_combined_parallel = is_combined_parallel;
c->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
return c;
}
/* Destroy an omp construct that deals with variable remapping. */
static void
delete_omp_context (struct gimplify_omp_ctx *c)
{
splay_tree_delete (c->variables);
pointer_set_destroy (c->privatized_types);
XDELETE (c);
}
static void omp_add_variable (struct gimplify_omp_ctx *, tree, unsigned int);
static bool omp_notice_variable (struct gimplify_omp_ctx *, tree, bool);
/* A subroutine of append_to_statement_list{,_force}. T is not NULL. */
static void
append_to_statement_list_1 (tree t, tree *list_p)
{
tree list = *list_p;
tree_stmt_iterator i;
if (!list)
{
if (t && TREE_CODE (t) == STATEMENT_LIST)
{
*list_p = t;
return;
}
*list_p = list = alloc_stmt_list ();
}
i = tsi_last (list);
tsi_link_after (&i, t, TSI_CONTINUE_LINKING);
}
/* Add T to the end of the list container pointed to by LIST_P.
If T is an expression with no effects, it is ignored. */
void
append_to_statement_list (tree t, tree *list_p)
{
if (t && TREE_SIDE_EFFECTS (t))
append_to_statement_list_1 (t, list_p);
}
/* Similar, but the statement is always added, regardless of side effects. */
void
append_to_statement_list_force (tree t, tree *list_p)
{
if (t != NULL_TREE)
append_to_statement_list_1 (t, list_p);
}
/* Both gimplify the statement T and append it to LIST_P. */
void
gimplify_and_add (tree t, tree *list_p)
{
gimplify_stmt (&t);
append_to_statement_list (t, list_p);
}
/* Strip off a legitimate source ending from the input string NAME of
length LEN. Rather than having to know the names used by all of
our front ends, we strip off an ending of a period followed by
up to five characters. (Java uses ".class".) */
static inline void
remove_suffix (char *name, int len)
{
int i;
for (i = 2; i < 8 && len > i; i++)
{
if (name[len - i] == '.')
{
name[len - i] = '\0';
break;
}
}
}
/* Create a nameless artificial label and put it in the current function
context. Returns the newly created label. */
tree
create_artificial_label (void)
{
tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node);
DECL_ARTIFICIAL (lab) = 1;
DECL_IGNORED_P (lab) = 1;
DECL_CONTEXT (lab) = current_function_decl;
return lab;
}
/* Subroutine for find_single_pointer_decl. */
static tree
find_single_pointer_decl_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
tree *pdecl = (tree *) data;
if (DECL_P (*tp) && POINTER_TYPE_P (TREE_TYPE (*tp)))
{
if (*pdecl)
{
/* We already found a pointer decl; return anything other
than NULL_TREE to unwind from walk_tree signalling that
we have a duplicate. */
return *tp;
}
*pdecl = *tp;
}
return NULL_TREE;
}
/* Find the single DECL of pointer type in the tree T and return it.
If there are zero or more than one such DECLs, return NULL. */
static tree
find_single_pointer_decl (tree t)
{
tree decl = NULL_TREE;
if (walk_tree (&t, find_single_pointer_decl_1, &decl, NULL))
{
/* find_single_pointer_decl_1 returns a nonzero value, causing
walk_tree to return a nonzero value, to indicate that it
found more than one pointer DECL. */
return NULL_TREE;
}
return decl;
}
/* Create a new temporary name with PREFIX. Returns an identifier. */
static GTY(()) unsigned int tmp_var_id_num;
tree
create_tmp_var_name (const char *prefix)
{
char *tmp_name;
if (prefix)
{
char *preftmp = ASTRDUP (prefix);
remove_suffix (preftmp, strlen (preftmp));
prefix = preftmp;
}
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
return get_identifier (tmp_name);
}
/* Create a new temporary variable declaration of type TYPE.
Does NOT push it into the current binding. */
tree
create_tmp_var_raw (tree type, const char *prefix)
{
tree tmp_var;
tree new_type;
/* Make the type of the variable writable. */
new_type = build_type_variant (type, 0, 0);
TYPE_ATTRIBUTES (new_type) = TYPE_ATTRIBUTES (type);
tmp_var = build_decl (VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
type);
/* The variable was declared by the compiler. */
DECL_ARTIFICIAL (tmp_var) = 1;
/* And we don't want debug info for it. */
DECL_IGNORED_P (tmp_var) = 1;
/* Make the variable writable. */
TREE_READONLY (tmp_var) = 0;
DECL_EXTERNAL (tmp_var) = 0;
TREE_STATIC (tmp_var) = 0;
TREE_USED (tmp_var) = 1;
return tmp_var;
}
/* Create a new temporary variable declaration of type TYPE. DOES push the
variable into the current binding. Further, assume that this is called
only from gimplification or optimization, at which point the creation of
certain types are bugs. */
tree
create_tmp_var (tree type, const char *prefix)
{
tree tmp_var;
/* We don't allow types that are addressable (meaning we can't make copies),
or incomplete. We also used to reject every variable size objects here,
but now support those for which a constant upper bound can be obtained.
The processing for variable sizes is performed in gimple_add_tmp_var,
point at which it really matters and possibly reached via paths not going
through this function, e.g. after direct calls to create_tmp_var_raw. */
gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
tmp_var = create_tmp_var_raw (type, prefix);
gimple_add_tmp_var (tmp_var);
return tmp_var;
}
/* Given a tree, try to return a useful variable name that we can use
to prefix a temporary that is being assigned the value of the tree.
I.E. given <temp> = &A, return A. */
const char *
get_name (tree t)
{
tree stripped_decl;
stripped_decl = t;
STRIP_NOPS (stripped_decl);
if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
else
{
switch (TREE_CODE (stripped_decl))
{
case ADDR_EXPR:
return get_name (TREE_OPERAND (stripped_decl, 0));
break;
default:
return NULL;
}
}
}
/* Create a temporary with a name derived from VAL. Subroutine of
lookup_tmp_var; nobody else should call this function. */
static inline tree
create_tmp_from_val (tree val)
{
return create_tmp_var (TYPE_MAIN_VARIANT (TREE_TYPE (val)), get_name (val));
}
/* Create a temporary to hold the value of VAL. If IS_FORMAL, try to reuse
an existing expression temporary. */
static tree
lookup_tmp_var (tree val, bool is_formal)
{
tree ret;
/* If not optimizing, never really reuse a temporary. local-alloc
won't allocate any variable that is used in more than one basic
block, which means it will go into memory, causing much extra
work in reload and final and poorer code generation, outweighing
the extra memory allocation here. */
if (!optimize || !is_formal || TREE_SIDE_EFFECTS (val))
ret = create_tmp_from_val (val);
else
{
elt_t elt, *elt_p;
void **slot;
elt.val = val;
slot = htab_find_slot (gimplify_ctxp->temp_htab, (void *)&elt, INSERT);
if (*slot == NULL)
{
elt_p = XNEW (elt_t);
elt_p->val = val;
elt_p->temp = ret = create_tmp_from_val (val);
*slot = (void *) elt_p;
}
else
{
elt_p = (elt_t *) *slot;
ret = elt_p->temp;
}
}
if (is_formal)
DECL_GIMPLE_FORMAL_TEMP_P (ret) = 1;
return ret;
}
/* Returns a formal temporary variable initialized with VAL. PRE_P is as
in gimplify_expr. Only use this function if:
1) The value of the unfactored expression represented by VAL will not
change between the initialization and use of the temporary, and
2) The temporary will not be otherwise modified.
For instance, #1 means that this is inappropriate for SAVE_EXPR temps,
and #2 means it is inappropriate for && temps.
For other cases, use get_initialized_tmp_var instead. */
static tree
internal_get_tmp_var (tree val, tree *pre_p, tree *post_p, bool is_formal)
{
tree t, mod;
gimplify_expr (&val, pre_p, post_p, is_gimple_formal_tmp_rhs, fb_rvalue);
t = lookup_tmp_var (val, is_formal);
if (is_formal)
{
tree u = find_single_pointer_decl (val);
if (u && TREE_CODE (u) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (u))
u = DECL_GET_RESTRICT_BASE (u);
if (u && TYPE_RESTRICT (TREE_TYPE (u)))
{
if (DECL_BASED_ON_RESTRICT_P (t))
gcc_assert (u == DECL_GET_RESTRICT_BASE (t));
else
{
DECL_BASED_ON_RESTRICT_P (t) = 1;
SET_DECL_RESTRICT_BASE (t, u);
}
}
}
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE)
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
mod = build2 (INIT_EXPR, TREE_TYPE (t), t, val);
if (EXPR_HAS_LOCATION (val))
SET_EXPR_LOCUS (mod, EXPR_LOCUS (val));
else
SET_EXPR_LOCATION (mod, input_location);
/* gimplify_modify_expr might want to reduce this further. */
gimplify_and_add (mod, pre_p);
/* If we're gimplifying into ssa, gimplify_modify_expr will have
given our temporary an ssa name. Find and return it. */
if (gimplify_ctxp->into_ssa)
t = TREE_OPERAND (mod, 0);
return t;
}
/* Returns a formal temporary variable initialized with VAL. PRE_P
points to a statement list where side-effects needed to compute VAL
should be stored. */
tree
get_formal_tmp_var (tree val, tree *pre_p)
{
return internal_get_tmp_var (val, pre_p, NULL, true);
}
/* Returns a temporary variable initialized with VAL. PRE_P and POST_P
are as in gimplify_expr. */
tree
get_initialized_tmp_var (tree val, tree *pre_p, tree *post_p)
{
return internal_get_tmp_var (val, pre_p, post_p, false);
}
/* Declares all the variables in VARS in SCOPE. If DEBUG_INFO is
true, generate debug info for them; otherwise don't. */
void
declare_vars (tree vars, tree scope, bool debug_info)
{
tree last = vars;
if (last)
{
tree temps, block;
/* C99 mode puts the default 'return 0;' for main outside the outer
braces. So drill down until we find an actual scope. */
while (TREE_CODE (scope) == COMPOUND_EXPR)
scope = TREE_OPERAND (scope, 0);
gcc_assert (TREE_CODE (scope) == BIND_EXPR);
temps = nreverse (last);
block = BIND_EXPR_BLOCK (scope);
if (!block || !debug_info)
{
TREE_CHAIN (last) = BIND_EXPR_VARS (scope);
BIND_EXPR_VARS (scope) = temps;
}
else
{
/* We need to attach the nodes both to the BIND_EXPR and to its
associated BLOCK for debugging purposes. The key point here
is that the BLOCK_VARS of the BIND_EXPR_BLOCK of a BIND_EXPR
is a subchain of the BIND_EXPR_VARS of the BIND_EXPR. */
if (BLOCK_VARS (block))
BLOCK_VARS (block) = chainon (BLOCK_VARS (block), temps);
else
{
BIND_EXPR_VARS (scope) = chainon (BIND_EXPR_VARS (scope), temps);
BLOCK_VARS (block) = temps;
}
}
}
}
/* For VAR a VAR_DECL of variable size, try to find a constant upper bound
for the size and adjust DECL_SIZE/DECL_SIZE_UNIT accordingly. Abort if
no such upper bound can be obtained. */
static void
force_constant_size (tree var)
{
/* The only attempt we make is by querying the maximum size of objects
of the variable's type. */
HOST_WIDE_INT max_size;
gcc_assert (TREE_CODE (var) == VAR_DECL);
max_size = max_int_size_in_bytes (TREE_TYPE (var));
gcc_assert (max_size >= 0);
DECL_SIZE_UNIT (var)
= build_int_cst (TREE_TYPE (DECL_SIZE_UNIT (var)), max_size);
DECL_SIZE (var)
= build_int_cst (TREE_TYPE (DECL_SIZE (var)), max_size * BITS_PER_UNIT);
}
void
gimple_add_tmp_var (tree tmp)
{
gcc_assert (!TREE_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp));
/* Later processing assumes that the object size is constant, which might
not be true at this point. Force the use of a constant upper bound in
this case. */
if (!host_integerp (DECL_SIZE_UNIT (tmp), 1))
force_constant_size (tmp);
DECL_CONTEXT (tmp) = current_function_decl;
DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1;
if (gimplify_ctxp)
{
TREE_CHAIN (tmp) = gimplify_ctxp->temps;
gimplify_ctxp->temps = tmp;
/* Mark temporaries local within the nearest enclosing parallel. */
if (gimplify_omp_ctxp)
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
while (ctx && !ctx->is_parallel)
ctx = ctx->outer_context;
if (ctx)
omp_add_variable (ctx, tmp, GOVD_LOCAL | GOVD_SEEN);
}
}
else if (cfun)
record_vars (tmp);
else
declare_vars (tmp, DECL_SAVED_TREE (current_function_decl), false);
}
/* Determines whether to assign a locus to the statement STMT. */
static bool
should_carry_locus_p (tree stmt)
{
/* Don't emit a line note for a label. We particularly don't want to
emit one for the break label, since it doesn't actually correspond
to the beginning of the loop/switch. */
if (TREE_CODE (stmt) == LABEL_EXPR)
return false;
/* Do not annotate empty statements, since it confuses gcov. */
if (!TREE_SIDE_EFFECTS (stmt))
return false;
return true;
}
static void
annotate_one_with_locus (tree t, location_t locus)
{
if (EXPR_P (t) && ! EXPR_HAS_LOCATION (t) && should_carry_locus_p (t))
SET_EXPR_LOCATION (t, locus);
}
void
annotate_all_with_locus (tree *stmt_p, location_t locus)
{
tree_stmt_iterator i;
if (!*stmt_p)
return;
for (i = tsi_start (*stmt_p); !tsi_end_p (i); tsi_next (&i))
{
tree t = tsi_stmt (i);
/* Assuming we've already been gimplified, we shouldn't
see nested chaining constructs anymore. */
gcc_assert (TREE_CODE (t) != STATEMENT_LIST
&& TREE_CODE (t) != COMPOUND_EXPR);
annotate_one_with_locus (t, locus);
}
}
/* Similar to copy_tree_r() but do not copy SAVE_EXPR or TARGET_EXPR nodes.
These nodes model computations that should only be done once. If we
were to unshare something like SAVE_EXPR(i++), the gimplification
process would create wrong code. */
static tree
mostly_copy_tree_r (tree *tp, int *walk_subtrees, void *data)
{
enum tree_code code = TREE_CODE (*tp);
/* Don't unshare types, decls, constants and SAVE_EXPR nodes. */
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant
|| code == SAVE_EXPR || code == TARGET_EXPR
/* We can't do anything sensible with a BLOCK used as an expression,
but we also can't just die when we see it because of non-expression
uses. So just avert our eyes and cross our fingers. Silly Java. */
|| code == BLOCK)
*walk_subtrees = 0;
else
{
gcc_assert (code != BIND_EXPR);
copy_tree_r (tp, walk_subtrees, data);
}
return NULL_TREE;
}
/* Callback for walk_tree to unshare most of the shared trees rooted at
*TP. If *TP has been visited already (i.e., TREE_VISITED (*TP) == 1),
then *TP is deep copied by calling copy_tree_r.
This unshares the same trees as copy_tree_r with the exception of
SAVE_EXPR nodes. These nodes model computations that should only be
done once. If we were to unshare something like SAVE_EXPR(i++), the
gimplification process would create wrong code. */
static tree
copy_if_shared_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
enum tree_code code = TREE_CODE (t);
/* Skip types, decls, and constants. But we do want to look at their
types and the bounds of types. Mark them as visited so we properly
unmark their subtrees on the unmark pass. If we've already seen them,
don't look down further. */
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant)
{
if (TREE_VISITED (t))
*walk_subtrees = 0;
else
TREE_VISITED (t) = 1;
}
/* If this node has been visited already, unshare it and don't look
any deeper. */
else if (TREE_VISITED (t))
{
walk_tree (tp, mostly_copy_tree_r, NULL, NULL);
*walk_subtrees = 0;
}
/* Otherwise, mark the tree as visited and keep looking. */
else
TREE_VISITED (t) = 1;
return NULL_TREE;
}
static tree
unmark_visited_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if (TREE_VISITED (*tp))
TREE_VISITED (*tp) = 0;
else
*walk_subtrees = 0;
return NULL_TREE;
}
/* Unshare all the trees in BODY_P, a pointer into the body of FNDECL, and the
bodies of any nested functions if we are unsharing the entire body of
FNDECL. */
static void
unshare_body (tree *body_p, tree fndecl)
{
struct cgraph_node *cgn = cgraph_node (fndecl);
walk_tree (body_p, copy_if_shared_r, NULL, NULL);
if (body_p == &DECL_SAVED_TREE (fndecl))
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
unshare_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
}
/* Likewise, but mark all trees as not visited. */
static void
unvisit_body (tree *body_p, tree fndecl)
{
struct cgraph_node *cgn = cgraph_node (fndecl);
walk_tree (body_p, unmark_visited_r, NULL, NULL);
if (body_p == &DECL_SAVED_TREE (fndecl))
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
unvisit_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
}
/* Unshare T and all the trees reached from T via TREE_CHAIN. */
static void
unshare_all_trees (tree t)
{
walk_tree (&t, copy_if_shared_r, NULL, NULL);
walk_tree (&t, unmark_visited_r, NULL, NULL);
}
/* Unconditionally make an unshared copy of EXPR. This is used when using
stored expressions which span multiple functions, such as BINFO_VTABLE,
as the normal unsharing process can't tell that they're shared. */
tree
unshare_expr (tree expr)
{
walk_tree (&expr, mostly_copy_tree_r, NULL, NULL);
return expr;
}
/* A terser interface for building a representation of an exception
specification. */
tree
gimple_build_eh_filter (tree body, tree allowed, tree failure)
{
tree t;
/* FIXME should the allowed types go in TREE_TYPE? */
t = build2 (EH_FILTER_EXPR, void_type_node, allowed, NULL_TREE);
append_to_statement_list (failure, &EH_FILTER_FAILURE (t));
t = build2 (TRY_CATCH_EXPR, void_type_node, NULL_TREE, t);
append_to_statement_list (body, &TREE_OPERAND (t, 0));
return t;
}
/* WRAPPER is a code such as BIND_EXPR or CLEANUP_POINT_EXPR which can both
contain statements and have a value. Assign its value to a temporary
and give it void_type_node. Returns the temporary, or NULL_TREE if
WRAPPER was already void. */
tree
voidify_wrapper_expr (tree wrapper, tree temp)
{
tree type = TREE_TYPE (wrapper);
if (type && !VOID_TYPE_P (type))
{
tree *p;
/* Set p to point to the body of the wrapper. Loop until we find
something that isn't a wrapper. */
for (p = &wrapper; p && *p; )
{
switch (TREE_CODE (*p))
{
case BIND_EXPR:
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
/* For a BIND_EXPR, the body is operand 1. */
p = &BIND_EXPR_BODY (*p);
break;
case CLEANUP_POINT_EXPR:
case TRY_FINALLY_EXPR:
case TRY_CATCH_EXPR:
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = &TREE_OPERAND (*p, 0);
break;
case STATEMENT_LIST:
{
tree_stmt_iterator i = tsi_last (*p);
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
p = tsi_end_p (i) ? NULL : tsi_stmt_ptr (i);
}
break;
case COMPOUND_EXPR:
/* Advance to the last statement. Set all container types to void. */
for (; TREE_CODE (*p) == COMPOUND_EXPR; p = &TREE_OPERAND (*p, 1))
{
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
}
break;
default:
goto out;
}
}
out:
if (p == NULL || IS_EMPTY_STMT (*p))
temp = NULL_TREE;
else if (temp)
{
/* The wrapper is on the RHS of an assignment that we're pushing
down. */
gcc_assert (TREE_CODE (temp) == INIT_EXPR
|| TREE_CODE (temp) == MODIFY_EXPR);
TREE_OPERAND (temp, 1) = *p;
*p = temp;
}
else
{
temp = create_tmp_var (type, "retval");
*p = build2 (INIT_EXPR, type, temp, *p);
}
return temp;
}
return NULL_TREE;
}
/* Prepare calls to builtins to SAVE and RESTORE the stack as well as
a temporary through which they communicate. */
static void
build_stack_save_restore (tree *save, tree *restore)
{
tree save_call, tmp_var;
save_call =
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_SAVE],
NULL_TREE);
tmp_var = create_tmp_var (ptr_type_node, "saved_stack");
*save = build2 (MODIFY_EXPR, ptr_type_node, tmp_var, save_call);
*restore =
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_RESTORE],
tree_cons (NULL_TREE, tmp_var, NULL_TREE));
}
/* Gimplify a BIND_EXPR. Just voidify and recurse. */
static enum gimplify_status
gimplify_bind_expr (tree *expr_p, tree *pre_p)
{
tree bind_expr = *expr_p;
bool old_save_stack = gimplify_ctxp->save_stack;
tree t;
tree temp = voidify_wrapper_expr (bind_expr, NULL);
/* Mark variables seen in this bind expr. */
for (t = BIND_EXPR_VARS (bind_expr); t ; t = TREE_CHAIN (t))
{
if (TREE_CODE (t) == VAR_DECL)
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
/* Mark variable as local. */
if (ctx && !is_global_var (t)
&& (! DECL_SEEN_IN_BIND_EXPR_P (t)
|| splay_tree_lookup (ctx->variables,
(splay_tree_key) t) == NULL))
omp_add_variable (gimplify_omp_ctxp, t, GOVD_LOCAL | GOVD_SEEN);
DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
}
/* Preliminarily mark non-addressed complex variables as eligible
for promotion to gimple registers. We'll transform their uses
as we find them. */
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
&& !TREE_THIS_VOLATILE (t)
&& (TREE_CODE (t) == VAR_DECL && !DECL_HARD_REGISTER (t))
&& !needs_to_live_in_memory (t))
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
}
gimple_push_bind_expr (bind_expr);
gimplify_ctxp->save_stack = false;
gimplify_to_stmt_list (&BIND_EXPR_BODY (bind_expr));
if (gimplify_ctxp->save_stack)
{
tree stack_save, stack_restore;
/* Save stack on entry and restore it on exit. Add a try_finally
block to achieve this. Note that mudflap depends on the
format of the emitted code: see mx_register_decls(). */
build_stack_save_restore (&stack_save, &stack_restore);
t = build2 (TRY_FINALLY_EXPR, void_type_node,
BIND_EXPR_BODY (bind_expr), NULL_TREE);
append_to_statement_list (stack_restore, &TREE_OPERAND (t, 1));
BIND_EXPR_BODY (bind_expr) = NULL_TREE;
append_to_statement_list (stack_save, &BIND_EXPR_BODY (bind_expr));
append_to_statement_list (t, &BIND_EXPR_BODY (bind_expr));
}
gimplify_ctxp->save_stack = old_save_stack;
gimple_pop_bind_expr ();
if (temp)
{
*expr_p = temp;
append_to_statement_list (bind_expr, pre_p);
return GS_OK;
}
else
return GS_ALL_DONE;
}
/* Gimplify a RETURN_EXPR. If the expression to be returned is not a
GIMPLE value, it is assigned to a new temporary and the statement is
re-written to return the temporary.
