mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-15 15:06:42 +00:00
cf6ea6f27a
parse it will be committed in a separate action. Sponsored by: Netflix
4013 lines
120 KiB
C
4013 lines
120 KiB
C
/*-
|
|
* Copyright (c) 2009 Yahoo! Inc.
|
|
* Copyright (c) 2011-2015 LSI Corp.
|
|
* Copyright (c) 2013-2016 Avago Technologies
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/* Communications core for Avago Technologies (LSI) MPT3 */
|
|
|
|
/* TODO Move headers to mprvar */
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <dev/mpr/mpi/mpi2_type.h>
|
|
#include <dev/mpr/mpi/mpi2.h>
|
|
#include <dev/mpr/mpi/mpi2_ioc.h>
|
|
#include <dev/mpr/mpi/mpi2_sas.h>
|
|
#include <dev/mpr/mpi/mpi2_pci.h>
|
|
#include <dev/mpr/mpi/mpi2_cnfg.h>
|
|
#include <dev/mpr/mpi/mpi2_init.h>
|
|
#include <dev/mpr/mpi/mpi2_tool.h>
|
|
#include <dev/mpr/mpr_ioctl.h>
|
|
#include <dev/mpr/mprvar.h>
|
|
#include <dev/mpr/mpr_table.h>
|
|
#include <dev/mpr/mpr_sas.h>
|
|
|
|
static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
|
|
static int mpr_init_queues(struct mpr_softc *sc);
|
|
static void mpr_resize_queues(struct mpr_softc *sc);
|
|
static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
|
|
static int mpr_transition_operational(struct mpr_softc *sc);
|
|
static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
|
|
static void mpr_iocfacts_free(struct mpr_softc *sc);
|
|
static void mpr_startup(void *arg);
|
|
static int mpr_send_iocinit(struct mpr_softc *sc);
|
|
static int mpr_alloc_queues(struct mpr_softc *sc);
|
|
static int mpr_alloc_hw_queues(struct mpr_softc *sc);
|
|
static int mpr_alloc_replies(struct mpr_softc *sc);
|
|
static int mpr_alloc_requests(struct mpr_softc *sc);
|
|
static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
|
|
static int mpr_attach_log(struct mpr_softc *sc);
|
|
static __inline void mpr_complete_command(struct mpr_softc *sc,
|
|
struct mpr_command *cm);
|
|
static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
|
|
MPI2_EVENT_NOTIFICATION_REPLY *reply);
|
|
static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
|
|
static void mpr_periodic(void *);
|
|
static int mpr_reregister_events(struct mpr_softc *sc);
|
|
static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
|
|
static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
|
|
static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
|
|
static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
|
|
static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
|
|
static void mpr_parse_debug(struct mpr_softc *sc, char *list);
|
|
|
|
SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
|
|
|
|
MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
|
|
|
|
/*
|
|
* Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
|
|
* any state and back to its initialization state machine.
|
|
*/
|
|
static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
|
|
|
|
/*
|
|
* Added this union to smoothly convert le64toh cm->cm_desc.Words.
|
|
* Compiler only supports uint64_t to be passed as an argument.
|
|
* Otherwise it will throw this error:
|
|
* "aggregate value used where an integer was expected"
|
|
*/
|
|
typedef union _reply_descriptor {
|
|
u64 word;
|
|
struct {
|
|
u32 low;
|
|
u32 high;
|
|
} u;
|
|
} reply_descriptor, request_descriptor;
|
|
|
|
/* Rate limit chain-fail messages to 1 per minute */
|
|
static struct timeval mpr_chainfail_interval = { 60, 0 };
|
|
|
|
/*
|
|
* sleep_flag can be either CAN_SLEEP or NO_SLEEP.
|
|
* If this function is called from process context, it can sleep
|
|
* and there is no harm to sleep, in case if this fuction is called
|
|
* from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
|
|
* based on sleep flags driver will call either msleep, pause or DELAY.
|
|
* msleep and pause are of same variant, but pause is used when mpr_mtx
|
|
* is not hold by driver.
|
|
*/
|
|
static int
|
|
mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
|
|
{
|
|
uint32_t reg;
|
|
int i, error, tries = 0;
|
|
uint8_t first_wait_done = FALSE;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
/* Clear any pending interrupts */
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
|
|
/*
|
|
* Force NO_SLEEP for threads prohibited to sleep
|
|
* e.a Thread from interrupt handler are prohibited to sleep.