PRE_P points to the list where side effects that must happen before
STMT should be stored. */
static enum gimplify_status
gimplify_return_expr (tree stmt, tree *pre_p)
{
tree ret_expr = TREE_OPERAND (stmt, 0);
tree result_decl, result;
if (!ret_expr || TREE_CODE (ret_expr) == RESULT_DECL
|| ret_expr == error_mark_node)
return GS_ALL_DONE;
if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))))
result_decl = NULL_TREE;
else
{
result_decl = TREE_OPERAND (ret_expr, 0);
if (TREE_CODE (result_decl) == INDIRECT_REF)
/* See through a return by reference. */
result_decl = TREE_OPERAND (result_decl, 0);
gcc_assert ((TREE_CODE (ret_expr) == MODIFY_EXPR
|| TREE_CODE (ret_expr) == INIT_EXPR)
&& TREE_CODE (result_decl) == RESULT_DECL);
}
/* If aggregate_value_p is true, then we can return the bare RESULT_DECL.
Recall that aggregate_value_p is FALSE for any aggregate type that is
returned in registers. If we're returning values in registers, then
we don't want to extend the lifetime of the RESULT_DECL, particularly
across another call. In addition, for those aggregates for which
hard_function_value generates a PARALLEL, we'll die during normal
expansion of structure assignments; there's special code in expand_return
to handle this case that does not exist in expand_expr. */
if (!result_decl
|| aggregate_value_p (result_decl, TREE_TYPE (current_function_decl)))
result = result_decl;
else if (gimplify_ctxp->return_temp)
result = gimplify_ctxp->return_temp;
else
{
result = create_tmp_var (TREE_TYPE (result_decl), NULL);
/* ??? With complex control flow (usually involving abnormal edges),
we can wind up warning about an uninitialized value for this. Due
to how this variable is constructed and initialized, this is never
true. Give up and never warn. */
TREE_NO_WARNING (result) = 1;
gimplify_ctxp->return_temp = result;
}
/* Smash the lhs of the MODIFY_EXPR to the temporary we plan to use.
Then gimplify the whole thing. */
if (result != result_decl)
TREE_OPERAND (ret_expr, 0) = result;
gimplify_and_add (TREE_OPERAND (stmt, 0), pre_p);
/* If we didn't use a temporary, then the result is just the result_decl.
Otherwise we need a simple copy. This should already be gimple. */
if (result == result_decl)
ret_expr = result;
else
ret_expr = build2 (MODIFY_EXPR, TREE_TYPE (result), result_decl, result);
TREE_OPERAND (stmt, 0) = ret_expr;
return GS_ALL_DONE;
}
/* Gimplifies a DECL_EXPR node *STMT_P by making any necessary allocation
and initialization explicit. */
static enum gimplify_status
gimplify_decl_expr (tree *stmt_p)
{
tree stmt = *stmt_p;
tree decl = DECL_EXPR_DECL (stmt);
*stmt_p = NULL_TREE;
if (TREE_TYPE (decl) == error_mark_node)
return GS_ERROR;
if ((TREE_CODE (decl) == TYPE_DECL
|| TREE_CODE (decl) == VAR_DECL)
&& !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (decl)))
gimplify_type_sizes (TREE_TYPE (decl), stmt_p);
if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
{
tree init = DECL_INITIAL (decl);
if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
{
/* This is a variable-sized decl. Simplify its size and mark it
for deferred expansion. Note that mudflap depends on the format
of the emitted code: see mx_register_decls(). */
tree t, args, addr, ptr_type;
gimplify_one_sizepos (&DECL_SIZE (decl), stmt_p);
gimplify_one_sizepos (&DECL_SIZE_UNIT (decl), stmt_p);
/* All occurrences of this decl in final gimplified code will be
replaced by indirection. Setting DECL_VALUE_EXPR does two
things: First, it lets the rest of the gimplifier know what
replacement to use. Second, it lets the debug info know
where to find the value. */
ptr_type = build_pointer_type (TREE_TYPE (decl));
addr = create_tmp_var (ptr_type, get_name (decl));
DECL_IGNORED_P (addr) = 0;
t = build_fold_indirect_ref (addr);
SET_DECL_VALUE_EXPR (decl, t);
DECL_HAS_VALUE_EXPR_P (decl) = 1;
args = tree_cons (NULL, DECL_SIZE_UNIT (decl), NULL);
t = built_in_decls[BUILT_IN_ALLOCA];
t = build_function_call_expr (t, args);
t = fold_convert (ptr_type, t);
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
gimplify_and_add (t, stmt_p);
/* Indicate that we need to restore the stack level when the
enclosing BIND_EXPR is exited. */
gimplify_ctxp->save_stack = true;
}
if (init && init != error_mark_node)
{
if (!TREE_STATIC (decl))
{
DECL_INITIAL (decl) = NULL_TREE;
init = build2 (INIT_EXPR, void_type_node, decl, init);
gimplify_and_add (init, stmt_p);
}
else
/* We must still examine initializers for static variables
as they may contain a label address. */
walk_tree (&init, force_labels_r, NULL, NULL);
}
/* Some front ends do not explicitly declare all anonymous
artificial variables. We compensate here by declaring the
variables, though it would be better if the front ends would
explicitly declare them. */
if (!DECL_SEEN_IN_BIND_EXPR_P (decl)
&& DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE)
gimple_add_tmp_var (decl);
}
return GS_ALL_DONE;
}
/* Gimplify a LOOP_EXPR. Normally this just involves gimplifying the body
and replacing the LOOP_EXPR with goto, but if the loop contains an
EXIT_EXPR, we need to append a label for it to jump to. */
static enum gimplify_status
gimplify_loop_expr (tree *expr_p, tree *pre_p)
{
tree saved_label = gimplify_ctxp->exit_label;
tree start_label = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
tree jump_stmt = build_and_jump (&LABEL_EXPR_LABEL (start_label));
append_to_statement_list (start_label, pre_p);
gimplify_ctxp->exit_label = NULL_TREE;
gimplify_and_add (LOOP_EXPR_BODY (*expr_p), pre_p);
if (gimplify_ctxp->exit_label)
{
append_to_statement_list (jump_stmt, pre_p);
*expr_p = build1 (LABEL_EXPR, void_type_node, gimplify_ctxp->exit_label);
}
else
*expr_p = jump_stmt;
gimplify_ctxp->exit_label = saved_label;
return GS_ALL_DONE;
}
/* Compare two case labels. Because the front end should already have
made sure that case ranges do not overlap, it is enough to only compare
the CASE_LOW values of each case label. */
static int
compare_case_labels (const void *p1, const void *p2)
{
tree case1 = *(tree *)p1;
tree case2 = *(tree *)p2;
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
}
/* Sort the case labels in LABEL_VEC in place in ascending order. */
void
sort_case_labels (tree label_vec)
{
size_t len = TREE_VEC_LENGTH (label_vec);
tree default_case = TREE_VEC_ELT (label_vec, len - 1);
if (CASE_LOW (default_case))
{
size_t i;
/* The last label in the vector should be the default case
but it is not. */
for (i = 0; i < len; ++i)
{
tree t = TREE_VEC_ELT (label_vec, i);
if (!CASE_LOW (t))
{
default_case = t;
TREE_VEC_ELT (label_vec, i) = TREE_VEC_ELT (label_vec, len - 1);
TREE_VEC_ELT (label_vec, len - 1) = default_case;
break;
}
}
}
qsort (&TREE_VEC_ELT (label_vec, 0), len - 1, sizeof (tree),
compare_case_labels);
}
/* Gimplify a SWITCH_EXPR, and collect a TREE_VEC of the labels it can
branch to. */
static enum gimplify_status
gimplify_switch_expr (tree *expr_p, tree *pre_p)
{
tree switch_expr = *expr_p;
enum gimplify_status ret;
ret = gimplify_expr (&SWITCH_COND (switch_expr), pre_p, NULL,
is_gimple_val, fb_rvalue);
if (SWITCH_BODY (switch_expr))
{
VEC(tree,heap) *labels, *saved_labels;
tree label_vec, default_case = NULL_TREE;
size_t i, len;
/* If someone can be bothered to fill in the labels, they can
be bothered to null out the body too. */
gcc_assert (!SWITCH_LABELS (switch_expr));
saved_labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels = VEC_alloc (tree, heap, 8);
gimplify_to_stmt_list (&SWITCH_BODY (switch_expr));
labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels = saved_labels;
i = 0;
while (i < VEC_length (tree, labels))
{
tree elt = VEC_index (tree, labels, i);
tree low = CASE_LOW (elt);
bool remove_element = FALSE;
if (low)
{
/* Discard empty ranges. */
tree high = CASE_HIGH (elt);
if (high && INT_CST_LT (high, low))
remove_element = TRUE;
}
else
{
/* The default case must be the last label in the list. */
gcc_assert (!default_case);
default_case = elt;
remove_element = TRUE;
}
if (remove_element)
VEC_ordered_remove (tree, labels, i);
else
i++;
}
len = i;
label_vec = make_tree_vec (len + 1);
SWITCH_LABELS (*expr_p) = label_vec;
append_to_statement_list (switch_expr, pre_p);
if (! default_case)
{
/* If the switch has no default label, add one, so that we jump
around the switch body. */
default_case = build3 (CASE_LABEL_EXPR, void_type_node, NULL_TREE,
NULL_TREE, create_artificial_label ());
append_to_statement_list (SWITCH_BODY (switch_expr), pre_p);
*expr_p = build1 (LABEL_EXPR, void_type_node,
CASE_LABEL (default_case));
}
else
*expr_p = SWITCH_BODY (switch_expr);
for (i = 0; i < len; ++i)
TREE_VEC_ELT (label_vec, i) = VEC_index (tree, labels, i);
TREE_VEC_ELT (label_vec, len) = default_case;
VEC_free (tree, heap, labels);
sort_case_labels (label_vec);
SWITCH_BODY (switch_expr) = NULL;
}
else
gcc_assert (SWITCH_LABELS (switch_expr));
return ret;
}
static enum gimplify_status
gimplify_case_label_expr (tree *expr_p)
{
tree expr = *expr_p;
struct gimplify_ctx *ctxp;
/* Invalid OpenMP programs can play Duff's Device type games with
#pragma omp parallel. At least in the C front end, we don't
detect such invalid branches until after gimplification. */
for (ctxp = gimplify_ctxp; ; ctxp = ctxp->prev_context)
if (ctxp->case_labels)
break;
VEC_safe_push (tree, heap, ctxp->case_labels, expr);
*expr_p = build1 (LABEL_EXPR, void_type_node, CASE_LABEL (expr));
return GS_ALL_DONE;
}
/* Build a GOTO to the LABEL_DECL pointed to by LABEL_P, building it first
if necessary. */
tree
build_and_jump (tree *label_p)
{
if (label_p == NULL)
/* If there's nowhere to jump, just fall through. */
return NULL_TREE;
if (*label_p == NULL_TREE)
{
tree label = create_artificial_label ();
*label_p = label;
}
return build1 (GOTO_EXPR, void_type_node, *label_p);
}
/* Gimplify an EXIT_EXPR by converting to a GOTO_EXPR inside a COND_EXPR.
This also involves building a label to jump to and communicating it to
gimplify_loop_expr through gimplify_ctxp->exit_label. */
static enum gimplify_status
gimplify_exit_expr (tree *expr_p)
{
tree cond = TREE_OPERAND (*expr_p, 0);
tree expr;
expr = build_and_jump (&gimplify_ctxp->exit_label);
expr = build3 (COND_EXPR, void_type_node, cond, expr, NULL_TREE);
*expr_p = expr;
return GS_OK;
}
/* A helper function to be called via walk_tree. Mark all labels under *TP
as being forced. To be called for DECL_INITIAL of static variables. */
tree
force_labels_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
if (TYPE_P (*tp))
*walk_subtrees = 0;
if (TREE_CODE (*tp) == LABEL_DECL)
FORCED_LABEL (*tp) = 1;
return NULL_TREE;
}
/* *EXPR_P is a COMPONENT_REF being used as an rvalue. If its type is
different from its canonical type, wrap the whole thing inside a
NOP_EXPR and force the type of the COMPONENT_REF to be the canonical
type.
The canonical type of a COMPONENT_REF is the type of the field being
referenced--unless the field is a bit-field which can be read directly
in a smaller mode, in which case the canonical type is the
sign-appropriate type corresponding to that mode. */
static void
canonicalize_component_ref (tree *expr_p)
{
tree expr = *expr_p;
tree type;
gcc_assert (TREE_CODE (expr) == COMPONENT_REF);
if (INTEGRAL_TYPE_P (TREE_TYPE (expr)))
type = TREE_TYPE (get_unwidened (expr, NULL_TREE));
else
type = TREE_TYPE (TREE_OPERAND (expr, 1));
if (TREE_TYPE (expr) != type)
{
tree old_type = TREE_TYPE (expr);
/* Set the type of the COMPONENT_REF to the underlying type. */
TREE_TYPE (expr) = type;
/* And wrap the whole thing inside a NOP_EXPR. */
expr = build1 (NOP_EXPR, old_type, expr);
*expr_p = expr;
}
}
/* If a NOP conversion is changing a pointer to array of foo to a pointer
to foo, embed that change in the ADDR_EXPR by converting
T array[U];
(T *)&array
==>
&array[L]
where L is the lower bound. For simplicity, only do this for constant
lower bound. */
static void
canonicalize_addr_expr (tree *expr_p)
{
tree expr = *expr_p;
tree ctype = TREE_TYPE (expr);
tree addr_expr = TREE_OPERAND (expr, 0);
tree atype = TREE_TYPE (addr_expr);
tree dctype, datype, ddatype, otype, obj_expr;
/* Both cast and addr_expr types should be pointers. */
if (!POINTER_TYPE_P (ctype) || !POINTER_TYPE_P (atype))
return;
/* The addr_expr type should be a pointer to an array. */
datype = TREE_TYPE (atype);
if (TREE_CODE (datype) != ARRAY_TYPE)
return;
/* Both cast and addr_expr types should address the same object type. */
dctype = TREE_TYPE (ctype);
ddatype = TREE_TYPE (datype);
if (!lang_hooks.types_compatible_p (ddatype, dctype))
return;
/* The addr_expr and the object type should match. */
obj_expr = TREE_OPERAND (addr_expr, 0);
otype = TREE_TYPE (obj_expr);
if (!lang_hooks.types_compatible_p (otype, datype))
return;
/* The lower bound and element sizes must be constant. */
if (!TYPE_SIZE_UNIT (dctype)
|| TREE_CODE (TYPE_SIZE_UNIT (dctype)) != INTEGER_CST
|| !TYPE_DOMAIN (datype) || !TYPE_MIN_VALUE (TYPE_DOMAIN (datype))
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (datype))) != INTEGER_CST)
return;
/* All checks succeeded. Build a new node to merge the cast. */
*expr_p = build4 (ARRAY_REF, dctype, obj_expr,
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
NULL_TREE, NULL_TREE);
*expr_p = build1 (ADDR_EXPR, ctype, *expr_p);
}
/* *EXPR_P is a NOP_EXPR or CONVERT_EXPR. Remove it and/or other conversions
underneath as appropriate. */
static enum gimplify_status
gimplify_conversion (tree *expr_p)
{
gcc_assert (TREE_CODE (*expr_p) == NOP_EXPR
|| TREE_CODE (*expr_p) == CONVERT_EXPR);
/* Then strip away all but the outermost conversion. */
STRIP_SIGN_NOPS (TREE_OPERAND (*expr_p, 0));
/* And remove the outermost conversion if it's useless. */
if (tree_ssa_useless_type_conversion (*expr_p))
*expr_p = TREE_OPERAND (*expr_p, 0);
/* If we still have a conversion at the toplevel,
then canonicalize some constructs. */
if (TREE_CODE (*expr_p) == NOP_EXPR || TREE_CODE (*expr_p) == CONVERT_EXPR)
{
tree sub = TREE_OPERAND (*expr_p, 0);
/* If a NOP conversion is changing the type of a COMPONENT_REF
expression, then canonicalize its type now in order to expose more
redundant conversions. */
if (TREE_CODE (sub) == COMPONENT_REF)
canonicalize_component_ref (&TREE_OPERAND (*expr_p, 0));
/* If a NOP conversion is changing a pointer to array of foo
to a pointer to foo, embed that change in the ADDR_EXPR. */
else if (TREE_CODE (sub) == ADDR_EXPR)
canonicalize_addr_expr (expr_p);
}
return GS_OK;
}
/* Gimplify a VAR_DECL or PARM_DECL. Returns GS_OK if we expanded a
DECL_VALUE_EXPR, and it's worth re-examining things. */
static enum gimplify_status
gimplify_var_or_parm_decl (tree *expr_p)
{
tree decl = *expr_p;
/* ??? If this is a local variable, and it has not been seen in any
outer BIND_EXPR, then it's probably the result of a duplicate
declaration, for which we've already issued an error. It would
be really nice if the front end wouldn't leak these at all.
Currently the only known culprit is C++ destructors, as seen
in g++.old-deja/g++.jason/binding.C. */
if (TREE_CODE (decl) == VAR_DECL
&& !DECL_SEEN_IN_BIND_EXPR_P (decl)
&& !TREE_STATIC (decl) && !DECL_EXTERNAL (decl)
&& decl_function_context (decl) == current_function_decl)
{
gcc_assert (errorcount || sorrycount);
return GS_ERROR;
}
/* When within an OpenMP context, notice uses of variables. */
if (gimplify_omp_ctxp && omp_notice_variable (gimplify_omp_ctxp, decl, true))
return GS_ALL_DONE;
/* If the decl is an alias for another expression, substitute it now. */
if (DECL_HAS_VALUE_EXPR_P (decl))
{
*expr_p = unshare_expr (DECL_VALUE_EXPR (decl));
return GS_OK;
}
return GS_ALL_DONE;
}
/* Gimplify the COMPONENT_REF, ARRAY_REF, REALPART_EXPR or IMAGPART_EXPR
node pointed to by EXPR_P.
compound_lval
: min_lval '[' val ']'
| min_lval '.' ID
| compound_lval '[' val ']'
| compound_lval '.' ID
This is not part of the original SIMPLE definition, which separates
array and member references, but it seems reasonable to handle them
together. Also, this way we don't run into problems with union
aliasing; gcc requires that for accesses through a union to alias, the
union reference must be explicit, which was not always the case when we
were splitting up array and member refs.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_compound_lval (tree *expr_p, tree *pre_p,
tree *post_p, fallback_t fallback)
{
tree *p;
VEC(tree,heap) *stack;
enum gimplify_status ret = GS_OK, tret;
int i;
/* Create a stack of the subexpressions so later we can walk them in
order from inner to outer. */
stack = VEC_alloc (tree, heap, 10);
/* We can handle anything that get_inner_reference can deal with. */
for (p = expr_p; ; p = &TREE_OPERAND (*p, 0))
{
restart:
/* Fold INDIRECT_REFs now to turn them into ARRAY_REFs. */
if (TREE_CODE (*p) == INDIRECT_REF)
*p = fold_indirect_ref (*p);
if (handled_component_p (*p))
;
/* Expand DECL_VALUE_EXPR now. In some cases that may expose
additional COMPONENT_REFs. */
else if ((TREE_CODE (*p) == VAR_DECL || TREE_CODE (*p) == PARM_DECL)
&& gimplify_var_or_parm_decl (p) == GS_OK)
goto restart;
else
break;
VEC_safe_push (tree, heap, stack, *p);
}
gcc_assert (VEC_length (tree, stack));
/* Now STACK is a stack of pointers to all the refs we've walked through
and P points to the innermost expression.
Java requires that we elaborated nodes in source order. That
means we must gimplify the inner expression followed by each of
the indices, in order. But we can't gimplify the inner
expression until we deal with any variable bounds, sizes, or
positions in order to deal with PLACEHOLDER_EXPRs.
So we do this in three steps. First we deal with the annotations
for any variables in the components, then we gimplify the base,
then we gimplify any indices, from left to right. */
for (i = VEC_length (tree, stack) - 1; i >= 0; i--)
{
tree t = VEC_index (tree, stack, i);
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
/* Gimplify the low bound and element type size and put them into
the ARRAY_REF. If these values are set, they have already been
gimplified. */
if (!TREE_OPERAND (t, 2))
{
tree low = unshare_expr (array_ref_low_bound (t));
if (!is_gimple_min_invariant (low))
{
TREE_OPERAND (t, 2) = low;
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
if (!TREE_OPERAND (t, 3))
{
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
tree elmt_size = unshare_expr (array_ref_element_size (t));
tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type));
/* Divide the element size by the alignment of the element
type (above). */
elmt_size = size_binop (EXACT_DIV_EXPR, elmt_size, factor);
if (!is_gimple_min_invariant (elmt_size))
{
TREE_OPERAND (t, 3) = elmt_size;
tret = gimplify_expr (&TREE_OPERAND (t, 3), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
}
else if (TREE_CODE (t) == COMPONENT_REF)
{
/* Set the field offset into T and gimplify it. */
if (!TREE_OPERAND (t, 2))
{
tree offset = unshare_expr (component_ref_field_offset (t));
tree field = TREE_OPERAND (t, 1);
tree factor
= size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT);
/* Divide the offset by its alignment. */
offset = size_binop (EXACT_DIV_EXPR, offset, factor);
if (!is_gimple_min_invariant (offset))
{
TREE_OPERAND (t, 2) = offset;
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
}
}
/* Step 2 is to gimplify the base expression. Make sure lvalue is set
so as to match the min_lval predicate. Failure to do so may result
in the creation of large aggregate temporaries. */
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval,
fallback | fb_lvalue);
ret = MIN (ret, tret);
/* And finally, the indices and operands to BIT_FIELD_REF. During this
loop we also remove any useless conversions. */
for (; VEC_length (tree, stack) > 0; )
{
tree t = VEC_pop (tree, stack);
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
/* Gimplify the dimension.
Temporary fix for gcc.c-torture/execute/20040313-1.c.
Gimplify non-constant array indices into a temporary
variable.
FIXME - The real fix is to gimplify post-modify
expressions into a minimal gimple lvalue. However, that
exposes bugs in alias analysis. The alias analyzer does
not handle &PTR->FIELD very well. Will fix after the
branch is merged into mainline (dnovillo 2004-05-03). */
if (!is_gimple_min_invariant (TREE_OPERAND (t, 1)))
{
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
else if (TREE_CODE (t) == BIT_FIELD_REF)
{
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (ret, tret);
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (ret, tret);
}
STRIP_USELESS_TYPE_CONVERSION (TREE_OPERAND (t, 0));
/* The innermost expression P may have originally had TREE_SIDE_EFFECTS
set which would have caused all the outer expressions in EXPR_P
leading to P to also have had TREE_SIDE_EFFECTS set. */
recalculate_side_effects (t);
}
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval, fallback);
ret = MIN (ret, tret);
/* If the outermost expression is a COMPONENT_REF, canonicalize its type. */
if ((fallback & fb_rvalue) && TREE_CODE (*expr_p) == COMPONENT_REF)
{
canonicalize_component_ref (expr_p);
ret = MIN (ret, GS_OK);
}
VEC_free (tree, heap, stack);
return ret;
}
/* Gimplify the self modifying expression pointed to by EXPR_P
(++, --, +=, -=).
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored.
WANT_VALUE is nonzero iff we want to use the value of this expression
in another expression. */
static enum gimplify_status
gimplify_self_mod_expr (tree *expr_p, tree *pre_p, tree *post_p,
bool want_value)
{
enum tree_code code;
tree lhs, lvalue, rhs, t1, post = NULL, *orig_post_p = post_p;
bool postfix;
enum tree_code arith_code;
enum gimplify_status ret;
code = TREE_CODE (*expr_p);
gcc_assert (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR
|| code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR);
/* Prefix or postfix? */
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
/* Faster to treat as prefix if result is not used. */
postfix = want_value;
else
postfix = false;
/* For postfix, make sure the inner expression's post side effects
are executed after side effects from this expression. */
if (postfix)
post_p = &post;
/* Add or subtract? */
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
arith_code = PLUS_EXPR;
else
arith_code = MINUS_EXPR;
/* Gimplify the LHS into a GIMPLE lvalue. */
lvalue = TREE_OPERAND (*expr_p, 0);
ret = gimplify_expr (&lvalue, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
/* Extract the operands to the arithmetic operation. */
lhs = lvalue;
rhs = TREE_OPERAND (*expr_p, 1);
/* For postfix operator, we evaluate the LHS to an rvalue and then use
that as the result value and in the postqueue operation. */
if (postfix)
{
ret = gimplify_expr (&lhs, pre_p, post_p, is_gimple_val, fb_rvalue);
if (ret == GS_ERROR)
return ret;
}
t1 = build2 (arith_code, TREE_TYPE (*expr_p), lhs, rhs);
t1 = build2 (MODIFY_EXPR, TREE_TYPE (lvalue), lvalue, t1);
if (postfix)
{
gimplify_and_add (t1, orig_post_p);
append_to_statement_list (post, orig_post_p);
*expr_p = lhs;
return GS_ALL_DONE;
}
else
{
*expr_p = t1;
return GS_OK;
}
}
/* If *EXPR_P has a variable sized type, wrap it in a WITH_SIZE_EXPR. */
static void
maybe_with_size_expr (tree *expr_p)
{
tree expr = *expr_p;
tree type = TREE_TYPE (expr);
tree size;
/* If we've already wrapped this or the type is error_mark_node, we can't do
anything. */
if (TREE_CODE (expr) == WITH_SIZE_EXPR
|| type == error_mark_node)
return;
/* If the size isn't known or is a constant, we have nothing to do. */
size = TYPE_SIZE_UNIT (type);
if (!size || TREE_CODE (size) == INTEGER_CST)
return;
/* Otherwise, make a WITH_SIZE_EXPR. */
size = unshare_expr (size);
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, expr);
*expr_p = build2 (WITH_SIZE_EXPR, type, expr, size);
}
/* Subroutine of gimplify_call_expr: Gimplify a single argument. */
static enum gimplify_status
gimplify_arg (tree *expr_p, tree *pre_p)
{
bool (*test) (tree);
fallback_t fb;
/* In general, we allow lvalues for function arguments to avoid
extra overhead of copying large aggregates out of even larger
aggregates into temporaries only to copy the temporaries to
the argument list. Make optimizers happy by pulling out to
temporaries those types that fit in registers. */
if (is_gimple_reg_type (TREE_TYPE (*expr_p)))
test = is_gimple_val, fb = fb_rvalue;
else
test = is_gimple_lvalue, fb = fb_either;
/* If this is a variable sized type, we must remember the size. */
maybe_with_size_expr (expr_p);
/* There is a sequence point before a function call. Side effects in
the argument list must occur before the actual call. So, when
gimplifying arguments, force gimplify_expr to use an internal
post queue which is then appended to the end of PRE_P. */
return gimplify_expr (expr_p, pre_p, NULL, test, fb);
}
/* Gimplify the CALL_EXPR node pointed to by EXPR_P. PRE_P points to the
list where side effects that must happen before *EXPR_P should be stored.
WANT_VALUE is true if the result of the call is desired. */
static enum gimplify_status
gimplify_call_expr (tree *expr_p, tree *pre_p, bool want_value)
{
tree decl;
tree arglist;
enum gimplify_status ret;
gcc_assert (TREE_CODE (*expr_p) == CALL_EXPR);
/* For reliable diagnostics during inlining, it is necessary that
every call_expr be annotated with file and line. */
if (! EXPR_HAS_LOCATION (*expr_p))
SET_EXPR_LOCATION (*expr_p, input_location);
/* This may be a call to a builtin function.
Builtin function calls may be transformed into different
(and more efficient) builtin function calls under certain
circumstances. Unfortunately, gimplification can muck things
up enough that the builtin expanders are not aware that certain
transformations are still valid.
So we attempt transformation/gimplification of the call before
we gimplify the CALL_EXPR. At this time we do not manage to
transform all calls in the same manner as the expanders do, but
we do transform most of them. */
decl = get_callee_fndecl (*expr_p);
if (decl && DECL_BUILT_IN (decl))
{
tree arglist = TREE_OPERAND (*expr_p, 1);
tree new = fold_builtin (decl, arglist, !want_value);
if (new && new != *expr_p)
{
/* There was a transformation of this call which computes the
same value, but in a more efficient way. Return and try
again. */
*expr_p = new;
return GS_OK;
}
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_START)
{
if (!arglist || !TREE_CHAIN (arglist))
{
error ("too few arguments to function %<va_start%>");
*expr_p = build_empty_stmt ();
return GS_OK;
}
if (fold_builtin_next_arg (TREE_CHAIN (arglist)))
{
*expr_p = build_empty_stmt ();
return GS_OK;
}
/* Avoid gimplifying the second argument to va_start, which needs
to be the plain PARM_DECL. */
return gimplify_arg (&TREE_VALUE (TREE_OPERAND (*expr_p, 1)), pre_p);
}
}
/* There is a sequence point before the call, so any side effects in
the calling expression must occur before the actual call. Force
gimplify_expr to use an internal post queue. */
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, NULL,
is_gimple_call_addr, fb_rvalue);
if (PUSH_ARGS_REVERSED)
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
for (arglist = TREE_OPERAND (*expr_p, 1); arglist;
arglist = TREE_CHAIN (arglist))
{
enum gimplify_status t;
t = gimplify_arg (&TREE_VALUE (arglist), pre_p);
if (t == GS_ERROR)
ret = GS_ERROR;
}
if (PUSH_ARGS_REVERSED)
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
/* Try this again in case gimplification exposed something. */
if (ret != GS_ERROR)
{
decl = get_callee_fndecl (*expr_p);
if (decl && DECL_BUILT_IN (decl))
{
tree arglist = TREE_OPERAND (*expr_p, 1);
tree new = fold_builtin (decl, arglist, !want_value);
if (new && new != *expr_p)
{
/* There was a transformation of this call which computes the
same value, but in a more efficient way. Return and try
again. */
*expr_p = new;
return GS_OK;
}
}
}
/* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
decl. This allows us to eliminate redundant or useless
calls to "const" functions. */
if (TREE_CODE (*expr_p) == CALL_EXPR
&& (call_expr_flags (*expr_p) & (ECF_CONST | ECF_PURE)))
TREE_SIDE_EFFECTS (*expr_p) = 0;
return ret;
}
/* Handle shortcut semantics in the predicate operand of a COND_EXPR by
rewriting it into multiple COND_EXPRs, and possibly GOTO_EXPRs.
TRUE_LABEL_P and FALSE_LABEL_P point to the labels to jump to if the
condition is true or false, respectively. If null, we should generate
our own to skip over the evaluation of this specific expression.
This function is the tree equivalent of do_jump.
shortcut_cond_r should only be called by shortcut_cond_expr. */
static tree
shortcut_cond_r (tree pred, tree *true_label_p, tree *false_label_p)
{
tree local_label = NULL_TREE;
tree t, expr = NULL;
/* OK, it's not a simple case; we need to pull apart the COND_EXPR to
retain the shortcut semantics. Just insert the gotos here;
shortcut_cond_expr will append the real blocks later. */
if (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
{
/* Turn if (a && b) into
if (a); else goto no;
if (b) goto yes; else goto no;
(no:) */
if (false_label_p == NULL)
false_label_p = &local_label;
t = shortcut_cond_r (TREE_OPERAND (pred, 0), NULL, false_label_p);
append_to_statement_list (t, &expr);
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p);
append_to_statement_list (t, &expr);
}
else if (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
{
/* Turn if (a || b) into
if (a) goto yes;
if (b) goto yes; else goto no;
(yes:) */
if (true_label_p == NULL)
true_label_p = &local_label;
t = shortcut_cond_r (TREE_OPERAND (pred, 0), true_label_p, NULL);
append_to_statement_list (t, &expr);
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p);
append_to_statement_list (t, &expr);
}
else if (TREE_CODE (pred) == COND_EXPR)
{
/* As long as we're messing with gotos, turn if (a ? b : c) into
if (a)
if (b) goto yes; else goto no;
else
if (c) goto yes; else goto no; */
expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (pred, 0),
shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p),
shortcut_cond_r (TREE_OPERAND (pred, 2), true_label_p,
false_label_p));
}
else
{
expr = build3 (COND_EXPR, void_type_node, pred,
build_and_jump (true_label_p),
build_and_jump (false_label_p));
}
if (local_label)
{
t = build1 (LABEL_EXPR, void_type_node, local_label);
append_to_statement_list (t, &expr);
}
return expr;
}
static tree
shortcut_cond_expr (tree expr)
{
tree pred = TREE_OPERAND (expr, 0);
tree then_ = TREE_OPERAND (expr, 1);
tree else_ = TREE_OPERAND (expr, 2);
tree true_label, false_label, end_label, t;
tree *true_label_p;
tree *false_label_p;
bool emit_end, emit_false, jump_over_else;
bool then_se = then_ && TREE_SIDE_EFFECTS (then_);
bool else_se = else_ && TREE_SIDE_EFFECTS (else_);
/* First do simple transformations. */
if (!else_se)
{
/* If there is no 'else', turn (a && b) into if (a) if (b). */
while (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
{
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
then_ = shortcut_cond_expr (expr);
then_se = then_ && TREE_SIDE_EFFECTS (then_);
pred = TREE_OPERAND (pred, 0);
expr = build3 (COND_EXPR, void_type_node, pred, then_, NULL_TREE);
}
}
if (!then_se)
{
/* If there is no 'then', turn
if (a || b); else d
into
if (a); else if (b); else d. */
while (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
{
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
else_ = shortcut_cond_expr (expr);
else_se = else_ && TREE_SIDE_EFFECTS (else_);
pred = TREE_OPERAND (pred, 0);
expr = build3 (COND_EXPR, void_type_node, pred, NULL_TREE, else_);
}
}
/* If we're done, great. */
if (TREE_CODE (pred) != TRUTH_ANDIF_EXPR
&& TREE_CODE (pred) != TRUTH_ORIF_EXPR)
return expr;
/* Otherwise we need to mess with gotos. Change
if (a) c; else d;
to
if (a); else goto no;
c; goto end;
no: d; end:
and recursively gimplify the condition. */
true_label = false_label = end_label = NULL_TREE;
/* If our arms just jump somewhere, hijack those labels so we don't
generate jumps to jumps. */
if (then_
&& TREE_CODE (then_) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (then_)) == LABEL_DECL)
{
true_label = GOTO_DESTINATION (then_);
then_ = NULL;
then_se = false;
}
if (else_
&& TREE_CODE (else_) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (else_)) == LABEL_DECL)
{
false_label = GOTO_DESTINATION (else_);
else_ = NULL;
else_se = false;
}
/* If we aren't hijacking a label for the 'then' branch, it falls through. */
if (true_label)
true_label_p = &true_label;
else
true_label_p = NULL;
/* The 'else' branch also needs a label if it contains interesting code. */
if (false_label || else_se)
false_label_p = &false_label;
else
false_label_p = NULL;
/* If there was nothing else in our arms, just forward the label(s). */
if (!then_se && !else_se)
return shortcut_cond_r (pred, true_label_p, false_label_p);
/* If our last subexpression already has a terminal label, reuse it. */
if (else_se)
expr = expr_last (else_);
else if (then_se)
expr = expr_last (then_);
else
expr = NULL;
if (expr && TREE_CODE (expr) == LABEL_EXPR)
end_label = LABEL_EXPR_LABEL (expr);
/* If we don't care about jumping to the 'else' branch, jump to the end
if the condition is false. */
if (!false_label_p)
false_label_p = &end_label;
/* We only want to emit these labels if we aren't hijacking them. */
emit_end = (end_label == NULL_TREE);
emit_false = (false_label == NULL_TREE);
/* We only emit the jump over the else clause if we have to--if the
then clause may fall through. Otherwise we can wind up with a
useless jump and a useless label at the end of gimplified code,
which will cause us to think that this conditional as a whole
falls through even if it doesn't. If we then inline a function
which ends with such a condition, that can cause us to issue an
inappropriate warning about control reaching the end of a
non-void function. */
jump_over_else = block_may_fallthru (then_);
pred = shortcut_cond_r (pred, true_label_p, false_label_p);
expr = NULL;
append_to_statement_list (pred, &expr);
append_to_statement_list (then_, &expr);
if (else_se)
{
if (jump_over_else)
{
t = build_and_jump (&end_label);
append_to_statement_list (t, &expr);
}
if (emit_false)
{
t = build1 (LABEL_EXPR, void_type_node, false_label);
append_to_statement_list (t, &expr);
}
append_to_statement_list (else_, &expr);
}
if (emit_end && end_label)
{
t = build1 (LABEL_EXPR, void_type_node, end_label);
append_to_statement_list (t, &expr);
}
return expr;
}
/* EXPR is used in a boolean context; make sure it has BOOLEAN_TYPE. */
tree
gimple_boolify (tree expr)
{
tree type = TREE_TYPE (expr);
if (TREE_CODE (type) == BOOLEAN_TYPE)
return expr;
switch (TREE_CODE (expr))
{
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
/* Also boolify the arguments of truth exprs. */
TREE_OPERAND (expr, 1) = gimple_boolify (TREE_OPERAND (expr, 1));
/* FALLTHRU */
case TRUTH_NOT_EXPR:
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
/* FALLTHRU */
case EQ_EXPR: case NE_EXPR:
case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
/* These expressions always produce boolean results. */
TREE_TYPE (expr) = boolean_type_node;
return expr;
default:
/* Other expressions that get here must have boolean values, but
might need to be converted to the appropriate mode. */
return fold_convert (boolean_type_node, expr);
}
}
/* Convert the conditional expression pointed to by EXPR_P '(p) ? a : b;'
into
if (p) if (p)
t1 = a; a;
else or else
t1 = b; b;
t1;
The second form is used when *EXPR_P is of type void.
TARGET is the tree for T1 above.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_cond_expr (tree *expr_p, tree *pre_p, fallback_t fallback)
{
tree expr = *expr_p;
tree tmp, tmp2, type;
enum gimplify_status ret;
type = TREE_TYPE (expr);
/* If this COND_EXPR has a value, copy the values into a temporary within
the arms. */
if (! VOID_TYPE_P (type))
{
tree result;
if ((fallback & fb_lvalue) == 0)
{
result = tmp2 = tmp = create_tmp_var (TREE_TYPE (expr), "iftmp");
ret = GS_ALL_DONE;
}
else
{
tree type = build_pointer_type (TREE_TYPE (expr));
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
TREE_OPERAND (expr, 1) =
build_fold_addr_expr (TREE_OPERAND (expr, 1));
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
TREE_OPERAND (expr, 2) =
build_fold_addr_expr (TREE_OPERAND (expr, 2));
tmp2 = tmp = create_tmp_var (type, "iftmp");
expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2));
result = build_fold_indirect_ref (tmp);
ret = GS_ALL_DONE;
}
/* Build the then clause, 't1 = a;'. But don't build an assignment
if this branch is void; in C++ it can be, if it's a throw. */
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
TREE_OPERAND (expr, 1)
= build2 (MODIFY_EXPR, void_type_node, tmp, TREE_OPERAND (expr, 1));
/* Build the else clause, 't1 = b;'. */
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
TREE_OPERAND (expr, 2)
= build2 (MODIFY_EXPR, void_type_node, tmp2, TREE_OPERAND (expr, 2));
TREE_TYPE (expr) = void_type_node;
recalculate_side_effects (expr);
/* Move the COND_EXPR to the prequeue. */
gimplify_and_add (expr, pre_p);
*expr_p = result;
return ret;
}
/* Make sure the condition has BOOLEAN_TYPE. */
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
/* Break apart && and || conditions. */
if (TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ANDIF_EXPR
|| TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ORIF_EXPR)
{
expr = shortcut_cond_expr (expr);
if (expr != *expr_p)
{
*expr_p = expr;
/* We can't rely on gimplify_expr to re-gimplify the expanded
form properly, as cleanups might cause the target labels to be
wrapped in a TRY_FINALLY_EXPR. To prevent that, we need to
set up a conditional context. */
gimple_push_condition ();
gimplify_stmt (expr_p);
gimple_pop_condition (pre_p);
return GS_ALL_DONE;
}
}
/* Now do the normal gimplification. */
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
is_gimple_condexpr, fb_rvalue);
gimple_push_condition ();
gimplify_to_stmt_list (&TREE_OPERAND (expr, 1));
gimplify_to_stmt_list (&TREE_OPERAND (expr, 2));
recalculate_side_effects (expr);
gimple_pop_condition (pre_p);
if (ret == GS_ERROR)
;
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
ret = GS_ALL_DONE;
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 2)))
/* Rewrite "if (a); else b" to "if (!a) b" */
{
TREE_OPERAND (expr, 0) = invert_truthvalue (TREE_OPERAND (expr, 0));
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
is_gimple_condexpr, fb_rvalue);
tmp = TREE_OPERAND (expr, 1);
TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 2);
TREE_OPERAND (expr, 2) = tmp;
}
else
/* Both arms are empty; replace the COND_EXPR with its predicate. */
expr = TREE_OPERAND (expr, 0);
*expr_p = expr;
return ret;
}
/* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with
a call to __builtin_memcpy. */
static enum gimplify_status
gimplify_modify_expr_to_memcpy (tree *expr_p, tree size, bool want_value)
{
tree args, t, to, to_ptr, from;
to = TREE_OPERAND (*expr_p, 0);
from = TREE_OPERAND (*expr_p, 1);
args = tree_cons (NULL, size, NULL);
t = build_fold_addr_expr (from);
args = tree_cons (NULL, t, args);
to_ptr = build_fold_addr_expr (to);
args = tree_cons (NULL, to_ptr, args);
t = implicit_built_in_decls[BUILT_IN_MEMCPY];
t = build_function_call_expr (t, args);
if (want_value)
{
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
}
*expr_p = t;
return GS_OK;
}
/* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with
a call to __builtin_memset. In this case we know that the RHS is
a CONSTRUCTOR with an empty element list. */
static enum gimplify_status
gimplify_modify_expr_to_memset (tree *expr_p, tree size, bool want_value)
{
tree args, t, to, to_ptr;
to = TREE_OPERAND (*expr_p, 0);
args = tree_cons (NULL, size, NULL);
args = tree_cons (NULL, integer_zero_node, args);
to_ptr = build_fold_addr_expr (to);
args = tree_cons (NULL, to_ptr, args);
t = implicit_built_in_decls[BUILT_IN_MEMSET];
t = build_function_call_expr (t, args);
if (want_value)
{
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
}
*expr_p = t;
return GS_OK;
}
/* A subroutine of gimplify_init_ctor_preeval. Called via walk_tree,
determine, cautiously, if a CONSTRUCTOR overlaps the lhs of an
assignment. Returns non-null if we detect a potential overlap. */
struct gimplify_init_ctor_preeval_data
{
/* The base decl of the lhs object. May be NULL, in which case we
have to assume the lhs is indirect. */
tree lhs_base_decl;
/* The alias set of the lhs object. */
int lhs_alias_set;
};
static tree
gimplify_init_ctor_preeval_1 (tree *tp, int *walk_subtrees, void *xdata)
{
struct gimplify_init_ctor_preeval_data *data
= (struct gimplify_init_ctor_preeval_data *) xdata;
tree t = *tp;
/* If we find the base object, obviously we have overlap. */
if (data->lhs_base_decl == t)
return t;
/* If the constructor component is indirect, determine if we have a
potential overlap with the lhs. The only bits of information we
have to go on at this point are addressability and alias sets. */
if (TREE_CODE (t) == INDIRECT_REF
&& (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl))
&& alias_sets_conflict_p (data->lhs_alias_set, get_alias_set (t)))
return t;
/* If the constructor component is a call, determine if it can hide a
potential overlap with the lhs through an INDIRECT_REF like above. */
if (TREE_CODE (t) == CALL_EXPR)
{
tree type, fntype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
for (type = TYPE_ARG_TYPES (fntype); type; type = TREE_CHAIN (type))
if (POINTER_TYPE_P (TREE_VALUE (type))
&& (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl))
&& alias_sets_conflict_p (data->lhs_alias_set,
get_alias_set
(TREE_TYPE (TREE_VALUE (type)))))
return t;
}
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
/* A subroutine of gimplify_init_constructor. Pre-evaluate *EXPR_P,
force values that overlap with the lhs (as described by *DATA)
into temporaries. */
static void
gimplify_init_ctor_preeval (tree *expr_p, tree *pre_p, tree *post_p,
struct gimplify_init_ctor_preeval_data *data)
{
enum gimplify_status one;
/* If the value is invariant, then there's nothing to pre-evaluate.