|
|
*/
|
|
#if __FreeBSD_version >= 1000029
|
|
if (curthread->td_no_sleeping)
|
|
#else //__FreeBSD_version < 1000029
|
|
if (curthread->td_pflags & TDP_NOSLEEPING)
|
|
#endif //__FreeBSD_version >= 1000029
|
|
sleep_flag = NO_SLEEP;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
|
|
/* Push the magic sequence */
|
|
error = ETIMEDOUT;
|
|
while (tries++ < 20) {
|
|
for (i = 0; i < sizeof(mpt2_reset_magic); i++)
|
|
mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
|
|
mpt2_reset_magic[i]);
|
|
|
|
/* wait 100 msec */
|
|
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
|
|
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
|
|
"mprdiag", hz/10);
|
|
else if (sleep_flag == CAN_SLEEP)
|
|
pause("mprdiag", hz/10);
|
|
else
|
|
DELAY(100 * 1000);
|
|
|
|
reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
|
|
if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
|
|
error);
|
|
return (error);
|
|
}
|
|
|
|
/* Send the actual reset. XXX need to refresh the reg? */
|
|
reg |= MPI2_DIAG_RESET_ADAPTER;
|
|
mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
|
|
reg);
|
|
mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
|
|
|
|
/* Wait up to 300 seconds in 50ms intervals */
|
|
error = ETIMEDOUT;
|
|
for (i = 0; i < 6000; i++) {
|
|
/*
|
|
* Wait 50 msec. If this is the first time through, wait 256
|
|
* msec to satisfy Diag Reset timing requirements.
|
|
*/
|
|
if (first_wait_done) {
|
|
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
|
|
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
|
|
"mprdiag", hz/20);
|
|
else if (sleep_flag == CAN_SLEEP)
|
|
pause("mprdiag", hz/20);
|
|
else
|
|
DELAY(50 * 1000);
|
|
} else {
|
|
DELAY(256 * 1000);
|
|
first_wait_done = TRUE;
|
|
}
|
|
/*
|
|
* Check for the RESET_ADAPTER bit to be cleared first, then
|
|
* wait for the RESET state to be cleared, which takes a little
|
|
* longer.
|
|
*/
|
|
reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
|
|
if (reg & MPI2_DIAG_RESET_ADAPTER) {
|
|
continue;
|
|
}
|
|
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
|
|
error);
|
|
return (error);
|
|
}
|
|
|
|
mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
|
|
mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
|
|
{
|
|
int error;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
error = 0;
|
|
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
|
|
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
|
|
MPI2_DOORBELL_FUNCTION_SHIFT);
|
|
|
|
if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"Doorbell handshake failed\n");
|
|
error = ETIMEDOUT;
|
|
}
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
mpr_transition_ready(struct mpr_softc *sc)
|
|
{
|
|
uint32_t reg, state;
|
|
int error, tries = 0;
|
|
int sleep_flags;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
/* If we are in attach call, do not sleep */
|
|
sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
|
|
? CAN_SLEEP : NO_SLEEP;
|
|
|
|
error = 0;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
|
|
__func__, sleep_flags);
|
|
|
|
while (tries++ < 1200) {
|
|
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg);
|
|
|
|
/*
|
|
* Ensure the IOC is ready to talk. If it's not, try
|
|
* resetting it.