But ensure it doesn't have any side-effects since a SAVE_EXPR is
invariant but has side effects and might contain a reference to
the object we're initializing. */
if (TREE_INVARIANT (*expr_p) && !TREE_SIDE_EFFECTS (*expr_p))
return;
/* If the type has non-trivial constructors, we can't pre-evaluate. */
if (TREE_ADDRESSABLE (TREE_TYPE (*expr_p)))
return;
/* Recurse for nested constructors. */
if (TREE_CODE (*expr_p) == CONSTRUCTOR)
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (*expr_p);
for (ix = 0; VEC_iterate (constructor_elt, v, ix, ce); ix++)
gimplify_init_ctor_preeval (&ce->value, pre_p, post_p, data);
return;
}
/* If this is a variable sized type, we must remember the size. */
maybe_with_size_expr (expr_p);
/* Gimplify the constructor element to something appropriate for the rhs
of a MODIFY_EXPR. Given that we know the lhs is an aggregate, we know
the gimplifier will consider this a store to memory. Doing this
gimplification now means that we won't have to deal with complicated
language-specific trees, nor trees like SAVE_EXPR that can induce
exponential search behavior. */
one = gimplify_expr (expr_p, pre_p, post_p, is_gimple_mem_rhs, fb_rvalue);
if (one == GS_ERROR)
{
*expr_p = NULL;
return;
}
/* If we gimplified to a bare decl, we can be sure that it doesn't overlap
with the lhs, since "a = { .x=a }" doesn't make sense. This will
always be true for all scalars, since is_gimple_mem_rhs insists on a
temporary variable for them. */
if (DECL_P (*expr_p))
return;
/* If this is of variable size, we have no choice but to assume it doesn't
overlap since we can't make a temporary for it. */
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (*expr_p))) != INTEGER_CST)
return;
/* Otherwise, we must search for overlap ... */
if (!walk_tree (expr_p, gimplify_init_ctor_preeval_1, data, NULL))
return;
/* ... and if found, force the value into a temporary. */
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
}
/* A subroutine of gimplify_init_ctor_eval. Create a loop for
a RANGE_EXPR in a CONSTRUCTOR for an array.
var = lower;
loop_entry:
object[var] = value;
if (var == upper)
goto loop_exit;
var = var + 1;
goto loop_entry;
loop_exit:
We increment var _after_ the loop exit check because we might otherwise
fail if upper == TYPE_MAX_VALUE (type for upper).
Note that we never have to deal with SAVE_EXPRs here, because this has
already been taken care of for us, in gimplify_init_ctor_preeval(). */
static void gimplify_init_ctor_eval (tree, VEC(constructor_elt,gc) *,
tree *, bool);
static void
gimplify_init_ctor_eval_range (tree object, tree lower, tree upper,
tree value, tree array_elt_type,
tree *pre_p, bool cleared)
{
tree loop_entry_label, loop_exit_label;
tree var, var_type, cref;
loop_entry_label = create_artificial_label ();
loop_exit_label = create_artificial_label ();
/* Create and initialize the index variable. */
var_type = TREE_TYPE (upper);
var = create_tmp_var (var_type, NULL);
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var, lower), pre_p);
/* Add the loop entry label. */
append_to_statement_list (build1 (LABEL_EXPR,
void_type_node,
loop_entry_label),
pre_p);
/* Build the reference. */
cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object),
var, NULL_TREE, NULL_TREE);
/* If we are a constructor, just call gimplify_init_ctor_eval to do
the store. Otherwise just assign value to the reference. */
if (TREE_CODE (value) == CONSTRUCTOR)
/* NB we might have to call ourself recursively through
gimplify_init_ctor_eval if the value is a constructor. */
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
pre_p, cleared);
else
append_to_statement_list (build2 (MODIFY_EXPR, TREE_TYPE (cref),
cref, value),
pre_p);
/* We exit the loop when the index var is equal to the upper bound. */
gimplify_and_add (build3 (COND_EXPR, void_type_node,
build2 (EQ_EXPR, boolean_type_node,
var, upper),
build1 (GOTO_EXPR,
void_type_node,
loop_exit_label),
NULL_TREE),
pre_p);
/* Otherwise, increment the index var... */
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var,
build2 (PLUS_EXPR, var_type, var,
fold_convert (var_type,
integer_one_node))),
pre_p);
/* ...and jump back to the loop entry. */
append_to_statement_list (build1 (GOTO_EXPR,
void_type_node,
loop_entry_label),
pre_p);
/* Add the loop exit label. */
append_to_statement_list (build1 (LABEL_EXPR,
void_type_node,
loop_exit_label),
pre_p);
}
/* Return true if FDECL is accessing a field that is zero sized. */
static bool
zero_sized_field_decl (tree fdecl)
{
if (TREE_CODE (fdecl) == FIELD_DECL && DECL_SIZE (fdecl)
&& integer_zerop (DECL_SIZE (fdecl)))
return true;
return false;
}
/* Return true if TYPE is zero sized. */
static bool
zero_sized_type (tree type)
{
if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type)
&& integer_zerop (TYPE_SIZE (type)))
return true;
return false;
}
/* A subroutine of gimplify_init_constructor. Generate individual
MODIFY_EXPRs for a CONSTRUCTOR. OBJECT is the LHS against which the
assignments should happen. ELTS is the CONSTRUCTOR_ELTS of the
CONSTRUCTOR. CLEARED is true if the entire LHS object has been
zeroed first. */
static void
gimplify_init_ctor_eval (tree object, VEC(constructor_elt,gc) *elts,
tree *pre_p, bool cleared)
{
tree array_elt_type = NULL;
unsigned HOST_WIDE_INT ix;
tree purpose, value;
if (TREE_CODE (TREE_TYPE (object)) == ARRAY_TYPE)
array_elt_type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (object)));
FOR_EACH_CONSTRUCTOR_ELT (elts, ix, purpose, value)
{
tree cref, init;
/* NULL values are created above for gimplification errors. */
if (value == NULL)
continue;
if (cleared && initializer_zerop (value))
continue;
/* ??? Here's to hoping the front end fills in all of the indices,
so we don't have to figure out what's missing ourselves. */
gcc_assert (purpose);
/* Skip zero-sized fields, unless value has side-effects. This can
happen with calls to functions returning a zero-sized type, which
we shouldn't discard. As a number of downstream passes don't
expect sets of zero-sized fields, we rely on the gimplification of
the MODIFY_EXPR we make below to drop the assignment statement. */
if (! TREE_SIDE_EFFECTS (value) && zero_sized_field_decl (purpose))
continue;
/* If we have a RANGE_EXPR, we have to build a loop to assign the
whole range. */
if (TREE_CODE (purpose) == RANGE_EXPR)
{
tree lower = TREE_OPERAND (purpose, 0);
tree upper = TREE_OPERAND (purpose, 1);
/* If the lower bound is equal to upper, just treat it as if
upper was the index. */
if (simple_cst_equal (lower, upper))
purpose = upper;
else
{
gimplify_init_ctor_eval_range (object, lower, upper, value,
array_elt_type, pre_p, cleared);
continue;
}
}
if (array_elt_type)
{
cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object),
purpose, NULL_TREE, NULL_TREE);
}
else
{
gcc_assert (TREE_CODE (purpose) == FIELD_DECL);
cref = build3 (COMPONENT_REF, TREE_TYPE (purpose),
unshare_expr (object), purpose, NULL_TREE);
}
if (TREE_CODE (value) == CONSTRUCTOR
&& TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE)
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
pre_p, cleared);
else
{
init = build2 (INIT_EXPR, TREE_TYPE (cref), cref, value);
gimplify_and_add (init, pre_p);
}
}
}
/* A subroutine of gimplify_modify_expr. Break out elements of a
CONSTRUCTOR used as an initializer into separate MODIFY_EXPRs.
Note that we still need to clear any elements that don't have explicit
initializers, so if not all elements are initialized we keep the
original MODIFY_EXPR, we just remove all of the constructor elements. */
static enum gimplify_status
gimplify_init_constructor (tree *expr_p, tree *pre_p,
tree *post_p, bool want_value)
{
tree object;
tree ctor = TREE_OPERAND (*expr_p, 1);
tree type = TREE_TYPE (ctor);
enum gimplify_status ret;
VEC(constructor_elt,gc) *elts;
if (TREE_CODE (ctor) != CONSTRUCTOR)
return GS_UNHANDLED;
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
object = TREE_OPERAND (*expr_p, 0);
elts = CONSTRUCTOR_ELTS (ctor);
ret = GS_ALL_DONE;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
case ARRAY_TYPE:
{
struct gimplify_init_ctor_preeval_data preeval_data;
HOST_WIDE_INT num_type_elements, num_ctor_elements;
HOST_WIDE_INT num_nonzero_elements;
bool cleared, valid_const_initializer;
/* Aggregate types must lower constructors to initialization of
individual elements. The exception is that a CONSTRUCTOR node
with no elements indicates zero-initialization of the whole. */
if (VEC_empty (constructor_elt, elts))
break;
/* Fetch information about the constructor to direct later processing.
We might want to make static versions of it in various cases, and
can only do so if it known to be a valid constant initializer. */
valid_const_initializer
= categorize_ctor_elements (ctor, &num_nonzero_elements,
&num_ctor_elements, &cleared);
/* If a const aggregate variable is being initialized, then it
should never be a lose to promote the variable to be static. */
if (valid_const_initializer
&& num_nonzero_elements > 1
&& TREE_READONLY (object)
&& TREE_CODE (object) == VAR_DECL)
{
DECL_INITIAL (object) = ctor;
TREE_STATIC (object) = 1;
if (!DECL_NAME (object))
DECL_NAME (object) = create_tmp_var_name ("C");
walk_tree (&DECL_INITIAL (object), force_labels_r, NULL, NULL);
/* ??? C++ doesn't automatically append a .<number> to the
assembler name, and even when it does, it looks a FE private
data structures to figure out what that number should be,
which are not set for this variable. I suppose this is
important for local statics for inline functions, which aren't
"local" in the object file sense. So in order to get a unique
TU-local symbol, we must invoke the lhd version now. */
lhd_set_decl_assembler_name (object);
*expr_p = NULL_TREE;
break;
}
/* If there are "lots" of initialized elements, even discounting
those that are not address constants (and thus *must* be
computed at runtime), then partition the constructor into
constant and non-constant parts. Block copy the constant
parts in, then generate code for the non-constant parts. */
/* TODO. There's code in cp/typeck.c to do this. */
num_type_elements = count_type_elements (type, true);
/* If count_type_elements could not determine number of type elements
for a constant-sized object, assume clearing is needed.
Don't do this for variable-sized objects, as store_constructor
will ignore the clearing of variable-sized objects. */
if (num_type_elements < 0 && int_size_in_bytes (type) >= 0)
cleared = true;
/* If there are "lots" of zeros, then block clear the object first. */
else if (num_type_elements - num_nonzero_elements > CLEAR_RATIO
&& num_nonzero_elements < num_type_elements/4)
cleared = true;
/* ??? This bit ought not be needed. For any element not present
in the initializer, we should simply set them to zero. Except
we'd need to *find* the elements that are not present, and that
requires trickery to avoid quadratic compile-time behavior in
large cases or excessive memory use in small cases. */
else if (num_ctor_elements < num_type_elements)
cleared = true;
/* If there are "lots" of initialized elements, and all of them
are valid address constants, then the entire initializer can
be dropped to memory, and then memcpy'd out. Don't do this
for sparse arrays, though, as it's more efficient to follow
the standard CONSTRUCTOR behavior of memset followed by
individual element initialization. */
if (valid_const_initializer && !cleared)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
unsigned int align;
/* ??? We can still get unbounded array types, at least
from the C++ front end. This seems wrong, but attempt
to work around it for now. */
if (size < 0)
{
size = int_size_in_bytes (TREE_TYPE (object));
if (size >= 0)
TREE_TYPE (ctor) = type = TREE_TYPE (object);
}
/* Find the maximum alignment we can assume for the object. */
/* ??? Make use of DECL_OFFSET_ALIGN. */
if (DECL_P (object))
align = DECL_ALIGN (object);
else
align = TYPE_ALIGN (type);
if (size > 0 && !can_move_by_pieces (size, align))
{
tree new = create_tmp_var_raw (type, "C");
gimple_add_tmp_var (new);
TREE_STATIC (new) = 1;
TREE_READONLY (new) = 1;
DECL_INITIAL (new) = ctor;
if (align > DECL_ALIGN (new))
{
DECL_ALIGN (new) = align;
DECL_USER_ALIGN (new) = 1;
}
walk_tree (&DECL_INITIAL (new), force_labels_r, NULL, NULL);
TREE_OPERAND (*expr_p, 1) = new;
/* This is no longer an assignment of a CONSTRUCTOR, but
we still may have processing to do on the LHS. So
pretend we didn't do anything here to let that happen. */
return GS_UNHANDLED;
}
}
/* If there are nonzero elements, pre-evaluate to capture elements
overlapping with the lhs into temporaries. We must do this before
clearing to fetch the values before they are zeroed-out. */
if (num_nonzero_elements > 0)
{
preeval_data.lhs_base_decl = get_base_address (object);
if (!DECL_P (preeval_data.lhs_base_decl))
preeval_data.lhs_base_decl = NULL;
preeval_data.lhs_alias_set = get_alias_set (object);
gimplify_init_ctor_preeval (&TREE_OPERAND (*expr_p, 1),
pre_p, post_p, &preeval_data);
}
if (cleared)
{
/* Zap the CONSTRUCTOR element list, which simplifies this case.
Note that we still have to gimplify, in order to handle the
case of variable sized types. Avoid shared tree structures. */
CONSTRUCTOR_ELTS (ctor) = NULL;
object = unshare_expr (object);
gimplify_stmt (expr_p);
append_to_statement_list (*expr_p, pre_p);
}
/* If we have not block cleared the object, or if there are nonzero
elements in the constructor, add assignments to the individual
scalar fields of the object. */
if (!cleared || num_nonzero_elements > 0)
gimplify_init_ctor_eval (object, elts, pre_p, cleared);
*expr_p = NULL_TREE;
}
break;
case COMPLEX_TYPE:
{
tree r, i;
/* Extract the real and imaginary parts out of the ctor. */
gcc_assert (VEC_length (constructor_elt, elts) == 2);
r = VEC_index (constructor_elt, elts, 0)->value;
i = VEC_index (constructor_elt, elts, 1)->value;
if (r == NULL || i == NULL)
{
tree zero = fold_convert (TREE_TYPE (type), integer_zero_node);
if (r == NULL)
r = zero;
if (i == NULL)
i = zero;
}
/* Complex types have either COMPLEX_CST or COMPLEX_EXPR to
represent creation of a complex value. */
if (TREE_CONSTANT (r) && TREE_CONSTANT (i))
{
ctor = build_complex (type, r, i);
TREE_OPERAND (*expr_p, 1) = ctor;
}
else
{
ctor = build2 (COMPLEX_EXPR, type, r, i);
TREE_OPERAND (*expr_p, 1) = ctor;
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
rhs_predicate_for (TREE_OPERAND (*expr_p, 0)),
fb_rvalue);
}
}
break;
case VECTOR_TYPE:
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
/* Go ahead and simplify constant constructors to VECTOR_CST. */
if (TREE_CONSTANT (ctor))
{
bool constant_p = true;
tree value;
/* Even when ctor is constant, it might contain non-*_CST
elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
belong into VECTOR_CST nodes. */
FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
if (!CONSTANT_CLASS_P (value))
{
constant_p = false;
break;
}
if (constant_p)
{
TREE_OPERAND (*expr_p, 1) = build_vector_from_ctor (type, elts);
break;
}
/* Don't reduce a TREE_CONSTANT vector ctor even if we can't
make a VECTOR_CST. It won't do anything for us, and it'll
prevent us from representing it as a single constant. */
break;
}
/* Vector types use CONSTRUCTOR all the way through gimple
compilation as a general initializer. */
for (ix = 0; VEC_iterate (constructor_elt, elts, ix, ce); ix++)
{
enum gimplify_status tret;
tret = gimplify_expr (&ce->value, pre_p, post_p,
is_gimple_val, fb_rvalue);
if (tret == GS_ERROR)
ret = GS_ERROR;
}
}
break;
default:
/* So how did we get a CONSTRUCTOR for a scalar type? */
gcc_unreachable ();
}
if (ret == GS_ERROR)
return GS_ERROR;
else if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = object;
return GS_OK;
}
else
return GS_ALL_DONE;
}
/* Given a pointer value OP0, return a simplified version of an
indirection through OP0, or NULL_TREE if no simplification is
possible. This may only be applied to a rhs of an expression.
Note that the resulting type may be different from the type pointed
to in the sense that it is still compatible from the langhooks
point of view. */
static tree
fold_indirect_ref_rhs (tree t)
{
tree type = TREE_TYPE (TREE_TYPE (t));
tree sub = t;
tree subtype;
STRIP_USELESS_TYPE_CONVERSION (sub);
subtype = TREE_TYPE (sub);
if (!POINTER_TYPE_P (subtype))
return NULL_TREE;
if (TREE_CODE (sub) == ADDR_EXPR)
{
tree op = TREE_OPERAND (sub, 0);
tree optype = TREE_TYPE (op);
/* *&p => p */
if (lang_hooks.types_compatible_p (type, optype))
return op;
/* *(foo *)&fooarray => fooarray[0] */
else if (TREE_CODE (optype) == ARRAY_TYPE
&& lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
{
tree type_domain = TYPE_DOMAIN (optype);
tree min_val = size_zero_node;
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
}
}
/* *(foo *)fooarrptr => (*fooarrptr)[0] */
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
&& lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
{
tree type_domain;
tree min_val = size_zero_node;
tree osub = sub;
sub = fold_indirect_ref_rhs (sub);
if (! sub)
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
}
return NULL_TREE;
}
/* Subroutine of gimplify_modify_expr to do simplifications of MODIFY_EXPRs
based on the code of the RHS. We loop for as long as something changes. */
static enum gimplify_status
gimplify_modify_expr_rhs (tree *expr_p, tree *from_p, tree *to_p, tree *pre_p,
tree *post_p, bool want_value)
{
enum gimplify_status ret = GS_OK;
while (ret != GS_UNHANDLED)
switch (TREE_CODE (*from_p))
{
case INDIRECT_REF:
{
/* If we have code like
*(const A*)(A*)&x
where the type of "x" is a (possibly cv-qualified variant
of "A"), treat the entire expression as identical to "x".
This kind of code arises in C++ when an object is bound
to a const reference, and if "x" is a TARGET_EXPR we want
to take advantage of the optimization below. */
tree t = fold_indirect_ref_rhs (TREE_OPERAND (*from_p, 0));
if (t)
{
*from_p = t;
ret = GS_OK;
}
else
ret = GS_UNHANDLED;
break;
}
case TARGET_EXPR:
{
/* If we are initializing something from a TARGET_EXPR, strip the
TARGET_EXPR and initialize it directly, if possible. This can't
be done if the initializer is void, since that implies that the
temporary is set in some non-trivial way.
??? What about code that pulls out the temp and uses it
elsewhere? I think that such code never uses the TARGET_EXPR as
an initializer. If I'm wrong, we'll die because the temp won't
have any RTL. In that case, I guess we'll need to replace
references somehow. */
tree init = TARGET_EXPR_INITIAL (*from_p);
if (!VOID_TYPE_P (TREE_TYPE (init)))
{
*from_p = init;
ret = GS_OK;
}
else
ret = GS_UNHANDLED;
}
break;
case COMPOUND_EXPR:
/* Remove any COMPOUND_EXPR in the RHS so the following cases will be
caught. */
gimplify_compound_expr (from_p, pre_p, true);
ret = GS_OK;
break;
case CONSTRUCTOR:
/* If we're initializing from a CONSTRUCTOR, break this into
individual MODIFY_EXPRs. */
return gimplify_init_constructor (expr_p, pre_p, post_p, want_value);
case COND_EXPR:
/* If we're assigning to a non-register type, push the assignment
down into the branches. This is mandatory for ADDRESSABLE types,
since we cannot generate temporaries for such, but it saves a
copy in other cases as well. */
if (!is_gimple_reg_type (TREE_TYPE (*from_p)))
{
/* This code should mirror the code in gimplify_cond_expr. */
enum tree_code code = TREE_CODE (*expr_p);
tree cond = *from_p;
tree result = *to_p;
ret = gimplify_expr (&result, pre_p, post_p,
is_gimple_min_lval, fb_lvalue);
if (ret != GS_ERROR)
ret = GS_OK;
if (TREE_TYPE (TREE_OPERAND (cond, 1)) != void_type_node)
TREE_OPERAND (cond, 1)
= build2 (code, void_type_node, result,
TREE_OPERAND (cond, 1));
if (TREE_TYPE (TREE_OPERAND (cond, 2)) != void_type_node)
TREE_OPERAND (cond, 2)
= build2 (code, void_type_node, unshare_expr (result),
TREE_OPERAND (cond, 2));
TREE_TYPE (cond) = void_type_node;
recalculate_side_effects (cond);
if (want_value)
{
gimplify_and_add (cond, pre_p);
*expr_p = unshare_expr (result);
}
else
*expr_p = cond;
return ret;
}
else
ret = GS_UNHANDLED;
break;
case CALL_EXPR:
/* For calls that return in memory, give *to_p as the CALL_EXPR's
return slot so that we don't generate a temporary. */
if (!CALL_EXPR_RETURN_SLOT_OPT (*from_p)
&& aggregate_value_p (*from_p, *from_p))
{
bool use_target;
if (!(rhs_predicate_for (*to_p))(*from_p))
/* If we need a temporary, *to_p isn't accurate. */
use_target = false;
else if (TREE_CODE (*to_p) == RESULT_DECL
&& DECL_NAME (*to_p) == NULL_TREE
&& needs_to_live_in_memory (*to_p))
/* It's OK to use the return slot directly unless it's an NRV. */
use_target = true;
else if (is_gimple_reg_type (TREE_TYPE (*to_p))
|| (DECL_P (*to_p) && DECL_REGISTER (*to_p)))
/* Don't force regs into memory. */
use_target = false;
else if (TREE_CODE (*to_p) == VAR_DECL
&& DECL_GIMPLE_FORMAL_TEMP_P (*to_p))
/* Don't use the original target if it's a formal temp; we
don't want to take their addresses. */
use_target = false;
else if (TREE_CODE (*expr_p) == INIT_EXPR)
/* It's OK to use the target directly if it's being
initialized. */
use_target = true;
else if (!is_gimple_non_addressable (*to_p))
/* Don't use the original target if it's already addressable;
if its address escapes, and the called function uses the
NRV optimization, a conforming program could see *to_p
change before the called function returns; see c++/19317.
When optimizing, the return_slot pass marks more functions
as safe after we have escape info. */
use_target = false;
else
use_target = true;
if (use_target)
{
CALL_EXPR_RETURN_SLOT_OPT (*from_p) = 1;
lang_hooks.mark_addressable (*to_p);
}
}
ret = GS_UNHANDLED;
break;
/* If we're initializing from a container, push the initialization
inside it. */
case CLEANUP_POINT_EXPR:
case BIND_EXPR:
case STATEMENT_LIST:
{
tree wrap = *from_p;
tree t;
ret = gimplify_expr (to_p, pre_p, post_p,
is_gimple_min_lval, fb_lvalue);
if (ret != GS_ERROR)
ret = GS_OK;
t = voidify_wrapper_expr (wrap, *expr_p);
gcc_assert (t == *expr_p);
if (want_value)
{
gimplify_and_add (wrap, pre_p);
*expr_p = unshare_expr (*to_p);
}
else
*expr_p = wrap;
return GS_OK;
}
default:
ret = GS_UNHANDLED;
break;
}
return ret;
}
/* Promote partial stores to COMPLEX variables to total stores. *EXPR_P is
a MODIFY_EXPR with a lhs of a REAL/IMAGPART_EXPR of a variable with
DECL_COMPLEX_GIMPLE_REG_P set. */
static enum gimplify_status
gimplify_modify_expr_complex_part (tree *expr_p, tree *pre_p, bool want_value)
{
enum tree_code code, ocode;
tree lhs, rhs, new_rhs, other, realpart, imagpart;
lhs = TREE_OPERAND (*expr_p, 0);
rhs = TREE_OPERAND (*expr_p, 1);
code = TREE_CODE (lhs);
lhs = TREE_OPERAND (lhs, 0);
ocode = code == REALPART_EXPR ? IMAGPART_EXPR : REALPART_EXPR;
other = build1 (ocode, TREE_TYPE (rhs), lhs);
other = get_formal_tmp_var (other, pre_p);
realpart = code == REALPART_EXPR ? rhs : other;
imagpart = code == REALPART_EXPR ? other : rhs;
if (TREE_CONSTANT (realpart) && TREE_CONSTANT (imagpart))
new_rhs = build_complex (TREE_TYPE (lhs), realpart, imagpart);
else
new_rhs = build2 (COMPLEX_EXPR, TREE_TYPE (lhs), realpart, imagpart);
TREE_OPERAND (*expr_p, 0) = lhs;
TREE_OPERAND (*expr_p, 1) = new_rhs;
if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = rhs;
}
return GS_ALL_DONE;
}
/* Gimplify the MODIFY_EXPR node pointed to by EXPR_P.
modify_expr
: varname '=' rhs
| '*' ID '=' rhs
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored.
WANT_VALUE is nonzero iff we want to use the value of this expression
in another expression. */
static enum gimplify_status
gimplify_modify_expr (tree *expr_p, tree *pre_p, tree *post_p, bool want_value)
{
tree *from_p = &TREE_OPERAND (*expr_p, 1);
tree *to_p = &TREE_OPERAND (*expr_p, 0);
enum gimplify_status ret = GS_UNHANDLED;
gcc_assert (TREE_CODE (*expr_p) == MODIFY_EXPR
|| TREE_CODE (*expr_p) == INIT_EXPR);
/* See if any simplifications can be done based on what the RHS is. */
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
want_value);
if (ret != GS_UNHANDLED)
return ret;
/* For zero sized types only gimplify the left hand side and right hand
side as statements and throw away the assignment. Do this after
gimplify_modify_expr_rhs so we handle TARGET_EXPRs of addressable
types properly. */
if (zero_sized_type (TREE_TYPE (*from_p)))
{
gimplify_stmt (from_p);
gimplify_stmt (to_p);
append_to_statement_list (*from_p, pre_p);
append_to_statement_list (*to_p, pre_p);
*expr_p = NULL_TREE;
return GS_ALL_DONE;
}
/* If the value being copied is of variable width, compute the length
of the copy into a WITH_SIZE_EXPR. Note that we need to do this
before gimplifying any of the operands so that we can resolve any
PLACEHOLDER_EXPRs in the size. Also note that the RTL expander uses
the size of the expression to be copied, not of the destination, so
that is what we must here. */
maybe_with_size_expr (from_p);
ret = gimplify_expr (to_p, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
ret = gimplify_expr (from_p, pre_p, post_p,
rhs_predicate_for (*to_p), fb_rvalue);
if (ret == GS_ERROR)
return ret;
/* Now see if the above changed *from_p to something we handle specially. */
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
want_value);
if (ret != GS_UNHANDLED)
return ret;
/* If we've got a variable sized assignment between two lvalues (i.e. does
not involve a call), then we can make things a bit more straightforward
by converting the assignment to memcpy or memset. */
if (TREE_CODE (*from_p) == WITH_SIZE_EXPR)
{
tree from = TREE_OPERAND (*from_p, 0);
tree size = TREE_OPERAND (*from_p, 1);
if (TREE_CODE (from) == CONSTRUCTOR)
return gimplify_modify_expr_to_memset (expr_p, size, want_value);
if (is_gimple_addressable (from))
{
*from_p = from;
return gimplify_modify_expr_to_memcpy (expr_p, size, want_value);
}
}
/* Transform partial stores to non-addressable complex variables into
total stores. This allows us to use real instead of virtual operands
for these variables, which improves optimization. */
if ((TREE_CODE (*to_p) == REALPART_EXPR
|| TREE_CODE (*to_p) == IMAGPART_EXPR)
&& is_gimple_reg (TREE_OPERAND (*to_p, 0)))
return gimplify_modify_expr_complex_part (expr_p, pre_p, want_value);
if (gimplify_ctxp->into_ssa && is_gimple_reg (*to_p))
{
/* If we've somehow already got an SSA_NAME on the LHS, then
we're probably modified it twice. Not good. */
gcc_assert (TREE_CODE (*to_p) != SSA_NAME);
*to_p = make_ssa_name (*to_p, *expr_p);
}
if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = *to_p;
return GS_OK;
}
return GS_ALL_DONE;
}
/* Gimplify a comparison between two variable-sized objects. Do this
with a call to BUILT_IN_MEMCMP. */
static enum gimplify_status
gimplify_variable_sized_compare (tree *expr_p)
{
tree op0 = TREE_OPERAND (*expr_p, 0);
tree op1 = TREE_OPERAND (*expr_p, 1);
tree args, t, dest;
t = TYPE_SIZE_UNIT (TREE_TYPE (op0));
t = unshare_expr (t);
t = SUBSTITUTE_PLACEHOLDER_IN_EXPR (t, op0);
args = tree_cons (NULL, t, NULL);
t = build_fold_addr_expr (op1);
args = tree_cons (NULL, t, args);
dest = build_fold_addr_expr (op0);
args = tree_cons (NULL, dest, args);
t = implicit_built_in_decls[BUILT_IN_MEMCMP];
t = build_function_call_expr (t, args);
*expr_p
= build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), t, integer_zero_node);
return GS_OK;
}
/* Gimplify a comparison between two aggregate objects of integral scalar
mode as a comparison between the bitwise equivalent scalar values. */
static enum gimplify_status
gimplify_scalar_mode_aggregate_compare (tree *expr_p)
{
tree op0 = TREE_OPERAND (*expr_p, 0);
tree op1 = TREE_OPERAND (*expr_p, 1);
tree type = TREE_TYPE (op0);
tree scalar_type = lang_hooks.types.type_for_mode (TYPE_MODE (type), 1);
op0 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op0);
op1 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op1);
*expr_p
= fold_build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), op0, op1);
return GS_OK;
}
/* Gimplify TRUTH_ANDIF_EXPR and TRUTH_ORIF_EXPR expressions. EXPR_P
points to the expression to gimplify.
Expressions of the form 'a && b' are gimplified to:
a && b ? true : false
gimplify_cond_expr will do the rest.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_boolean_expr (tree *expr_p)
{
/* Preserve the original type of the expression. */
tree type = TREE_TYPE (*expr_p);
*expr_p = build3 (COND_EXPR, type, *expr_p,
fold_convert (type, boolean_true_node),
fold_convert (type, boolean_false_node));
return GS_OK;
}
/* Gimplifies an expression sequence. This function gimplifies each
expression and re-writes the original expression with the last
expression of the sequence in GIMPLE form.
PRE_P points to the list where the side effects for all the
expressions in the sequence will be emitted.
WANT_VALUE is true when the result of the last COMPOUND_EXPR is used. */
/* ??? Should rearrange to share the pre-queue with all the indirect
invocations of gimplify_expr. Would probably save on creations
of statement_list nodes. */
static enum gimplify_status
gimplify_compound_expr (tree *expr_p, tree *pre_p, bool want_value)
{
tree t = *expr_p;
do
{
tree *sub_p = &TREE_OPERAND (t, 0);
if (TREE_CODE (*sub_p) == COMPOUND_EXPR)
gimplify_compound_expr (sub_p, pre_p, false);
else
gimplify_stmt (sub_p);
append_to_statement_list (*sub_p, pre_p);
t = TREE_OPERAND (t, 1);
}
while (TREE_CODE (t) == COMPOUND_EXPR);
*expr_p = t;
if (want_value)
return GS_OK;
else
{
gimplify_stmt (expr_p);
return GS_ALL_DONE;
}
}
/* Gimplifies a statement list. These may be created either by an
enlightened front-end, or by shortcut_cond_expr. */
static enum gimplify_status
gimplify_statement_list (tree *expr_p, tree *pre_p)
{
tree temp = voidify_wrapper_expr (*expr_p, NULL);
tree_stmt_iterator i = tsi_start (*expr_p);
while (!tsi_end_p (i))
{
tree t;
gimplify_stmt (tsi_stmt_ptr (i));
t = tsi_stmt (i);
if (t == NULL)
tsi_delink (&i);
else if (TREE_CODE (t) == STATEMENT_LIST)
{
tsi_link_before (&i, t, TSI_SAME_STMT);
tsi_delink (&i);
}
else
tsi_next (&i);
}
if (temp)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = temp;
return GS_OK;
}
return GS_ALL_DONE;
}
/* Gimplify a SAVE_EXPR node. EXPR_P points to the expression to
gimplify. After gimplification, EXPR_P will point to a new temporary
that holds the original value of the SAVE_EXPR node.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_save_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
enum gimplify_status ret = GS_ALL_DONE;
tree val;
gcc_assert (TREE_CODE (*expr_p) == SAVE_EXPR);
val = TREE_OPERAND (*expr_p, 0);
/* If the SAVE_EXPR has not been resolved, then evaluate it once. */
if (!SAVE_EXPR_RESOLVED_P (*expr_p))
{
/* The operand may be a void-valued expression such as SAVE_EXPRs
generated by the Java frontend for class initialization. It is
being executed only for its side-effects. */
if (TREE_TYPE (val) == void_type_node)
{
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_stmt, fb_none);
append_to_statement_list (TREE_OPERAND (*expr_p, 0), pre_p);
val = NULL;
}
else
val = get_initialized_tmp_var (val, pre_p, post_p);
TREE_OPERAND (*expr_p, 0) = val;
SAVE_EXPR_RESOLVED_P (*expr_p) = 1;
}
*expr_p = val;
return ret;
}
/* Re-write the ADDR_EXPR node pointed to by EXPR_P
unary_expr
: ...
| '&' varname
...
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_addr_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree expr = *expr_p;
tree op0 = TREE_OPERAND (expr, 0);
enum gimplify_status ret;
switch (TREE_CODE (op0))
{
case INDIRECT_REF:
case MISALIGNED_INDIRECT_REF:
do_indirect_ref:
/* Check if we are dealing with an expression of the form '&*ptr'.
While the front end folds away '&*ptr' into 'ptr', these
expressions may be generated internally by the compiler (e.g.,
builtins like __builtin_va_end). */
/* Caution: the silent array decomposition semantics we allow for
ADDR_EXPR means we can't always discard the pair. */
/* Gimplification of the ADDR_EXPR operand may drop
cv-qualification conversions, so make sure we add them if
needed. */
{
tree op00 = TREE_OPERAND (op0, 0);
tree t_expr = TREE_TYPE (expr);
tree t_op00 = TREE_TYPE (op00);
if (!lang_hooks.types_compatible_p (t_expr, t_op00))
{
#ifdef ENABLE_CHECKING
tree t_op0 = TREE_TYPE (op0);
gcc_assert (POINTER_TYPE_P (t_expr)
&& cpt_same_type (TREE_CODE (t_op0) == ARRAY_TYPE
? TREE_TYPE (t_op0) : t_op0,
TREE_TYPE (t_expr))
&& POINTER_TYPE_P (t_op00)
&& cpt_same_type (t_op0, TREE_TYPE (t_op00)));
#endif
op00 = fold_convert (TREE_TYPE (expr), op00);
}
*expr_p = op00;
ret = GS_OK;
}
break;
case VIEW_CONVERT_EXPR:
/* Take the address of our operand and then convert it to the type of
this ADDR_EXPR.
??? The interactions of VIEW_CONVERT_EXPR and aliasing is not at
all clear. The impact of this transformation is even less clear. */
/* If the operand is a useless conversion, look through it. Doing so
guarantees that the ADDR_EXPR and its operand will remain of the
same type. */
if (tree_ssa_useless_type_conversion (TREE_OPERAND (op0, 0)))
op0 = TREE_OPERAND (op0, 0);
*expr_p = fold_convert (TREE_TYPE (expr),
build_fold_addr_expr (TREE_OPERAND (op0, 0)));
ret = GS_OK;
break;
default:
/* We use fb_either here because the C frontend sometimes takes
the address of a call that returns a struct; see
gcc.dg/c99-array-lval-1.c. The gimplifier will correctly make
the implied temporary explicit. */
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, post_p,
is_gimple_addressable, fb_either);
if (ret != GS_ERROR)
{
op0 = TREE_OPERAND (expr, 0);
/* For various reasons, the gimplification of the expression
may have made a new INDIRECT_REF. */
if (TREE_CODE (op0) == INDIRECT_REF)
goto do_indirect_ref;
/* Make sure TREE_INVARIANT, TREE_CONSTANT, and TREE_SIDE_EFFECTS
is set properly. */
recompute_tree_invariant_for_addr_expr (expr);
/* Mark the RHS addressable. */
lang_hooks.mark_addressable (TREE_OPERAND (expr, 0));
}
break;
}
return ret;
}
/* Gimplify the operands of an ASM_EXPR. Input operands should be a gimple
value; output operands should be a gimple lvalue. */
static enum gimplify_status
gimplify_asm_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree expr = *expr_p;
int noutputs = list_length (ASM_OUTPUTS (expr));
const char **oconstraints
= (const char **) alloca ((noutputs) * sizeof (const char *));
int i;
tree link;
const char *constraint;
bool allows_mem, allows_reg, is_inout;
enum gimplify_status ret, tret;
ret = GS_ALL_DONE;
for (i = 0, link = ASM_OUTPUTS (expr); link; ++i, link = TREE_CHAIN (link))
{
size_t constraint_len;
oconstraints[i] = constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
constraint_len = strlen (constraint);
if (constraint_len == 0)
continue;
parse_output_constraint (&constraint, i, 0, 0,
&allows_mem, &allows_reg, &is_inout);
if (!allows_reg && allows_mem)
lang_hooks.mark_addressable (TREE_VALUE (link));
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_inout ? is_gimple_min_lval : is_gimple_lvalue,
fb_lvalue | fb_mayfail);
if (tret == GS_ERROR)
{
error ("invalid lvalue in asm output %d", i);
ret = tret;
}
if (is_inout)
{
/* An input/output operand. To give the optimizers more
flexibility, split it into separate input and output
operands. */
tree input;
char buf[10];
/* Turn the in/out constraint into an output constraint. */
char *p = xstrdup (constraint);
p[0] = '=';
TREE_VALUE (TREE_PURPOSE (link)) = build_string (constraint_len, p);
/* And add a matching input constraint. */
if (allows_reg)
{
sprintf (buf, "%d", i);
/* If there are multiple alternatives in the constraint,
handle each of them individually. Those that allow register
will be replaced with operand number, the others will stay
unchanged. */
if (strchr (p, ',') != NULL)
{
size_t len = 0, buflen = strlen (buf);
char *beg, *end, *str, *dst;
for (beg = p + 1;;)
{
end = strchr (beg, ',');
if (end == NULL)
end = strchr (beg, '\0');
if ((size_t) (end - beg) < buflen)
len += buflen + 1;
else
len += end - beg + 1;
if (*end)
beg = end + 1;
else
break;
}
str = (char *) alloca (len);
for (beg = p + 1, dst = str;;)
{
const char *tem;
bool mem_p, reg_p, inout_p;
end = strchr (beg, ',');
if (end)
*end = '\0';
beg[-1] = '=';
tem = beg - 1;
parse_output_constraint (&tem, i, 0, 0,
&mem_p, &reg_p, &inout_p);
if (dst != str)
*dst++ = ',';
if (reg_p)
{
memcpy (dst, buf, buflen);
dst += buflen;
}
else
{
if (end)
len = end - beg;
else
len = strlen (beg);
memcpy (dst, beg, len);
dst += len;
}
if (end)
beg = end + 1;
else
break;
}
*dst = '\0';
input = build_string (dst - str, str);
}
else
input = build_string (strlen (buf), buf);
}
else
input = build_string (constraint_len - 1, constraint + 1);
free (p);
input = build_tree_list (build_tree_list (NULL_TREE, input),
unshare_expr (TREE_VALUE (link)));
ASM_INPUTS (expr) = chainon (ASM_INPUTS (expr), input);
}
}
for (link = ASM_INPUTS (expr); link; ++i, link = TREE_CHAIN (link))
{
constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
oconstraints, &allows_mem, &allows_reg);
/* If we can't make copies, we can only accept memory. */
if (TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (link))))
{
if (allows_mem)
allows_reg = 0;
else
{
error ("impossible constraint in %<asm%>");
error ("non-memory input %d must stay in memory", i);
return GS_ERROR;
}
}
/* If the operand is a memory input, it should be an lvalue. */
if (!allows_reg && allows_mem)
{
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_gimple_lvalue, fb_lvalue | fb_mayfail);
lang_hooks.mark_addressable (TREE_VALUE (link));
if (tret == GS_ERROR)
{
error ("memory input %d is not directly addressable", i);
ret = tret;
}
}
else
{
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_gimple_asm_val, fb_rvalue);
if (tret == GS_ERROR)
ret = tret;
}
}
return ret;
}
/* Gimplify a CLEANUP_POINT_EXPR. Currently this works by adding
WITH_CLEANUP_EXPRs to the prequeue as we encounter cleanups while
gimplifying the body, and converting them to TRY_FINALLY_EXPRs when we
return to this function.