|
|
*/
|
|
if (reg & MPI2_DOORBELL_USED) {
|
|
mpr_dprint(sc, MPR_INIT, " Not ready, sending diag "
|
|
"reset\n");
|
|
mpr_diag_reset(sc, sleep_flags);
|
|
DELAY(50000);
|
|
continue;
|
|
}
|
|
|
|
/* Is the adapter owned by another peer? */
|
|
if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
|
|
(MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
|
|
"control of another peer host, aborting "
|
|
"initialization.\n");
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
state = reg & MPI2_IOC_STATE_MASK;
|
|
if (state == MPI2_IOC_STATE_READY) {
|
|
/* Ready to go! */
|
|
error = 0;
|
|
break;
|
|
} else if (state == MPI2_IOC_STATE_FAULT) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
|
|
"state 0x%x, resetting\n",
|
|
state & MPI2_DOORBELL_FAULT_CODE_MASK);
|
|
mpr_diag_reset(sc, sleep_flags);
|
|
} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
|
|
/* Need to take ownership */
|
|
mpr_message_unit_reset(sc, sleep_flags);
|
|
} else if (state == MPI2_IOC_STATE_RESET) {
|
|
/* Wait a bit, IOC might be in transition */
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"IOC in unexpected reset state\n");
|
|
} else {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"IOC in unknown state 0x%x\n", state);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Wait 50ms for things to settle down. */
|
|
DELAY(50000);
|
|
}
|
|
|
|
if (error)
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"Cannot transition IOC to ready\n");
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
mpr_transition_operational(struct mpr_softc *sc)
|
|
{
|
|
uint32_t reg, state;
|
|
int error;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
|
|
error = 0;
|
|
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
|
|
|
|
state = reg & MPI2_IOC_STATE_MASK;
|
|
if (state != MPI2_IOC_STATE_READY) {
|
|
mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
|
|
if ((error = mpr_transition_ready(sc)) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"failed to transition ready, exit\n");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = mpr_send_iocinit(sc);
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
mpr_resize_queues(struct mpr_softc *sc)
|
|
{
|
|
u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
|
|
|
|
/*
|
|
* Size the queues. Since the reply queues always need one free
|
|
* entry, we'll deduct one reply message here. The LSI documents
|
|
* suggest instead to add a count to the request queue, but I think
|
|
* that it's better to deduct from reply queue.
|
|
*/
|
|
prireqcr = MAX(1, sc->max_prireqframes);
|
|
prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
|
|
|
|
reqcr = MAX(2, sc->max_reqframes);
|
|
reqcr = MIN(reqcr, sc->facts->RequestCredit);
|
|
|
|
sc->num_reqs = prireqcr + reqcr;
|
|
sc->num_prireqs = prireqcr;
|
|
sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
|
|
sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
|
|
|
|
/* Store the request frame size in bytes rather than as 32bit words */
|
|
sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
|
|
|
|
/*
|
|
* Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
|
|
* get the size of a Chain Frame. Previous versions use the size as a
|
|
* Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize
|
|
* is 0, use the default value. The IOCMaxChainSegmentSize is the
|
|
* number of 16-byte elelements that can fit in a Chain Frame, which is
|
|
* the size of an IEEE Simple SGE.
|
|
*/
|
|
if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
|
|
chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
|
|
if (chain_seg_size == 0)
|
|
chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
|
|
sc->chain_frame_size = chain_seg_size *
|
|
MPR_MAX_CHAIN_ELEMENT_SIZE;
|
|
} else {
|
|
sc->chain_frame_size = sc->reqframesz;
|
|
}
|
|
|
|
/*
|
|
* Max IO Size is Page Size * the following:
|
|
* ((SGEs per frame - 1 for chain element) * Max Chain Depth)
|
|
* + 1 for no chain needed in last frame
|
|
*
|
|
* If user suggests a Max IO size to use, use the smaller of the
|
|
* user's value and the calculated value as long as the user's
|
|
* value is larger than 0. The user's value is in pages.
|
|
*/
|
|
sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
|
|
maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
|
|
|
|
/*
|
|
* If I/O size limitation requested then use it and pass up to CAM.
|
|
* If not, use MAXPHYS as an optimization hint, but report HW limit.
|
|
*/
|
|
if (sc->max_io_pages > 0) {
|
|
maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
|
|
sc->maxio = maxio;
|
|
} else {
|
|
sc->maxio = maxio;
|
|
maxio = min(maxio, MAXPHYS);
|
|
}
|
|
|
|
sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
|
|
sges_per_frame * reqcr;
|
|
if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
|
|
sc->num_chains = sc->max_chains;
|
|
|
|
/*
|
|
* Figure out the number of MSIx-based queues. If the firmware or
|
|
* user has done something crazy and not allowed enough credit for
|
|
* the queues to be useful then don't enable multi-queue.
|
|
*/
|
|
if (sc->facts->MaxMSIxVectors < 2)
|
|
sc->msi_msgs = 1;
|
|
|
|
if (sc->msi_msgs > 1) {
|
|
sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
|
|
sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
|
|
if (sc->num_reqs / sc->msi_msgs < 2)
|
|
sc->msi_msgs = 1;
|
|
}
|
|
|
|
mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
|
|
sc->msi_msgs, sc->num_reqs, sc->num_replies);
|
|
}
|
|
|
|
/*
|
|
* This is called during attach and when re-initializing due to a Diag Reset.
|
|
* IOC Facts is used to allocate many of the structures needed by the driver.
|
|
* If called from attach, de-allocation is not required because the driver has
|
|
* not allocated any structures yet, but if called from a Diag Reset, previously
|
|
* allocated structures based on IOC Facts will need to be freed and re-
|
|
* allocated bases on the latest IOC Facts.
|
|
*/
|
|
static int
|
|
mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
|
|
{
|
|
int error;
|
|
Mpi2IOCFactsReply_t saved_facts;
|
|
uint8_t saved_mode, reallocating;
|
|
|
|
mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
|
|
|
|
/* Save old IOC Facts and then only reallocate if Facts have changed */
|
|
if (!attaching) {
|
|
bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
|
|
}
|
|
|
|
/*
|
|
* Get IOC Facts. In all cases throughout this function, panic if doing
|
|
* a re-initialization and only return the error if attaching so the OS
|
|
* can handle it.
|
|
*/
|
|
if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
|
|
if (attaching) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
|
|
"IOC Facts with error %d, exit\n", error);
|
|
return (error);
|
|
} else {
|
|
panic("%s failed to get IOC Facts with error %d\n",
|
|
__func__, error);
|
|
}
|
|
}
|
|
|
|
MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
|
|
|
|
snprintf(sc->fw_version, sizeof(sc->fw_version),
|
|
"%02d.%02d.%02d.%02d",
|
|
sc->facts->FWVersion.Struct.Major,
|
|
sc->facts->FWVersion.Struct.Minor,
|
|
sc->facts->FWVersion.Struct.Unit,
|
|
sc->facts->FWVersion.Struct.Dev);
|
|
|
|
mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
|
|
MPR_DRIVER_VERSION);
|
|
mpr_dprint(sc, MPR_INFO,
|
|
"IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
|
|
"\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
|
|
"\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
|
|
"\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
|
|
"\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
|
|
|
|
/*
|
|
* If the chip doesn't support event replay then a hard reset will be
|
|
* required to trigger a full discovery. Do the reset here then
|
|
* retransition to Ready. A hard reset might have already been done,
|
|
* but it doesn't hurt to do it again. Only do this if attaching, not
|
|
* for a Diag Reset.
|
|
*/
|
|
if (attaching && ((sc->facts->IOCCapabilities &
|
|
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
|
|
mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
|
|
mpr_diag_reset(sc, NO_SLEEP);
|
|
if ((error = mpr_transition_ready(sc)) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
|
|
"transition to ready with error %d, exit\n",
|
|
error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set flag if IR Firmware is loaded. If the RAID Capability has
|
|
* changed from the previous IOC Facts, log a warning, but only if
|
|
* checking this after a Diag Reset and not during attach.
|
|
*/
|
|
saved_mode = sc->ir_firmware;
|
|
if (sc->facts->IOCCapabilities &
|
|
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
|
|
sc->ir_firmware = 1;
|
|
if (!attaching) {
|
|
if (sc->ir_firmware != saved_mode) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
|
|
"in IOC Facts does not match previous mode\n");
|
|
}
|
|
}
|
|
|
|
/* Only deallocate and reallocate if relevant IOC Facts have changed */
|
|
reallocating = FALSE;
|
|
sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
|
|
|
|
if ((!attaching) &&
|
|
((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
|
|
(saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
|
|
(saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
|
|
(saved_facts.RequestCredit != sc->facts->RequestCredit) ||
|
|
(saved_facts.ProductID != sc->facts->ProductID) ||
|
|
(saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
|
|
(saved_facts.IOCRequestFrameSize !=
|
|
sc->facts->IOCRequestFrameSize) ||
|
|
(saved_facts.IOCMaxChainSegmentSize !=
|
|
sc->facts->IOCMaxChainSegmentSize) ||
|
|
(saved_facts.MaxTargets != sc->facts->MaxTargets) ||
|
|
(saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
|
|
(saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
|
|
(saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
|
|
(saved_facts.MaxReplyDescriptorPostQueueDepth !=
|
|
sc->facts->MaxReplyDescriptorPostQueueDepth) ||
|
|
(saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
|
|
(saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
|
|
(saved_facts.MaxPersistentEntries !=
|
|
sc->facts->MaxPersistentEntries))) {
|
|
reallocating = TRUE;
|
|
|
|
/* Record that we reallocated everything */
|
|
sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
|
|
}
|
|
|
|
/*
|
|
* Some things should be done if attaching or re-allocating after a Diag
|
|
* Reset, but are not needed after a Diag Reset if the FW has not
|
|
* changed.