FIXME should we complexify the prequeue handling instead? Or use flags
for all the cleanups and let the optimizer tighten them up? The current
code seems pretty fragile; it will break on a cleanup within any
non-conditional nesting. But any such nesting would be broken, anyway;
we can't write a TRY_FINALLY_EXPR that starts inside a nesting construct
and continues out of it. We can do that at the RTL level, though, so
having an optimizer to tighten up try/finally regions would be a Good
Thing. */
static enum gimplify_status
gimplify_cleanup_point_expr (tree *expr_p, tree *pre_p)
{
tree_stmt_iterator iter;
tree body;
tree temp = voidify_wrapper_expr (*expr_p, NULL);
/* We only care about the number of conditions between the innermost
CLEANUP_POINT_EXPR and the cleanup. So save and reset the count and
any cleanups collected outside the CLEANUP_POINT_EXPR. */
int old_conds = gimplify_ctxp->conditions;
tree old_cleanups = gimplify_ctxp->conditional_cleanups;
gimplify_ctxp->conditions = 0;
gimplify_ctxp->conditional_cleanups = NULL_TREE;
body = TREE_OPERAND (*expr_p, 0);
gimplify_to_stmt_list (&body);
gimplify_ctxp->conditions = old_conds;
gimplify_ctxp->conditional_cleanups = old_cleanups;
for (iter = tsi_start (body); !tsi_end_p (iter); )
{
tree *wce_p = tsi_stmt_ptr (iter);
tree wce = *wce_p;
if (TREE_CODE (wce) == WITH_CLEANUP_EXPR)
{
if (tsi_one_before_end_p (iter))
{
tsi_link_before (&iter, TREE_OPERAND (wce, 0), TSI_SAME_STMT);
tsi_delink (&iter);
break;
}
else
{
tree sl, tfe;
enum tree_code code;
if (CLEANUP_EH_ONLY (wce))
code = TRY_CATCH_EXPR;
else
code = TRY_FINALLY_EXPR;
sl = tsi_split_statement_list_after (&iter);
tfe = build2 (code, void_type_node, sl, NULL_TREE);
append_to_statement_list (TREE_OPERAND (wce, 0),
&TREE_OPERAND (tfe, 1));
*wce_p = tfe;
iter = tsi_start (sl);
}
}
else
tsi_next (&iter);
}
if (temp)
{
*expr_p = temp;
append_to_statement_list (body, pre_p);
return GS_OK;
}
else
{
*expr_p = body;
return GS_ALL_DONE;
}
}
/* Insert a cleanup marker for gimplify_cleanup_point_expr. CLEANUP
is the cleanup action required. */
static void
gimple_push_cleanup (tree var, tree cleanup, bool eh_only, tree *pre_p)
{
tree wce;
/* Errors can result in improperly nested cleanups. Which results in
confusion when trying to resolve the WITH_CLEANUP_EXPR. */
if (errorcount || sorrycount)
return;
if (gimple_conditional_context ())
{
/* If we're in a conditional context, this is more complex. We only
want to run the cleanup if we actually ran the initialization that
necessitates it, but we want to run it after the end of the
conditional context. So we wrap the try/finally around the
condition and use a flag to determine whether or not to actually
run the destructor. Thus
test ? f(A()) : 0
becomes (approximately)
flag = 0;
try {
if (test) { A::A(temp); flag = 1; val = f(temp); }
else { val = 0; }
} finally {
if (flag) A::~A(temp);
}
val
*/
tree flag = create_tmp_var (boolean_type_node, "cleanup");
tree ffalse = build2 (MODIFY_EXPR, void_type_node, flag,
boolean_false_node);
tree ftrue = build2 (MODIFY_EXPR, void_type_node, flag,
boolean_true_node);
cleanup = build3 (COND_EXPR, void_type_node, flag, cleanup, NULL);
wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup);
append_to_statement_list (ffalse, &gimplify_ctxp->conditional_cleanups);
append_to_statement_list (wce, &gimplify_ctxp->conditional_cleanups);
append_to_statement_list (ftrue, pre_p);
/* Because of this manipulation, and the EH edges that jump
threading cannot redirect, the temporary (VAR) will appear
to be used uninitialized. Don't warn. */
TREE_NO_WARNING (var) = 1;
}
else
{
wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup);
CLEANUP_EH_ONLY (wce) = eh_only;
append_to_statement_list (wce, pre_p);
}
gimplify_stmt (&TREE_OPERAND (wce, 0));
}
/* Gimplify a TARGET_EXPR which doesn't appear on the rhs of an INIT_EXPR. */
static enum gimplify_status
gimplify_target_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree targ = *expr_p;
tree temp = TARGET_EXPR_SLOT (targ);
tree init = TARGET_EXPR_INITIAL (targ);
enum gimplify_status ret;
if (init)
{
/* TARGET_EXPR temps aren't part of the enclosing block, so add it
to the temps list. */
gimple_add_tmp_var (temp);
/* If TARGET_EXPR_INITIAL is void, then the mere evaluation of the
expression is supposed to initialize the slot. */
if (VOID_TYPE_P (TREE_TYPE (init)))
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt, fb_none);
else
{
init = build2 (INIT_EXPR, void_type_node, temp, init);
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt,
fb_none);
}
if (ret == GS_ERROR)
{
/* PR c++/28266 Make sure this is expanded only once. */
TARGET_EXPR_INITIAL (targ) = NULL_TREE;
return GS_ERROR;
}
append_to_statement_list (init, pre_p);
/* If needed, push the cleanup for the temp. */
if (TARGET_EXPR_CLEANUP (targ))
{
gimplify_stmt (&TARGET_EXPR_CLEANUP (targ));
gimple_push_cleanup (temp, TARGET_EXPR_CLEANUP (targ),
CLEANUP_EH_ONLY (targ), pre_p);
}
/* Only expand this once. */
TREE_OPERAND (targ, 3) = init;
TARGET_EXPR_INITIAL (targ) = NULL_TREE;
}
else
/* We should have expanded this before. */
gcc_assert (DECL_SEEN_IN_BIND_EXPR_P (temp));
*expr_p = temp;
return GS_OK;
}
/* Gimplification of expression trees. */
/* Gimplify an expression which appears at statement context; usually, this
means replacing it with a suitably gimple STATEMENT_LIST. */
void
gimplify_stmt (tree *stmt_p)
{
gimplify_expr (stmt_p, NULL, NULL, is_gimple_stmt, fb_none);
}
/* Similarly, but force the result to be a STATEMENT_LIST. */
void
gimplify_to_stmt_list (tree *stmt_p)
{
gimplify_stmt (stmt_p);
if (!*stmt_p)
*stmt_p = alloc_stmt_list ();
else if (TREE_CODE (*stmt_p) != STATEMENT_LIST)
{
tree t = *stmt_p;
*stmt_p = alloc_stmt_list ();
append_to_statement_list (t, stmt_p);
}
}
/* Add FIRSTPRIVATE entries for DECL in the OpenMP the surrounding parallels
to CTX. If entries already exist, force them to be some flavor of private.
If there is no enclosing parallel, do nothing. */
void
omp_firstprivatize_variable (struct gimplify_omp_ctx *ctx, tree decl)
{
splay_tree_node n;
if (decl == NULL || !DECL_P (decl))
return;
do
{
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
if (n != NULL)
{
if (n->value & GOVD_SHARED)
n->value = GOVD_FIRSTPRIVATE | (n->value & GOVD_SEEN);
else
return;
}
else if (ctx->is_parallel)
omp_add_variable (ctx, decl, GOVD_FIRSTPRIVATE);
ctx = ctx->outer_context;
}
while (ctx);
}
/* Similarly for each of the type sizes of TYPE. */
static void
omp_firstprivatize_type_sizes (struct gimplify_omp_ctx *ctx, tree type)
{
if (type == NULL || type == error_mark_node)
return;
type = TYPE_MAIN_VARIANT (type);
if (pointer_set_insert (ctx->privatized_types, type))
return;
switch (TREE_CODE (type))
{
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case REAL_TYPE:
omp_firstprivatize_variable (ctx, TYPE_MIN_VALUE (type));
omp_firstprivatize_variable (ctx, TYPE_MAX_VALUE (type));
break;
case ARRAY_TYPE:
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type));
omp_firstprivatize_type_sizes (ctx, TYPE_DOMAIN (type));
break;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree field;
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
omp_firstprivatize_variable (ctx, DECL_FIELD_OFFSET (field));
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (field));
}
}
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type));
break;
default:
break;
}
omp_firstprivatize_variable (ctx, TYPE_SIZE (type));
omp_firstprivatize_variable (ctx, TYPE_SIZE_UNIT (type));
lang_hooks.types.omp_firstprivatize_type_sizes (ctx, type);
}
/* Add an entry for DECL in the OpenMP context CTX with FLAGS. */
static void
omp_add_variable (struct gimplify_omp_ctx *ctx, tree decl, unsigned int flags)
{
splay_tree_node n;
unsigned int nflags;
tree t;
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
return;
/* Never elide decls whose type has TREE_ADDRESSABLE set. This means
there are constructors involved somewhere. */
if (TREE_ADDRESSABLE (TREE_TYPE (decl))
|| TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)))
flags |= GOVD_SEEN;
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
if (n != NULL)
{
/* We shouldn't be re-adding the decl with the same data
sharing class. */
gcc_assert ((n->value & GOVD_DATA_SHARE_CLASS & flags) == 0);
/* The only combination of data sharing classes we should see is
FIRSTPRIVATE and LASTPRIVATE. */
nflags = n->value | flags;
gcc_assert ((nflags & GOVD_DATA_SHARE_CLASS)
== (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE));
n->value = nflags;
return;
}
/* When adding a variable-sized variable, we have to handle all sorts
of additional bits of data: the pointer replacement variable, and
the parameters of the type. */
if (DECL_SIZE (decl) && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
{
/* Add the pointer replacement variable as PRIVATE if the variable
replacement is private, else FIRSTPRIVATE since we'll need the
address of the original variable either for SHARED, or for the
copy into or out of the context. */
if (!(flags & GOVD_LOCAL))
{
nflags = flags & GOVD_PRIVATE ? GOVD_PRIVATE : GOVD_FIRSTPRIVATE;
nflags |= flags & GOVD_SEEN;
t = DECL_VALUE_EXPR (decl);
gcc_assert (TREE_CODE (t) == INDIRECT_REF);
t = TREE_OPERAND (t, 0);
gcc_assert (DECL_P (t));
omp_add_variable (ctx, t, nflags);
}
/* Add all of the variable and type parameters (which should have
been gimplified to a formal temporary) as FIRSTPRIVATE. */
omp_firstprivatize_variable (ctx, DECL_SIZE_UNIT (decl));
omp_firstprivatize_variable (ctx, DECL_SIZE (decl));
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl));
/* The variable-sized variable itself is never SHARED, only some form
of PRIVATE. The sharing would take place via the pointer variable
which we remapped above. */
if (flags & GOVD_SHARED)
flags = GOVD_PRIVATE | GOVD_DEBUG_PRIVATE
| (flags & (GOVD_SEEN | GOVD_EXPLICIT));
/* We're going to make use of the TYPE_SIZE_UNIT at least in the
alloca statement we generate for the variable, so make sure it
is available. This isn't automatically needed for the SHARED
case, since we won't be allocating local storage then.
For local variables TYPE_SIZE_UNIT might not be gimplified yet,
in this case omp_notice_variable will be called later
on when it is gimplified. */
else if (! (flags & GOVD_LOCAL))
omp_notice_variable (ctx, TYPE_SIZE_UNIT (TREE_TYPE (decl)), true);
}
else if (lang_hooks.decls.omp_privatize_by_reference (decl))
{
gcc_assert ((flags & GOVD_LOCAL) == 0);
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl));
/* Similar to the direct variable sized case above, we'll need the
size of references being privatized. */
if ((flags & GOVD_SHARED) == 0)
{
t = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (decl)));
if (TREE_CODE (t) != INTEGER_CST)
omp_notice_variable (ctx, t, true);
}
}
splay_tree_insert (ctx->variables, (splay_tree_key)decl, flags);
}
/* Record the fact that DECL was used within the OpenMP context CTX.
IN_CODE is true when real code uses DECL, and false when we should
merely emit default(none) errors. Return true if DECL is going to
be remapped and thus DECL shouldn't be gimplified into its
DECL_VALUE_EXPR (if any). */
static bool
omp_notice_variable (struct gimplify_omp_ctx *ctx, tree decl, bool in_code)
{
splay_tree_node n;
unsigned flags = in_code ? GOVD_SEEN : 0;
bool ret = false, shared;
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
return false;
/* Threadprivate variables are predetermined. */
if (is_global_var (decl))
{
if (DECL_THREAD_LOCAL_P (decl))
return false;
if (DECL_HAS_VALUE_EXPR_P (decl))
{
tree value = get_base_address (DECL_VALUE_EXPR (decl));
if (value && DECL_P (value) && DECL_THREAD_LOCAL_P (value))
return false;
}
}
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
if (n == NULL)
{
enum omp_clause_default_kind default_kind, kind;
if (!ctx->is_parallel)
goto do_outer;
/* ??? Some compiler-generated variables (like SAVE_EXPRs) could be
remapped firstprivate instead of shared. To some extent this is
addressed in omp_firstprivatize_type_sizes, but not effectively. */
default_kind = ctx->default_kind;
kind = lang_hooks.decls.omp_predetermined_sharing (decl);
if (kind != OMP_CLAUSE_DEFAULT_UNSPECIFIED)
default_kind = kind;
switch (default_kind)
{
case OMP_CLAUSE_DEFAULT_NONE:
error ("%qs not specified in enclosing parallel",
IDENTIFIER_POINTER (DECL_NAME (decl)));
error ("%Henclosing parallel", &ctx->location);
/* FALLTHRU */
case OMP_CLAUSE_DEFAULT_SHARED:
flags |= GOVD_SHARED;
break;
case OMP_CLAUSE_DEFAULT_PRIVATE:
flags |= GOVD_PRIVATE;
break;
default:
gcc_unreachable ();
}
omp_add_variable (ctx, decl, flags);
shared = (flags & GOVD_SHARED) != 0;
ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared);
goto do_outer;
}
shared = ((flags | n->value) & GOVD_SHARED) != 0;
ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared);
/* If nothing changed, there's nothing left to do. */
if ((n->value & flags) == flags)
return ret;
flags |= n->value;
n->value = flags;
do_outer:
/* If the variable is private in the current context, then we don't
need to propagate anything to an outer context. */
if (flags & GOVD_PRIVATE)
return ret;
if (ctx->outer_context
&& omp_notice_variable (ctx->outer_context, decl, in_code))
return true;
return ret;
}
/* Verify that DECL is private within CTX. If there's specific information
to the contrary in the innermost scope, generate an error. */
static bool
omp_is_private (struct gimplify_omp_ctx *ctx, tree decl)
{
splay_tree_node n;
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
if (n != NULL)
{
if (n->value & GOVD_SHARED)
{
if (ctx == gimplify_omp_ctxp)
{
error ("iteration variable %qs should be private",
IDENTIFIER_POINTER (DECL_NAME (decl)));
n->value = GOVD_PRIVATE;
return true;
}
else
return false;
}
else if ((n->value & GOVD_EXPLICIT) != 0
&& (ctx == gimplify_omp_ctxp
|| (ctx->is_combined_parallel
&& gimplify_omp_ctxp->outer_context == ctx)))
{
if ((n->value & GOVD_FIRSTPRIVATE) != 0)
error ("iteration variable %qs should not be firstprivate",
IDENTIFIER_POINTER (DECL_NAME (decl)));
else if ((n->value & GOVD_REDUCTION) != 0)
error ("iteration variable %qs should not be reduction",
IDENTIFIER_POINTER (DECL_NAME (decl)));
}
return true;
}
if (ctx->is_parallel)
return false;
else if (ctx->outer_context)
return omp_is_private (ctx->outer_context, decl);
else
return !is_global_var (decl);
}
/* Return true if DECL is private within a parallel region
that binds to the current construct's context or in parallel
region's REDUCTION clause. */
static bool
omp_check_private (struct gimplify_omp_ctx *ctx, tree decl)
{
splay_tree_node n;
do
{
ctx = ctx->outer_context;
if (ctx == NULL)
return !(is_global_var (decl)
/* References might be private, but might be shared too. */
|| lang_hooks.decls.omp_privatize_by_reference (decl));
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
if (n != NULL)
return (n->value & GOVD_SHARED) == 0;
}
while (!ctx->is_parallel);
return false;
}
/* Scan the OpenMP clauses in *LIST_P, installing mappings into a new
and previous omp contexts. */
static void
gimplify_scan_omp_clauses (tree *list_p, tree *pre_p, bool in_parallel,
bool in_combined_parallel)
{
struct gimplify_omp_ctx *ctx, *outer_ctx;
tree c;
ctx = new_omp_context (in_parallel, in_combined_parallel);
outer_ctx = ctx->outer_context;
while ((c = *list_p) != NULL)
{
enum gimplify_status gs;
bool remove = false;
bool notice_outer = true;
const char *check_non_private = NULL;
unsigned int flags;
tree decl;
switch (OMP_CLAUSE_CODE (c))
{
case OMP_CLAUSE_PRIVATE:
flags = GOVD_PRIVATE | GOVD_EXPLICIT;
notice_outer = false;
goto do_add;
case OMP_CLAUSE_SHARED:
flags = GOVD_SHARED | GOVD_EXPLICIT;
goto do_add;
case OMP_CLAUSE_FIRSTPRIVATE:
flags = GOVD_FIRSTPRIVATE | GOVD_EXPLICIT;
check_non_private = "firstprivate";
goto do_add;
case OMP_CLAUSE_LASTPRIVATE:
flags = GOVD_LASTPRIVATE | GOVD_SEEN | GOVD_EXPLICIT;
check_non_private = "lastprivate";
goto do_add;
case OMP_CLAUSE_REDUCTION:
flags = GOVD_REDUCTION | GOVD_SEEN | GOVD_EXPLICIT;
check_non_private = "reduction";
goto do_add;
do_add:
decl = OMP_CLAUSE_DECL (c);
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
{
remove = true;
break;
}
omp_add_variable (ctx, decl, flags);
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
{
omp_add_variable (ctx, OMP_CLAUSE_REDUCTION_PLACEHOLDER (c),
GOVD_LOCAL | GOVD_SEEN);
gimplify_omp_ctxp = ctx;
push_gimplify_context ();
gimplify_stmt (&OMP_CLAUSE_REDUCTION_INIT (c));
pop_gimplify_context (OMP_CLAUSE_REDUCTION_INIT (c));
push_gimplify_context ();
gimplify_stmt (&OMP_CLAUSE_REDUCTION_MERGE (c));
pop_gimplify_context (OMP_CLAUSE_REDUCTION_MERGE (c));
gimplify_omp_ctxp = outer_ctx;
}
if (notice_outer)
goto do_notice;
break;
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_COPYPRIVATE:
decl = OMP_CLAUSE_DECL (c);
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
{
remove = true;
break;
}
do_notice:
if (outer_ctx)
omp_notice_variable (outer_ctx, decl, true);
if (check_non_private
&& !in_parallel
&& omp_check_private (ctx, decl))
{
error ("%s variable %qs is private in outer context",
check_non_private, IDENTIFIER_POINTER (DECL_NAME (decl)));
remove = true;
}
break;
case OMP_CLAUSE_IF:
OMP_CLAUSE_OPERAND (c, 0)
= gimple_boolify (OMP_CLAUSE_OPERAND (c, 0));
/* Fall through. */
case OMP_CLAUSE_SCHEDULE:
case OMP_CLAUSE_NUM_THREADS:
gs = gimplify_expr (&OMP_CLAUSE_OPERAND (c, 0), pre_p, NULL,
is_gimple_val, fb_rvalue);
if (gs == GS_ERROR)
remove = true;
break;
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
break;
case OMP_CLAUSE_DEFAULT:
ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c);
break;
default:
gcc_unreachable ();
}
if (remove)
*list_p = OMP_CLAUSE_CHAIN (c);
else
list_p = &OMP_CLAUSE_CHAIN (c);
}
gimplify_omp_ctxp = ctx;
}
/* For all variables that were not actually used within the context,
remove PRIVATE, SHARED, and FIRSTPRIVATE clauses. */
static int
gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data)
{
tree *list_p = (tree *) data;
tree decl = (tree) n->key;
unsigned flags = n->value;
enum omp_clause_code code;
tree clause;
bool private_debug;
if (flags & (GOVD_EXPLICIT | GOVD_LOCAL))
return 0;
if ((flags & GOVD_SEEN) == 0)
return 0;
if (flags & GOVD_DEBUG_PRIVATE)
{
gcc_assert ((flags & GOVD_DATA_SHARE_CLASS) == GOVD_PRIVATE);
private_debug = true;
}
else
private_debug
= lang_hooks.decls.omp_private_debug_clause (decl,
!!(flags & GOVD_SHARED));
if (private_debug)
code = OMP_CLAUSE_PRIVATE;
else if (flags & GOVD_SHARED)
{
if (is_global_var (decl))
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp->outer_context;
while (ctx != NULL)
{
splay_tree_node on
= splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
if (on && (on->value & (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE
| GOVD_PRIVATE | GOVD_REDUCTION)) != 0)
break;
ctx = ctx->outer_context;
}
if (ctx == NULL)
return 0;
}
code = OMP_CLAUSE_SHARED;
}
else if (flags & GOVD_PRIVATE)
code = OMP_CLAUSE_PRIVATE;
else if (flags & GOVD_FIRSTPRIVATE)
code = OMP_CLAUSE_FIRSTPRIVATE;
else
gcc_unreachable ();
clause = build_omp_clause (code);
OMP_CLAUSE_DECL (clause) = decl;
OMP_CLAUSE_CHAIN (clause) = *list_p;
if (private_debug)
OMP_CLAUSE_PRIVATE_DEBUG (clause) = 1;
*list_p = clause;
return 0;
}
static void
gimplify_adjust_omp_clauses (tree *list_p)
{
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
tree c, decl;
while ((c = *list_p) != NULL)
{
splay_tree_node n;
bool remove = false;
switch (OMP_CLAUSE_CODE (c))
{
case OMP_CLAUSE_PRIVATE:
case OMP_CLAUSE_SHARED:
case OMP_CLAUSE_FIRSTPRIVATE:
decl = OMP_CLAUSE_DECL (c);
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
remove = !(n->value & GOVD_SEEN);
if (! remove)
{
bool shared = OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SHARED;
if ((n->value & GOVD_DEBUG_PRIVATE)
|| lang_hooks.decls.omp_private_debug_clause (decl, shared))
{
gcc_assert ((n->value & GOVD_DEBUG_PRIVATE) == 0
|| ((n->value & GOVD_DATA_SHARE_CLASS)
== GOVD_PRIVATE));
OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_PRIVATE);
OMP_CLAUSE_PRIVATE_DEBUG (c) = 1;
}
}
break;
case OMP_CLAUSE_LASTPRIVATE:
/* Make sure OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE is set to
accurately reflect the presence of a FIRSTPRIVATE clause. */
decl = OMP_CLAUSE_DECL (c);
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)
= (n->value & GOVD_FIRSTPRIVATE) != 0;
break;
case OMP_CLAUSE_REDUCTION:
case OMP_CLAUSE_COPYIN:
case OMP_CLAUSE_COPYPRIVATE:
case OMP_CLAUSE_IF:
case OMP_CLAUSE_NUM_THREADS:
case OMP_CLAUSE_SCHEDULE:
case OMP_CLAUSE_NOWAIT:
case OMP_CLAUSE_ORDERED:
case OMP_CLAUSE_DEFAULT:
break;
default:
gcc_unreachable ();
}
if (remove)
*list_p = OMP_CLAUSE_CHAIN (c);
else
list_p = &OMP_CLAUSE_CHAIN (c);
}
/* Add in any implicit data sharing. */
splay_tree_foreach (ctx->variables, gimplify_adjust_omp_clauses_1, list_p);
gimplify_omp_ctxp = ctx->outer_context;
delete_omp_context (ctx);
}
/* Gimplify the contents of an OMP_PARALLEL statement. This involves
gimplification of the body, as well as scanning the body for used
variables. We need to do this scan now, because variable-sized
decls will be decomposed during gimplification. */
static enum gimplify_status
gimplify_omp_parallel (tree *expr_p, tree *pre_p)
{
tree expr = *expr_p;
gimplify_scan_omp_clauses (&OMP_PARALLEL_CLAUSES (expr), pre_p, true,
OMP_PARALLEL_COMBINED (expr));
push_gimplify_context ();
gimplify_stmt (&OMP_PARALLEL_BODY (expr));
if (TREE_CODE (OMP_PARALLEL_BODY (expr)) == BIND_EXPR)
pop_gimplify_context (OMP_PARALLEL_BODY (expr));
else
pop_gimplify_context (NULL_TREE);
gimplify_adjust_omp_clauses (&OMP_PARALLEL_CLAUSES (expr));
return GS_ALL_DONE;
}
/* Gimplify the gross structure of an OMP_FOR statement. */
static enum gimplify_status
gimplify_omp_for (tree *expr_p, tree *pre_p)
{
tree for_stmt, decl, t;
enum gimplify_status ret = 0;
for_stmt = *expr_p;
gimplify_scan_omp_clauses (&OMP_FOR_CLAUSES (for_stmt), pre_p, false, false);
t = OMP_FOR_INIT (for_stmt);
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
decl = TREE_OPERAND (t, 0);
gcc_assert (DECL_P (decl));
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (decl)));
/* Make sure the iteration variable is private. */
if (omp_is_private (gimplify_omp_ctxp, decl))
omp_notice_variable (gimplify_omp_ctxp, decl, true);
else
omp_add_variable (gimplify_omp_ctxp, decl, GOVD_PRIVATE | GOVD_SEEN);
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
NULL, is_gimple_val, fb_rvalue);
t = OMP_FOR_COND (for_stmt);
gcc_assert (COMPARISON_CLASS_P (t));
gcc_assert (TREE_OPERAND (t, 0) == decl);
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
NULL, is_gimple_val, fb_rvalue);
t = OMP_FOR_INCR (for_stmt);
switch (TREE_CODE (t))
{
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
t = build_int_cst (TREE_TYPE (decl), 1);
goto build_modify;
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
t = build_int_cst (TREE_TYPE (decl), -1);
goto build_modify;
build_modify:
t = build2 (PLUS_EXPR, TREE_TYPE (decl), decl, t);
t = build2 (MODIFY_EXPR, void_type_node, decl, t);
OMP_FOR_INCR (for_stmt) = t;
break;
case MODIFY_EXPR:
gcc_assert (TREE_OPERAND (t, 0) == decl);
t = TREE_OPERAND (t, 1);
switch (TREE_CODE (t))
{
case PLUS_EXPR:
if (TREE_OPERAND (t, 1) == decl)
{
TREE_OPERAND (t, 1) = TREE_OPERAND (t, 0);
TREE_OPERAND (t, 0) = decl;
break;
}
case MINUS_EXPR:
gcc_assert (TREE_OPERAND (t, 0) == decl);
break;
default:
gcc_unreachable ();
}
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
NULL, is_gimple_val, fb_rvalue);
break;
default:
gcc_unreachable ();
}
gimplify_to_stmt_list (&OMP_FOR_BODY (for_stmt));
gimplify_adjust_omp_clauses (&OMP_FOR_CLAUSES (for_stmt));
return ret == GS_ALL_DONE ? GS_ALL_DONE : GS_ERROR;
}
/* Gimplify the gross structure of other OpenMP worksharing constructs.