|
|
*/
|
|
if (attaching || reallocating) {
|
|
/*
|
|
* Check if controller supports FW diag buffers and set flag to
|
|
* enable each type.
|
|
*/
|
|
if (sc->facts->IOCCapabilities &
|
|
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
|
|
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
|
|
enabled = TRUE;
|
|
if (sc->facts->IOCCapabilities &
|
|
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
|
|
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
|
|
enabled = TRUE;
|
|
if (sc->facts->IOCCapabilities &
|
|
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
|
|
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
|
|
enabled = TRUE;
|
|
|
|
/*
|
|
* Set flags for some supported items.
|
|
*/
|
|
if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
|
|
sc->eedp_enabled = TRUE;
|
|
if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
|
|
sc->control_TLR = TRUE;
|
|
if (sc->facts->IOCCapabilities &
|
|
MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
|
|
sc->atomic_desc_capable = TRUE;
|
|
|
|
mpr_resize_queues(sc);
|
|
|
|
/*
|
|
* Initialize all Tail Queues
|
|
*/
|
|
TAILQ_INIT(&sc->req_list);
|
|
TAILQ_INIT(&sc->high_priority_req_list);
|
|
TAILQ_INIT(&sc->chain_list);
|
|
TAILQ_INIT(&sc->prp_page_list);
|
|
TAILQ_INIT(&sc->tm_list);
|
|
}
|
|
|
|
/*
|
|
* If doing a Diag Reset and the FW is significantly different
|
|
* (reallocating will be set above in IOC Facts comparison), then all
|
|
* buffers based on the IOC Facts will need to be freed before they are
|
|
* reallocated.
|
|
*/
|
|
if (reallocating) {
|
|
mpr_iocfacts_free(sc);
|
|
mprsas_realloc_targets(sc, saved_facts.MaxTargets +
|
|
saved_facts.MaxVolumes);
|
|
}
|
|
|
|
/*
|
|
* Any deallocation has been completed. Now start reallocating
|
|
* if needed. Will only need to reallocate if attaching or if the new
|
|
* IOC Facts are different from the previous IOC Facts after a Diag
|
|
* Reset. Targets have already been allocated above if needed.
|
|
*/
|
|
error = 0;
|
|
while (attaching || reallocating) {
|
|
if ((error = mpr_alloc_hw_queues(sc)) != 0)
|
|
break;
|
|
if ((error = mpr_alloc_replies(sc)) != 0)
|
|
break;
|
|
if ((error = mpr_alloc_requests(sc)) != 0)
|
|
break;
|
|
if ((error = mpr_alloc_queues(sc)) != 0)
|
|
break;
|
|
break;
|
|
}
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"Failed to alloc queues with error %d\n", error);
|
|
mpr_free(sc);
|
|
return (error);
|
|
}
|
|
|
|
/* Always initialize the queues */
|
|
bzero(sc->free_queue, sc->fqdepth * 4);
|
|
mpr_init_queues(sc);
|
|
|
|
/*
|
|
* Always get the chip out of the reset state, but only panic if not
|
|
* attaching. If attaching and there is an error, that is handled by
|
|
* the OS.
|
|
*/
|
|
error = mpr_transition_operational(sc);
|
|
if (error != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
|
|
"transition to operational with error %d\n", error);
|
|
mpr_free(sc);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Finish the queue initialization.
|
|
* These are set here instead of in mpr_init_queues() because the
|
|
* IOC resets these values during the state transition in
|
|
* mpr_transition_operational(). The free index is set to 1
|
|
* because the corresponding index in the IOC is set to 0, and the
|
|
* IOC treats the queues as full if both are set to the same value.
|
|
* Hence the reason that the queue can't hold all of the possible
|
|
* replies.
|
|
*/
|
|
sc->replypostindex = 0;
|
|
mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
|
|
mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
|
|
|
|
/*
|
|
* Attach the subsystems so they can prepare their event masks.
|
|
* XXX Should be dynamic so that IM/IR and user modules can attach
|
|
*/
|
|
error = 0;
|
|
while (attaching) {
|
|
mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
|
|
if ((error = mpr_attach_log(sc)) != 0)
|
|
break;
|
|
if ((error = mpr_attach_sas(sc)) != 0)
|
|
break;
|
|
if ((error = mpr_attach_user(sc)) != 0)
|
|
break;
|
|
break;
|
|
}
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"Failed to attach all subsystems: error %d\n", error);
|
|
mpr_free(sc);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* XXX If the number of MSI-X vectors changes during re-init, this
|
|
* won't see it and adjust.
|
|
*/
|
|
if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"Failed to setup interrupts\n");
|
|
mpr_free(sc);
|
|
return (error);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This is called if memory is being free (during detach for example) and when
|
|
* buffers need to be reallocated due to a Diag Reset.
|
|
*/
|
|
static void
|
|
mpr_iocfacts_free(struct mpr_softc *sc)
|
|
{
|
|
struct mpr_command *cm;
|
|
int i;
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
if (sc->free_busaddr != 0)
|
|
bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
|
|
if (sc->free_queue != NULL)
|
|
bus_dmamem_free(sc->queues_dmat, sc->free_queue,
|
|
sc->queues_map);
|
|
if (sc->queues_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->queues_dmat);
|
|
|
|
if (sc->chain_frames != NULL) {
|
|
bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
|
|
bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
|
|
sc->chain_map);
|
|
}
|
|
if (sc->chain_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->chain_dmat);
|
|
|
|
if (sc->sense_busaddr != 0)
|
|
bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
|
|
if (sc->sense_frames != NULL)
|
|
bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
|
|
sc->sense_map);
|
|
if (sc->sense_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->sense_dmat);
|
|
|
|
if (sc->prp_page_busaddr != 0)
|
|
bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
|
|
if (sc->prp_pages != NULL)
|
|
bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
|
|
sc->prp_page_map);
|
|
if (sc->prp_page_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->prp_page_dmat);
|
|
|
|
if (sc->reply_busaddr != 0)
|
|
bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
|
|
if (sc->reply_frames != NULL)
|
|
bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
|
|
sc->reply_map);
|
|
if (sc->reply_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->reply_dmat);
|
|
|
|
if (sc->req_busaddr != 0)
|
|
bus_dmamap_unload(sc->req_dmat, sc->req_map);
|
|
if (sc->req_frames != NULL)
|
|
bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
|
|
if (sc->req_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->req_dmat);
|
|
|
|
if (sc->chains != NULL)
|
|
free(sc->chains, M_MPR);
|
|
if (sc->prps != NULL)
|
|
free(sc->prps, M_MPR);
|
|
if (sc->commands != NULL) {
|
|
for (i = 1; i < sc->num_reqs; i++) {
|
|
cm = &sc->commands[i];
|
|
bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
|
|
}
|
|
free(sc->commands, M_MPR);
|
|
}
|
|
if (sc->buffer_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->buffer_dmat);
|
|
|
|
mpr_pci_free_interrupts(sc);
|
|
free(sc->queues, M_MPR);
|
|
sc->queues = NULL;
|
|
}
|
|
|
|
/*
|
|
* The terms diag reset and hard reset are used interchangeably in the MPI
|
|
* docs to mean resetting the controller chip. In this code diag reset
|
|
* cleans everything up, and the hard reset function just sends the reset
|
|
* sequence to the chip. This should probably be refactored so that every
|
|
* subsystem gets a reset notification of some sort, and can clean up
|
|
* appropriately.
|
|
*/
|
|
int
|
|
mpr_reinit(struct mpr_softc *sc)
|
|
{
|
|
int error;
|
|
struct mprsas_softc *sassc;
|
|
|
|
sassc = sc->sassc;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
|
|
mtx_assert(&sc->mpr_mtx, MA_OWNED);
|
|
|
|
mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
|
|
if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
|
|
mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Make sure the completion callbacks can recognize they're getting
|
|
* a NULL cm_reply due to a reset.