In particular, OMP_SECTIONS and OMP_SINGLE. */
static enum gimplify_status
gimplify_omp_workshare (tree *expr_p, tree *pre_p)
{
tree stmt = *expr_p;
gimplify_scan_omp_clauses (&OMP_CLAUSES (stmt), pre_p, false, false);
gimplify_to_stmt_list (&OMP_BODY (stmt));
gimplify_adjust_omp_clauses (&OMP_CLAUSES (stmt));
return GS_ALL_DONE;
}
/* A subroutine of gimplify_omp_atomic. The front end is supposed to have
stabilized the lhs of the atomic operation as *ADDR. Return true if
EXPR is this stabilized form. */
static bool
goa_lhs_expr_p (tree expr, tree addr)
{
/* Also include casts to other type variants. The C front end is fond
of adding these for e.g. volatile variables. This is like
STRIP_TYPE_NOPS but includes the main variant lookup. */
while ((TREE_CODE (expr) == NOP_EXPR
|| TREE_CODE (expr) == CONVERT_EXPR
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
&& TREE_OPERAND (expr, 0) != error_mark_node
&& (TYPE_MAIN_VARIANT (TREE_TYPE (expr))
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0)))))
expr = TREE_OPERAND (expr, 0);
if (TREE_CODE (expr) == INDIRECT_REF && TREE_OPERAND (expr, 0) == addr)
return true;
if (TREE_CODE (addr) == ADDR_EXPR && expr == TREE_OPERAND (addr, 0))
return true;
return false;
}
/* A subroutine of gimplify_omp_atomic. Attempt to implement the atomic
operation as a __sync_fetch_and_op builtin. INDEX is log2 of the
size of the data type, and thus usable to find the index of the builtin
decl. Returns GS_UNHANDLED if the expression is not of the proper form. */
static enum gimplify_status
gimplify_omp_atomic_fetch_op (tree *expr_p, tree addr, tree rhs, int index)
{
enum built_in_function base;
tree decl, args, itype;
enum insn_code *optab;
/* Check for one of the supported fetch-op operations. */
switch (TREE_CODE (rhs))
{
case PLUS_EXPR:
base = BUILT_IN_FETCH_AND_ADD_N;
optab = sync_add_optab;
break;
case MINUS_EXPR:
base = BUILT_IN_FETCH_AND_SUB_N;
optab = sync_add_optab;
break;
case BIT_AND_EXPR:
base = BUILT_IN_FETCH_AND_AND_N;
optab = sync_and_optab;
break;
case BIT_IOR_EXPR:
base = BUILT_IN_FETCH_AND_OR_N;
optab = sync_ior_optab;
break;
case BIT_XOR_EXPR:
base = BUILT_IN_FETCH_AND_XOR_N;
optab = sync_xor_optab;
break;
default:
return GS_UNHANDLED;
}
/* Make sure the expression is of the proper form. */
if (goa_lhs_expr_p (TREE_OPERAND (rhs, 0), addr))
rhs = TREE_OPERAND (rhs, 1);
else if (commutative_tree_code (TREE_CODE (rhs))
&& goa_lhs_expr_p (TREE_OPERAND (rhs, 1), addr))
rhs = TREE_OPERAND (rhs, 0);
else
return GS_UNHANDLED;
decl = built_in_decls[base + index + 1];
itype = TREE_TYPE (TREE_TYPE (decl));
if (optab[TYPE_MODE (itype)] == CODE_FOR_nothing)
return GS_UNHANDLED;
args = tree_cons (NULL, fold_convert (itype, rhs), NULL);
args = tree_cons (NULL, addr, args);
*expr_p = build_function_call_expr (decl, args);
return GS_OK;
}
/* A subroutine of gimplify_omp_atomic_pipeline. Walk *EXPR_P and replace
appearances of *LHS_ADDR with LHS_VAR. If an expression does not involve
the lhs, evaluate it into a temporary. Return 1 if the lhs appeared as
a subexpression, 0 if it did not, or -1 if an error was encountered. */
static int
goa_stabilize_expr (tree *expr_p, tree *pre_p, tree lhs_addr, tree lhs_var)
{
tree expr = *expr_p;
int saw_lhs;
if (goa_lhs_expr_p (expr, lhs_addr))
{
*expr_p = lhs_var;
return 1;
}
if (is_gimple_val (expr))
return 0;
saw_lhs = 0;
switch (TREE_CODE_CLASS (TREE_CODE (expr)))
{
case tcc_binary:
saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 1), pre_p,
lhs_addr, lhs_var);
case tcc_unary:
saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 0), pre_p,
lhs_addr, lhs_var);
break;
default:
break;
}
if (saw_lhs == 0)
{
enum gimplify_status gs;
gs = gimplify_expr (expr_p, pre_p, NULL, is_gimple_val, fb_rvalue);
if (gs != GS_ALL_DONE)
saw_lhs = -1;
}
return saw_lhs;
}
/* A subroutine of gimplify_omp_atomic. Implement the atomic operation as:
oldval = *addr;
repeat:
newval = rhs; // with oldval replacing *addr in rhs
oldval = __sync_val_compare_and_swap (addr, oldval, newval);
if (oldval != newval)
goto repeat;
INDEX is log2 of the size of the data type, and thus usable to find the
index of the builtin decl. */
static enum gimplify_status
gimplify_omp_atomic_pipeline (tree *expr_p, tree *pre_p, tree addr,
tree rhs, int index)
{
tree oldval, oldival, oldival2, newval, newival, label;
tree type, itype, cmpxchg, args, x, iaddr;
cmpxchg = built_in_decls[BUILT_IN_VAL_COMPARE_AND_SWAP_N + index + 1];
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
itype = TREE_TYPE (TREE_TYPE (cmpxchg));
if (sync_compare_and_swap[TYPE_MODE (itype)] == CODE_FOR_nothing)
return GS_UNHANDLED;
oldval = create_tmp_var (type, NULL);
newval = create_tmp_var (type, NULL);
/* Precompute as much of RHS as possible. In the same walk, replace
occurrences of the lhs value with our temporary. */
if (goa_stabilize_expr (&rhs, pre_p, addr, oldval) < 0)
return GS_ERROR;
x = build_fold_indirect_ref (addr);
x = build2 (MODIFY_EXPR, void_type_node, oldval, x);
gimplify_and_add (x, pre_p);
/* For floating-point values, we'll need to view-convert them to integers
so that we can perform the atomic compare and swap. Simplify the
following code by always setting up the "i"ntegral variables. */
if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
{
oldival = oldval;
newival = newval;
iaddr = addr;
}
else
{
oldival = create_tmp_var (itype, NULL);
newival = create_tmp_var (itype, NULL);
x = build1 (VIEW_CONVERT_EXPR, itype, oldval);
x = build2 (MODIFY_EXPR, void_type_node, oldival, x);
gimplify_and_add (x, pre_p);
iaddr = fold_convert (build_pointer_type (itype), addr);
}
oldival2 = create_tmp_var (itype, NULL);
label = create_artificial_label ();
x = build1 (LABEL_EXPR, void_type_node, label);
gimplify_and_add (x, pre_p);
x = build2 (MODIFY_EXPR, void_type_node, newval, rhs);
gimplify_and_add (x, pre_p);
if (newval != newival)
{
x = build1 (VIEW_CONVERT_EXPR, itype, newval);
x = build2 (MODIFY_EXPR, void_type_node, newival, x);
gimplify_and_add (x, pre_p);
}
x = build2 (MODIFY_EXPR, void_type_node, oldival2,
fold_convert (itype, oldival));
gimplify_and_add (x, pre_p);
args = tree_cons (NULL, fold_convert (itype, newival), NULL);
args = tree_cons (NULL, fold_convert (itype, oldival), args);
args = tree_cons (NULL, iaddr, args);
x = build_function_call_expr (cmpxchg, args);
if (oldval == oldival)
x = fold_convert (type, x);
x = build2 (MODIFY_EXPR, void_type_node, oldival, x);
gimplify_and_add (x, pre_p);
/* For floating point, be prepared for the loop backedge. */
if (oldval != oldival)
{
x = build1 (VIEW_CONVERT_EXPR, type, oldival);
x = build2 (MODIFY_EXPR, void_type_node, oldval, x);
gimplify_and_add (x, pre_p);
}
/* Note that we always perform the comparison as an integer, even for
floating point. This allows the atomic operation to properly
succeed even with NaNs and -0.0. */
x = build3 (COND_EXPR, void_type_node,
build2 (NE_EXPR, boolean_type_node, oldival, oldival2),
build1 (GOTO_EXPR, void_type_node, label), NULL);
gimplify_and_add (x, pre_p);
*expr_p = NULL;
return GS_ALL_DONE;
}
/* A subroutine of gimplify_omp_atomic. Implement the atomic operation as:
GOMP_atomic_start ();
*addr = rhs;
GOMP_atomic_end ();
The result is not globally atomic, but works so long as all parallel
references are within #pragma omp atomic directives. According to
responses received from omp@openmp.org, appears to be within spec.
Which makes sense, since that's how several other compilers handle
this situation as well. */
static enum gimplify_status
gimplify_omp_atomic_mutex (tree *expr_p, tree *pre_p, tree addr, tree rhs)
{
tree t;
t = built_in_decls[BUILT_IN_GOMP_ATOMIC_START];
t = build_function_call_expr (t, NULL);
gimplify_and_add (t, pre_p);
t = build_fold_indirect_ref (addr);
t = build2 (MODIFY_EXPR, void_type_node, t, rhs);
gimplify_and_add (t, pre_p);
t = built_in_decls[BUILT_IN_GOMP_ATOMIC_END];
t = build_function_call_expr (t, NULL);
gimplify_and_add (t, pre_p);
*expr_p = NULL;
return GS_ALL_DONE;
}
/* Gimplify an OMP_ATOMIC statement. */
static enum gimplify_status
gimplify_omp_atomic (tree *expr_p, tree *pre_p)
{
tree addr = TREE_OPERAND (*expr_p, 0);
tree rhs = TREE_OPERAND (*expr_p, 1);
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
HOST_WIDE_INT index;
/* Make sure the type is one of the supported sizes. */
index = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
index = exact_log2 (index);
if (index >= 0 && index <= 4)
{
enum gimplify_status gs;
unsigned int align;
if (DECL_P (TREE_OPERAND (addr, 0)))
align = DECL_ALIGN_UNIT (TREE_OPERAND (addr, 0));
else if (TREE_CODE (TREE_OPERAND (addr, 0)) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (addr, 0), 1))
== FIELD_DECL)
align = DECL_ALIGN_UNIT (TREE_OPERAND (TREE_OPERAND (addr, 0), 1));
else
align = TYPE_ALIGN_UNIT (type);
/* __sync builtins require strict data alignment. */
if (exact_log2 (align) >= index)
{
/* When possible, use specialized atomic update functions. */
if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
{
gs = gimplify_omp_atomic_fetch_op (expr_p, addr, rhs, index);
if (gs != GS_UNHANDLED)
return gs;
}
/* If we don't have specialized __sync builtins, try and implement
as a compare and swap loop. */
gs = gimplify_omp_atomic_pipeline (expr_p, pre_p, addr, rhs, index);
if (gs != GS_UNHANDLED)
return gs;
}
}
/* The ultimate fallback is wrapping the operation in a mutex. */
return gimplify_omp_atomic_mutex (expr_p, pre_p, addr, rhs);
}
/* Gimplifies the expression tree pointed to by EXPR_P. Return 0 if
gimplification failed.
PRE_P points to the list where side effects that must happen before
EXPR should be stored.
POST_P points to the list where side effects that must happen after
EXPR should be stored, or NULL if there is no suitable list. In
that case, we copy the result to a temporary, emit the
post-effects, and then return the temporary.
GIMPLE_TEST_F points to a function that takes a tree T and
returns nonzero if T is in the GIMPLE form requested by the
caller. The GIMPLE predicates are in tree-gimple.c.
This test is used twice. Before gimplification, the test is
invoked to determine whether *EXPR_P is already gimple enough. If
that fails, *EXPR_P is gimplified according to its code and
GIMPLE_TEST_F is called again. If the test still fails, then a new
temporary variable is created and assigned the value of the
gimplified expression.
FALLBACK tells the function what sort of a temporary we want. If the 1
bit is set, an rvalue is OK. If the 2 bit is set, an lvalue is OK.
If both are set, either is OK, but an lvalue is preferable.
The return value is either GS_ERROR or GS_ALL_DONE, since this function
iterates until solution. */
enum gimplify_status
gimplify_expr (tree *expr_p, tree *pre_p, tree *post_p,
bool (* gimple_test_f) (tree), fallback_t fallback)
{
tree tmp;
tree internal_pre = NULL_TREE;
tree internal_post = NULL_TREE;
tree save_expr;
int is_statement = (pre_p == NULL);
location_t saved_location;
enum gimplify_status ret;
save_expr = *expr_p;
if (save_expr == NULL_TREE)
return GS_ALL_DONE;
/* We used to check the predicate here and return immediately if it
succeeds. This is wrong; the design is for gimplification to be
idempotent, and for the predicates to only test for valid forms, not
whether they are fully simplified. */
/* Set up our internal queues if needed. */
if (pre_p == NULL)
pre_p = &internal_pre;
if (post_p == NULL)
post_p = &internal_post;
saved_location = input_location;
if (save_expr != error_mark_node
&& EXPR_HAS_LOCATION (*expr_p))
input_location = EXPR_LOCATION (*expr_p);
/* Loop over the specific gimplifiers until the toplevel node
remains the same. */
do
{
/* Strip away as many useless type conversions as possible
at the toplevel. */
STRIP_USELESS_TYPE_CONVERSION (*expr_p);
/* Remember the expr. */
save_expr = *expr_p;
/* Die, die, die, my darling. */
if (save_expr == error_mark_node
|| (TREE_TYPE (save_expr)
&& TREE_TYPE (save_expr) == error_mark_node))
{
ret = GS_ERROR;
break;
}
/* Do any language-specific gimplification. */
ret = lang_hooks.gimplify_expr (expr_p, pre_p, post_p);
if (ret == GS_OK)
{
if (*expr_p == NULL_TREE)
break;
if (*expr_p != save_expr)
continue;
}
else if (ret != GS_UNHANDLED)
break;
ret = GS_OK;
switch (TREE_CODE (*expr_p))
{
/* First deal with the special cases. */
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
ret = gimplify_self_mod_expr (expr_p, pre_p, post_p,
fallback != fb_none);
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case COMPONENT_REF:
case VIEW_CONVERT_EXPR:
ret = gimplify_compound_lval (expr_p, pre_p, post_p,
fallback ? fallback : fb_rvalue);
break;
case COND_EXPR:
ret = gimplify_cond_expr (expr_p, pre_p, fallback);
/* C99 code may assign to an array in a structure value of a
conditional expression, and this has undefined behavior
only on execution, so create a temporary if an lvalue is
required. */
if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
break;
case CALL_EXPR:
ret = gimplify_call_expr (expr_p, pre_p, fallback != fb_none);
/* C99 code may assign to an array in a structure returned
from a function, and this has undefined behavior only on
execution, so create a temporary if an lvalue is
required. */
if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
break;
case TREE_LIST:
gcc_unreachable ();
case COMPOUND_EXPR:
ret = gimplify_compound_expr (expr_p, pre_p, fallback != fb_none);
break;
case MODIFY_EXPR:
case INIT_EXPR:
ret = gimplify_modify_expr (expr_p, pre_p, post_p,
fallback != fb_none);
/* The distinction between MODIFY_EXPR and INIT_EXPR is no longer
useful. */
if (*expr_p && TREE_CODE (*expr_p) == INIT_EXPR)
TREE_SET_CODE (*expr_p, MODIFY_EXPR);
break;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
ret = gimplify_boolean_expr (expr_p);
break;
case TRUTH_NOT_EXPR:
TREE_OPERAND (*expr_p, 0)
= gimple_boolify (TREE_OPERAND (*expr_p, 0));
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
case ADDR_EXPR:
ret = gimplify_addr_expr (expr_p, pre_p, post_p);
break;
case VA_ARG_EXPR:
ret = gimplify_va_arg_expr (expr_p, pre_p, post_p);
break;
case CONVERT_EXPR:
case NOP_EXPR:
if (IS_EMPTY_STMT (*expr_p))
{
ret = GS_ALL_DONE;
break;
}
if (VOID_TYPE_P (TREE_TYPE (*expr_p))
|| fallback == fb_none)
{
/* Just strip a conversion to void (or in void context) and
try again. */
*expr_p = TREE_OPERAND (*expr_p, 0);
break;
}
ret = gimplify_conversion (expr_p);
if (ret == GS_ERROR)
break;
if (*expr_p != save_expr)
break;
/* FALLTHRU */
case FIX_TRUNC_EXPR:
case FIX_CEIL_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
/* unary_expr: ... | '(' cast ')' val | ... */
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
case INDIRECT_REF:
*expr_p = fold_indirect_ref (*expr_p);
if (*expr_p != save_expr)
break;
/* else fall through. */
case ALIGN_INDIRECT_REF:
case MISALIGNED_INDIRECT_REF:
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_reg, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
/* Constants need not be gimplified. */
case INTEGER_CST:
case REAL_CST:
case STRING_CST:
case COMPLEX_CST:
case VECTOR_CST:
ret = GS_ALL_DONE;
break;
case CONST_DECL:
/* If we require an lvalue, such as for ADDR_EXPR, retain the
CONST_DECL node. Otherwise the decl is replaceable by its
value. */
/* ??? Should be == fb_lvalue, but ADDR_EXPR passes fb_either. */
if (fallback & fb_lvalue)
ret = GS_ALL_DONE;
else
*expr_p = DECL_INITIAL (*expr_p);
break;
case DECL_EXPR:
ret = gimplify_decl_expr (expr_p);
break;
case EXC_PTR_EXPR:
/* FIXME make this a decl. */
ret = GS_ALL_DONE;
break;
case BIND_EXPR:
ret = gimplify_bind_expr (expr_p, pre_p);
break;
case LOOP_EXPR:
ret = gimplify_loop_expr (expr_p, pre_p);
break;
case SWITCH_EXPR:
ret = gimplify_switch_expr (expr_p, pre_p);
break;
case EXIT_EXPR:
ret = gimplify_exit_expr (expr_p);
break;
case GOTO_EXPR:
/* If the target is not LABEL, then it is a computed jump
and the target needs to be gimplified. */
if (TREE_CODE (GOTO_DESTINATION (*expr_p)) != LABEL_DECL)
ret = gimplify_expr (&GOTO_DESTINATION (*expr_p), pre_p,
NULL, is_gimple_val, fb_rvalue);
break;
case LABEL_EXPR:
ret = GS_ALL_DONE;
gcc_assert (decl_function_context (LABEL_EXPR_LABEL (*expr_p))
== current_function_decl);
break;
case CASE_LABEL_EXPR:
ret = gimplify_case_label_expr (expr_p);
break;
case RETURN_EXPR:
ret = gimplify_return_expr (*expr_p, pre_p);
break;
case CONSTRUCTOR:
/* Don't reduce this in place; let gimplify_init_constructor work its
magic. Buf if we're just elaborating this for side effects, just
gimplify any element that has side-effects. */
if (fallback == fb_none)
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
tree temp = NULL_TREE;
for (ix = 0;
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (*expr_p),
ix, ce);
ix++)
if (TREE_SIDE_EFFECTS (ce->value))
append_to_statement_list (ce->value, &temp);
*expr_p = temp;
ret = GS_OK;
}
/* C99 code may assign to an array in a constructed
structure or union, and this has undefined behavior only
on execution, so create a temporary if an lvalue is
required. */
else if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
else
ret = GS_ALL_DONE;
break;
/* The following are special cases that are not handled by the
original GIMPLE grammar. */
/* SAVE_EXPR nodes are converted into a GIMPLE identifier and
eliminated. */
case SAVE_EXPR:
ret = gimplify_save_expr (expr_p, pre_p, post_p);
break;
case BIT_FIELD_REF:
{
enum gimplify_status r0, r1, r2;
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_lvalue, fb_either);
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
r2 = gimplify_expr (&TREE_OPERAND (*expr_p, 2), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
ret = MIN (r0, MIN (r1, r2));
}
break;
case NON_LVALUE_EXPR:
/* This should have been stripped above. */
gcc_unreachable ();
case ASM_EXPR:
ret = gimplify_asm_expr (expr_p, pre_p, post_p);
break;
case TRY_FINALLY_EXPR:
case TRY_CATCH_EXPR:
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 0));
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 1));
ret = GS_ALL_DONE;
break;
case CLEANUP_POINT_EXPR:
ret = gimplify_cleanup_point_expr (expr_p, pre_p);
break;
case TARGET_EXPR:
ret = gimplify_target_expr (expr_p, pre_p, post_p);
break;
case CATCH_EXPR:
gimplify_to_stmt_list (&CATCH_BODY (*expr_p));
ret = GS_ALL_DONE;
break;
case EH_FILTER_EXPR:
gimplify_to_stmt_list (&EH_FILTER_FAILURE (*expr_p));
ret = GS_ALL_DONE;
break;
case OBJ_TYPE_REF:
{
enum gimplify_status r0, r1;
r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, post_p,
is_gimple_val, fb_rvalue);
r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (r0, r1);
}
break;
case LABEL_DECL:
/* We get here when taking the address of a label. We mark
the label as "forced"; meaning it can never be removed and
it is a potential target for any computed goto. */
FORCED_LABEL (*expr_p) = 1;
ret = GS_ALL_DONE;
break;
case STATEMENT_LIST:
ret = gimplify_statement_list (expr_p, pre_p);
break;
case WITH_SIZE_EXPR:
{
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p == &internal_post ? NULL : post_p,
gimple_test_f, fallback);
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
}
break;
case VAR_DECL:
case PARM_DECL:
ret = gimplify_var_or_parm_decl (expr_p);
break;
case RESULT_DECL:
/* When within an OpenMP context, notice uses of variables. */
if (gimplify_omp_ctxp)
omp_notice_variable (gimplify_omp_ctxp, *expr_p, true);
ret = GS_ALL_DONE;
break;
case SSA_NAME:
/* Allow callbacks into the gimplifier during optimization. */
ret = GS_ALL_DONE;
break;
case OMP_PARALLEL:
ret = gimplify_omp_parallel (expr_p, pre_p);
break;
case OMP_FOR:
ret = gimplify_omp_for (expr_p, pre_p);
break;
case OMP_SECTIONS:
case OMP_SINGLE:
ret = gimplify_omp_workshare (expr_p, pre_p);
break;
case OMP_SECTION:
case OMP_MASTER:
case OMP_ORDERED:
case OMP_CRITICAL:
gimplify_to_stmt_list (&OMP_BODY (*expr_p));
break;
case OMP_ATOMIC:
ret = gimplify_omp_atomic (expr_p, pre_p);
break;
case OMP_RETURN:
case OMP_CONTINUE:
ret = GS_ALL_DONE;
break;
default:
switch (TREE_CODE_CLASS (TREE_CODE (*expr_p)))
{
case tcc_comparison:
/* Handle comparison of objects of non scalar mode aggregates
with a call to memcmp. It would be nice to only have to do
this for variable-sized objects, but then we'd have to allow
the same nest of reference nodes we allow for MODIFY_EXPR and
that's too complex.