|
|
*/
|
|
sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
|
|
|
|
/*
|
|
* Mask interrupts here.
|
|
*/
|
|
mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
|
|
mpr_mask_intr(sc);
|
|
|
|
error = mpr_diag_reset(sc, CAN_SLEEP);
|
|
if (error != 0) {
|
|
panic("%s hard reset failed with error %d\n", __func__, error);
|
|
}
|
|
|
|
/* Restore the PCI state, including the MSI-X registers */
|
|
mpr_pci_restore(sc);
|
|
|
|
/* Give the I/O subsystem special priority to get itself prepared */
|
|
mprsas_handle_reinit(sc);
|
|
|
|
/*
|
|
* Get IOC Facts and allocate all structures based on this information.
|
|
* The attach function will also call mpr_iocfacts_allocate at startup.
|
|
* If relevant values have changed in IOC Facts, this function will free
|
|
* all of the memory based on IOC Facts and reallocate that memory.
|
|
*/
|
|
if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
|
|
panic("%s IOC Facts based allocation failed with error %d\n",
|
|
__func__, error);
|
|
}
|
|
|
|
/*
|
|
* Mapping structures will be re-allocated after getting IOC Page8, so
|
|
* free these structures here.
|
|
*/
|
|
mpr_mapping_exit(sc);
|
|
|
|
/*
|
|
* The static page function currently read is IOC Page8. Others can be
|
|
* added in future. It's possible that the values in IOC Page8 have
|
|
* changed after a Diag Reset due to user modification, so always read
|
|
* these. Interrupts are masked, so unmask them before getting config
|
|
* pages.
|
|
*/
|
|
mpr_unmask_intr(sc);
|
|
sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
|
|
mpr_base_static_config_pages(sc);
|
|
|
|
/*
|
|
* Some mapping info is based in IOC Page8 data, so re-initialize the
|
|
* mapping tables.
|
|
*/
|
|
mpr_mapping_initialize(sc);
|
|
|
|
/*
|
|
* Restart will reload the event masks clobbered by the reset, and
|
|
* then enable the port.
|
|
*/
|
|
mpr_reregister_events(sc);
|
|
|
|
/* the end of discovery will release the simq, so we're done. */
|
|
mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
|
|
sc, sc->replypostindex, sc->replyfreeindex);
|
|
mprsas_release_simq_reinit(sassc);
|
|
mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for the chip to ACK a word that we've put into its FIFO
|
|
* Wait for <timeout> seconds. In single loop wait for busy loop
|
|
* for 500 microseconds.
|
|
* Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
|
|
* */
|
|
static int
|
|
mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
|
|
{
|
|
u32 cntdn, count;
|
|
u32 int_status;
|
|
u32 doorbell;
|
|
|
|
count = 0;
|
|
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
|
|
do {
|
|
int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
|
|
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
|
|
mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
|
|
"timeout(%d)\n", __func__, count, timeout);
|
|
return 0;
|
|
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
|
|
doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
if ((doorbell & MPI2_IOC_STATE_MASK) ==
|
|
MPI2_IOC_STATE_FAULT) {
|
|
mpr_dprint(sc, MPR_FAULT,
|
|
"fault_state(0x%04x)!\n", doorbell);
|
|
return (EFAULT);
|
|
}
|
|
} else if (int_status == 0xFFFFFFFF)
|
|
goto out;
|
|
|
|
/*
|
|
* If it can sleep, sleep for 1 milisecond, else busy loop for
|
|
* 0.5 milisecond
|
|
*/
|
|
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
|
|
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
|
|
hz/1000);
|
|
else if (sleep_flag == CAN_SLEEP)
|
|
pause("mprdba", hz/1000);
|
|
else
|
|
DELAY(500);
|
|
count++;
|
|
} while (--cntdn);
|
|
|
|
out:
|
|
mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
|
|
"int_status(%x)!\n", __func__, count, int_status);
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
/* Wait for the chip to signal that the next word in its FIFO can be fetched */
|
|
static int
|
|
mpr_wait_db_int(struct mpr_softc *sc)
|
|
{
|
|
int retry;
|
|
|
|
for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
|
|
if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
|
|
MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
|
|
return (0);
|
|
DELAY(2000);
|
|
}
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
|
|
static int
|
|
mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
|
|
int req_sz, int reply_sz, int timeout)
|
|
{
|
|
uint32_t *data32;
|
|
uint16_t *data16;
|
|
int i, count, ioc_sz, residual;
|
|
int sleep_flags = CAN_SLEEP;
|
|
|
|
#if __FreeBSD_version >= 1000029
|
|
if (curthread->td_no_sleeping)
|
|
#else //__FreeBSD_version < 1000029
|
|
if (curthread->td_pflags & TDP_NOSLEEPING)
|
|
#endif //__FreeBSD_version >= 1000029
|
|
sleep_flags = NO_SLEEP;
|
|
|
|
/* Step 1 */
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
|
|
/* Step 2 */
|
|
if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
|
|
return (EBUSY);
|
|
|
|
/* Step 3
|
|
* Announce that a message is coming through the doorbell. Messages
|
|
* are pushed at 32bit words, so round up if needed.