Compare scalar mode aggregates as scalar mode values. Using
memcmp for them would be very inefficient at best, and is
plain wrong if bitfields are involved. */
{
tree type = TREE_TYPE (TREE_OPERAND (*expr_p, 1));
if (!AGGREGATE_TYPE_P (type))
goto expr_2;
else if (TYPE_MODE (type) != BLKmode)
ret = gimplify_scalar_mode_aggregate_compare (expr_p);
else
ret = gimplify_variable_sized_compare (expr_p);
break;
}
/* If *EXPR_P does not need to be special-cased, handle it
according to its class. */
case tcc_unary:
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p, is_gimple_val, fb_rvalue);
break;
case tcc_binary:
expr_2:
{
enum gimplify_status r0, r1;
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p, is_gimple_val, fb_rvalue);
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p,
post_p, is_gimple_val, fb_rvalue);
ret = MIN (r0, r1);
break;
}
case tcc_declaration:
case tcc_constant:
ret = GS_ALL_DONE;
goto dont_recalculate;
default:
gcc_assert (TREE_CODE (*expr_p) == TRUTH_AND_EXPR
|| TREE_CODE (*expr_p) == TRUTH_OR_EXPR
|| TREE_CODE (*expr_p) == TRUTH_XOR_EXPR);
goto expr_2;
}
recalculate_side_effects (*expr_p);
dont_recalculate:
break;
}
/* If we replaced *expr_p, gimplify again. */
if (ret == GS_OK && (*expr_p == NULL || *expr_p == save_expr))
ret = GS_ALL_DONE;
}
while (ret == GS_OK);
/* If we encountered an error_mark somewhere nested inside, either
stub out the statement or propagate the error back out. */
if (ret == GS_ERROR)
{
if (is_statement)
*expr_p = NULL;
goto out;
}
/* This was only valid as a return value from the langhook, which
we handled. Make sure it doesn't escape from any other context. */
gcc_assert (ret != GS_UNHANDLED);
if (fallback == fb_none && *expr_p && !is_gimple_stmt (*expr_p))
{
/* We aren't looking for a value, and we don't have a valid
statement. If it doesn't have side-effects, throw it away. */
if (!TREE_SIDE_EFFECTS (*expr_p))
*expr_p = NULL;
else if (!TREE_THIS_VOLATILE (*expr_p))
{
/* This is probably a _REF that contains something nested that
has side effects. Recurse through the operands to find it. */
enum tree_code code = TREE_CODE (*expr_p);
switch (code)
{
case COMPONENT_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case VIEW_CONVERT_EXPR:
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
gimple_test_f, fallback);
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
gimple_test_f, fallback);
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
gimple_test_f, fallback);
break;
default:
/* Anything else with side-effects must be converted to
a valid statement before we get here. */
gcc_unreachable ();
}
*expr_p = NULL;
}
else if (COMPLETE_TYPE_P (TREE_TYPE (*expr_p))
&& TYPE_MODE (TREE_TYPE (*expr_p)) != BLKmode)
{
/* Historically, the compiler has treated a bare reference
to a non-BLKmode volatile lvalue as forcing a load. */
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (*expr_p));
/* Normally, we do not want to create a temporary for a
TREE_ADDRESSABLE type because such a type should not be
copied by bitwise-assignment. However, we make an
exception here, as all we are doing here is ensuring that
we read the bytes that make up the type. We use
create_tmp_var_raw because create_tmp_var will abort when
given a TREE_ADDRESSABLE type. */
tree tmp = create_tmp_var_raw (type, "vol");
gimple_add_tmp_var (tmp);
*expr_p = build2 (MODIFY_EXPR, type, tmp, *expr_p);
}
else
/* We can't do anything useful with a volatile reference to
an incomplete type, so just throw it away. Likewise for
a BLKmode type, since any implicit inner load should
already have been turned into an explicit one by the
gimplification process. */
*expr_p = NULL;
}
/* If we are gimplifying at the statement level, we're done. Tack
everything together and replace the original statement with the
gimplified form. */
if (fallback == fb_none || is_statement)
{
if (internal_pre || internal_post)
{
append_to_statement_list (*expr_p, &internal_pre);
append_to_statement_list (internal_post, &internal_pre);
annotate_all_with_locus (&internal_pre, input_location);
*expr_p = internal_pre;
}
else if (!*expr_p)
;
else if (TREE_CODE (*expr_p) == STATEMENT_LIST)
annotate_all_with_locus (expr_p, input_location);
else
annotate_one_with_locus (*expr_p, input_location);
goto out;
}
/* Otherwise we're gimplifying a subexpression, so the resulting value is
interesting. */
/* If it's sufficiently simple already, we're done. Unless we are
handling some post-effects internally; if that's the case, we need to
copy into a temp before adding the post-effects to the tree. */
if (!internal_post && (*gimple_test_f) (*expr_p))
goto out;
/* Otherwise, we need to create a new temporary for the gimplified
expression. */
/* We can't return an lvalue if we have an internal postqueue. The
object the lvalue refers to would (probably) be modified by the
postqueue; we need to copy the value out first, which means an
rvalue. */
if ((fallback & fb_lvalue) && !internal_post
&& is_gimple_addressable (*expr_p))
{
/* An lvalue will do. Take the address of the expression, store it
in a temporary, and replace the expression with an INDIRECT_REF of
that temporary. */
tmp = build_fold_addr_expr (*expr_p);
gimplify_expr (&tmp, pre_p, post_p, is_gimple_reg, fb_rvalue);
*expr_p = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (tmp)), tmp);
}
else if ((fallback & fb_rvalue) && is_gimple_formal_tmp_rhs (*expr_p))
{
gcc_assert (!VOID_TYPE_P (TREE_TYPE (*expr_p)));
/* An rvalue will do. Assign the gimplified expression into a new
temporary TMP and replace the original expression with TMP. */
if (internal_post || (fallback & fb_lvalue))
/* The postqueue might change the value of the expression between
the initialization and use of the temporary, so we can't use a
formal temp. FIXME do we care? */
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
else
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
if (TREE_CODE (*expr_p) != SSA_NAME)
DECL_GIMPLE_FORMAL_TEMP_P (*expr_p) = 1;
}
else
{
#ifdef ENABLE_CHECKING
if (!(fallback & fb_mayfail))
{
fprintf (stderr, "gimplification failed:\n");
print_generic_expr (stderr, *expr_p, 0);
debug_tree (*expr_p);
internal_error ("gimplification failed");
}
#endif
gcc_assert (fallback & fb_mayfail);
/* If this is an asm statement, and the user asked for the
impossible, don't die. Fail and let gimplify_asm_expr
issue an error. */
ret = GS_ERROR;
goto out;
}
/* Make sure the temporary matches our predicate. */
gcc_assert ((*gimple_test_f) (*expr_p));
if (internal_post)
{
annotate_all_with_locus (&internal_post, input_location);
append_to_statement_list (internal_post, pre_p);
}
out:
input_location = saved_location;
return ret;
}
/* Look through TYPE for variable-sized objects and gimplify each such
size that we find. Add to LIST_P any statements generated. */
void
gimplify_type_sizes (tree type, tree *list_p)
{
tree field, t;
if (type == NULL || type == error_mark_node)
return;
/* We first do the main variant, then copy into any other variants. */
type = TYPE_MAIN_VARIANT (type);
/* Avoid infinite recursion. */
if (TYPE_SIZES_GIMPLIFIED (type))
return;
TYPE_SIZES_GIMPLIFIED (type) = 1;
switch (TREE_CODE (type))
{
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case REAL_TYPE:
gimplify_one_sizepos (&TYPE_MIN_VALUE (type), list_p);
gimplify_one_sizepos (&TYPE_MAX_VALUE (type), list_p);
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (type);
TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (type);
}
break;
case ARRAY_TYPE:
/* These types may not have declarations, so handle them here. */
gimplify_type_sizes (TREE_TYPE (type), list_p);
gimplify_type_sizes (TYPE_DOMAIN (type), list_p);
break;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
gimplify_one_sizepos (&DECL_FIELD_OFFSET (field), list_p);
gimplify_type_sizes (TREE_TYPE (field), list_p);
}
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
/* We used to recurse on the pointed-to type here, which turned out to
be incorrect because its definition might refer to variables not
yet initialized at this point if a forward declaration is involved.
It was actually useful for anonymous pointed-to types to ensure
that the sizes evaluation dominates every possible later use of the
values. Restricting to such types here would be safe since there
is no possible forward declaration around, but would introduce an
undesirable middle-end semantic to anonymity. We then defer to
front-ends the responsibility of ensuring that the sizes are
evaluated both early and late enough, e.g. by attaching artificial
type declarations to the tree. */
break;
default:
break;
}
gimplify_one_sizepos (&TYPE_SIZE (type), list_p);
gimplify_one_sizepos (&TYPE_SIZE_UNIT (type), list_p);
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
TYPE_SIZE (t) = TYPE_SIZE (type);
TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (type);
TYPE_SIZES_GIMPLIFIED (t) = 1;
}
}
/* A subroutine of gimplify_type_sizes to make sure that *EXPR_P,
a size or position, has had all of its SAVE_EXPRs evaluated.
We add any required statements to STMT_P. */
void
gimplify_one_sizepos (tree *expr_p, tree *stmt_p)
{
tree type, expr = *expr_p;
/* We don't do anything if the value isn't there, is constant, or contains
A PLACEHOLDER_EXPR. We also don't want to do anything if it's already
a VAR_DECL. If it's a VAR_DECL from another function, the gimplifier
will want to replace it with a new variable, but that will cause problems
if this type is from outside the function. It's OK to have that here. */
if (expr == NULL_TREE || TREE_CONSTANT (expr)
|| TREE_CODE (expr) == VAR_DECL
|| CONTAINS_PLACEHOLDER_P (expr))
return;
type = TREE_TYPE (expr);
*expr_p = unshare_expr (expr);
gimplify_expr (expr_p, stmt_p, NULL, is_gimple_val, fb_rvalue);
expr = *expr_p;
/* Verify that we've an exact type match with the original expression.
In particular, we do not wish to drop a "sizetype" in favour of a
type of similar dimensions. We don't want to pollute the generic
type-stripping code with this knowledge because it doesn't matter
for the bulk of GENERIC/GIMPLE. It only matters that TYPE_SIZE_UNIT
and friends retain their "sizetype-ness". */
if (TREE_TYPE (expr) != type
&& TREE_CODE (type) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type))
{
tree tmp;
*expr_p = create_tmp_var (type, NULL);
tmp = build1 (NOP_EXPR, type, expr);
tmp = build2 (MODIFY_EXPR, type, *expr_p, tmp);
if (EXPR_HAS_LOCATION (expr))
SET_EXPR_LOCUS (tmp, EXPR_LOCUS (expr));
else
SET_EXPR_LOCATION (tmp, input_location);
gimplify_and_add (tmp, stmt_p);
}
}
#ifdef ENABLE_CHECKING
/* Compare types A and B for a "close enough" match. */
static bool
cpt_same_type (tree a, tree b)
{
if (lang_hooks.types_compatible_p (a, b))
return true;
/* ??? The C++ FE decomposes METHOD_TYPES to FUNCTION_TYPES and doesn't
link them together. This routine is intended to catch type errors
that will affect the optimizers, and the optimizers don't add new
dereferences of function pointers, so ignore it. */
if ((TREE_CODE (a) == FUNCTION_TYPE || TREE_CODE (a) == METHOD_TYPE)
&& (TREE_CODE (b) == FUNCTION_TYPE || TREE_CODE (b) == METHOD_TYPE))
return true;
/* ??? The C FE pushes type qualifiers after the fact into the type of
the element from the type of the array. See build_unary_op's handling
of ADDR_EXPR. This seems wrong -- if we were going to do this, we
should have done it when creating the variable in the first place.
Alternately, why aren't the two array types made variants? */
if (TREE_CODE (a) == ARRAY_TYPE && TREE_CODE (b) == ARRAY_TYPE)
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
/* And because of those, we have to recurse down through pointers. */
if (POINTER_TYPE_P (a) && POINTER_TYPE_P (b))
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
return false;
}
/* Check for some cases of the front end missing cast expressions.
The type of a dereference should correspond to the pointer type;
similarly the type of an address should match its object. */
static tree
check_pointer_types_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
tree ptype, otype, dtype;
switch (TREE_CODE (t))
{
case INDIRECT_REF:
case ARRAY_REF:
otype = TREE_TYPE (t);
ptype = TREE_TYPE (TREE_OPERAND (t, 0));
dtype = TREE_TYPE (ptype);
gcc_assert (cpt_same_type (otype, dtype));
break;
case ADDR_EXPR:
ptype = TREE_TYPE (t);
otype = TREE_TYPE (TREE_OPERAND (t, 0));
dtype = TREE_TYPE (ptype);
if (!cpt_same_type (otype, dtype))
{
/* &array is allowed to produce a pointer to the element, rather than
a pointer to the array type. We must allow this in order to
properly represent assigning the address of an array in C into
pointer to the element type. */
gcc_assert (TREE_CODE (otype) == ARRAY_TYPE
&& POINTER_TYPE_P (ptype)
&& cpt_same_type (TREE_TYPE (otype), dtype));
break;
}
break;
default:
return NULL_TREE;
}
return NULL_TREE;
}
#endif
/* Gimplify the body of statements pointed to by BODY_P. FNDECL is the
function decl containing BODY. */
void
gimplify_body (tree *body_p, tree fndecl, bool do_parms)
{
location_t saved_location = input_location;
tree body, parm_stmts;
timevar_push (TV_TREE_GIMPLIFY);
gcc_assert (gimplify_ctxp == NULL);
push_gimplify_context ();
/* Unshare most shared trees in the body and in that of any nested functions.
It would seem we don't have to do this for nested functions because
they are supposed to be output and then the outer function gimplified
first, but the g++ front end doesn't always do it that way. */
unshare_body (body_p, fndecl);
unvisit_body (body_p, fndecl);
/* Make sure input_location isn't set to something wierd. */
input_location = DECL_SOURCE_LOCATION (fndecl);
/* Resolve callee-copies. This has to be done before processing
the body so that DECL_VALUE_EXPR gets processed correctly. */
parm_stmts = do_parms ? gimplify_parameters () : NULL;
/* Gimplify the function's body. */
gimplify_stmt (body_p);
body = *body_p;
if (!body)
body = alloc_stmt_list ();
else if (TREE_CODE (body) == STATEMENT_LIST)
{
tree t = expr_only (*body_p);
if (t)
body = t;
}
/* If there isn't an outer BIND_EXPR, add one. */
if (TREE_CODE (body) != BIND_EXPR)
{
tree b = build3 (BIND_EXPR, void_type_node, NULL_TREE,
NULL_TREE, NULL_TREE);
TREE_SIDE_EFFECTS (b) = 1;
append_to_statement_list_force (body, &BIND_EXPR_BODY (b));
body = b;
}
/* If we had callee-copies statements, insert them at the beginning
of the function. */
if (parm_stmts)
{
append_to_statement_list_force (BIND_EXPR_BODY (body), &parm_stmts);
BIND_EXPR_BODY (body) = parm_stmts;
}
/* Unshare again, in case gimplification was sloppy. */
unshare_all_trees (body);
*body_p = body;
pop_gimplify_context (body);
gcc_assert (gimplify_ctxp == NULL);
#ifdef ENABLE_CHECKING
walk_tree (body_p, check_pointer_types_r, NULL, NULL);
#endif
timevar_pop (TV_TREE_GIMPLIFY);
input_location = saved_location;
}
/* Entry point to the gimplification pass. FNDECL is the FUNCTION_DECL
node for the function we want to gimplify. */
void
gimplify_function_tree (tree fndecl)
{
tree oldfn, parm, ret;
oldfn = current_function_decl;
current_function_decl = fndecl;
cfun = DECL_STRUCT_FUNCTION (fndecl);
if (cfun == NULL)
allocate_struct_function (fndecl);
for (parm = DECL_ARGUMENTS (fndecl); parm ; parm = TREE_CHAIN (parm))
{
/* Preliminarily mark non-addressed complex variables as eligible
for promotion to gimple registers. We'll transform their uses
as we find them. */
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
&& !TREE_THIS_VOLATILE (parm)
&& !needs_to_live_in_memory (parm))
DECL_COMPLEX_GIMPLE_REG_P (parm) = 1;
}
ret = DECL_RESULT (fndecl);
if (TREE_CODE (TREE_TYPE (ret)) == COMPLEX_TYPE
&& !needs_to_live_in_memory (ret))
DECL_COMPLEX_GIMPLE_REG_P (ret) = 1;
gimplify_body (&DECL_SAVED_TREE (fndecl), fndecl, true);
/* If we're instrumenting function entry/exit, then prepend the call to
the entry hook and wrap the whole function in a TRY_FINALLY_EXPR to
catch the exit hook. */
/* ??? Add some way to ignore exceptions for this TFE. */
if (flag_instrument_function_entry_exit
&& !DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl)
&& !flag_instrument_functions_exclude_p (fndecl))
{
tree tf, x, bind;
tf = build2 (TRY_FINALLY_EXPR, void_type_node, NULL, NULL);
TREE_SIDE_EFFECTS (tf) = 1;
x = DECL_SAVED_TREE (fndecl);
append_to_statement_list (x, &TREE_OPERAND (tf, 0));
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_EXIT];
x = build_function_call_expr (x, NULL);
append_to_statement_list (x, &TREE_OPERAND (tf, 1));
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
TREE_SIDE_EFFECTS (bind) = 1;
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_ENTER];
x = build_function_call_expr (x, NULL);
append_to_statement_list (x, &BIND_EXPR_BODY (bind));
append_to_statement_list (tf, &BIND_EXPR_BODY (bind));
DECL_SAVED_TREE (fndecl) = bind;
}
current_function_decl = oldfn;
cfun = oldfn ? DECL_STRUCT_FUNCTION (oldfn) : NULL;
}
/* Expands EXPR to list of gimple statements STMTS. If SIMPLE is true,
force the result to be either ssa_name or an invariant, otherwise
just force it to be a rhs expression. If VAR is not NULL, make the
base variable of the final destination be VAR if suitable. */
tree
force_gimple_operand (tree expr, tree *stmts, bool simple, tree var)
{
tree t;
enum gimplify_status ret;
gimple_predicate gimple_test_f;
*stmts = NULL_TREE;
if (is_gimple_val (expr))
return expr;
gimple_test_f = simple ? is_gimple_val : is_gimple_reg_rhs;
push_gimplify_context ();
gimplify_ctxp->into_ssa = in_ssa_p;
if (var)
expr = build2 (MODIFY_EXPR, TREE_TYPE (var), var, expr);
ret = gimplify_expr (&expr, stmts, NULL,
gimple_test_f, fb_rvalue);
gcc_assert (ret != GS_ERROR);
if (referenced_vars)
{
for (t = gimplify_ctxp->temps; t ; t = TREE_CHAIN (t))
add_referenced_var (t);
}
pop_gimplify_context (NULL);
return expr;
}
/* Invokes force_gimple_operand for EXPR with parameters SIMPLE_P and VAR. If
some statements are produced, emits them before BSI. */
tree
force_gimple_operand_bsi (block_stmt_iterator *bsi, tree expr,
bool simple_p, tree var)
{
tree stmts;
expr = force_gimple_operand (expr, &stmts, simple_p, var);
if (stmts)
bsi_insert_before (bsi, stmts, BSI_SAME_STMT);
return expr;
}
#include "gt-gimplify.h"