|
|
*/
|
|
count = (req_sz + 3) / 4;
|
|
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
|
|
(MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
|
|
(count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
|
|
|
|
/* Step 4 */
|
|
if (mpr_wait_db_int(sc) ||
|
|
(mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
|
|
return (ENXIO);
|
|
}
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Step 5 */
|
|
/* Clock out the message data synchronously in 32-bit dwords*/
|
|
data32 = (uint32_t *)req;
|
|
for (i = 0; i < count; i++) {
|
|
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
|
|
if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT,
|
|
"Timeout while writing doorbell\n");
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
/* Step 6 */
|
|
/* Clock in the reply in 16-bit words. The total length of the
|
|
* message is always in the 4th byte, so clock out the first 2 words
|
|
* manually, then loop the rest.
|
|
*/
|
|
data16 = (uint16_t *)reply;
|
|
if (mpr_wait_db_int(sc) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
|
|
return (ENXIO);
|
|
}
|
|
data16[0] =
|
|
mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
if (mpr_wait_db_int(sc) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
|
|
return (ENXIO);
|
|
}
|
|
data16[1] =
|
|
mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
|
|
/* Number of 32bit words in the message */
|
|
ioc_sz = reply->MsgLength;
|
|
|
|
/*
|
|
* Figure out how many 16bit words to clock in without overrunning.
|
|
* The precision loss with dividing reply_sz can safely be
|
|
* ignored because the messages can only be multiples of 32bits.
|
|
*/
|
|
residual = 0;
|
|
count = MIN((reply_sz / 4), ioc_sz) * 2;
|
|
if (count < ioc_sz * 2) {
|
|
residual = ioc_sz * 2 - count;
|
|
mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
|
|
"residual message words\n", residual);
|
|
}
|
|
|
|
for (i = 2; i < count; i++) {
|
|
if (mpr_wait_db_int(sc) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT,
|
|
"Timeout reading doorbell %d\n", i);
|
|
return (ENXIO);
|
|
}
|
|
data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
|
|
MPI2_DOORBELL_DATA_MASK;
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
}
|
|
|
|
/*
|
|
* Pull out residual words that won't fit into the provided buffer.
|
|
* This keeps the chip from hanging due to a driver programming
|
|
* error.
|
|
*/
|
|
while (residual--) {
|
|
if (mpr_wait_db_int(sc) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
|
|
return (ENXIO);
|
|
}
|
|
(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
}
|
|
|
|
/* Step 7 */
|
|
if (mpr_wait_db_int(sc) != 0) {
|
|
mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
|
|
return (ENXIO);
|
|
}
|
|
if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
|
|
mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
|
|
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
|
|
{
|
|
request_descriptor rd;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
|
|
cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
|
|
|
|
if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
|
|
MPR_FLAGS_SHUTDOWN))
|
|
mtx_assert(&sc->mpr_mtx, MA_OWNED);
|
|
|
|
if (++sc->io_cmds_active > sc->io_cmds_highwater)
|
|
sc->io_cmds_highwater++;
|
|
|
|
KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
|
|
cm->cm_state = MPR_CM_STATE_INQUEUE;
|
|
|
|
if (sc->atomic_desc_capable) {
|
|
rd.u.low = cm->cm_desc.Words.Low;
|
|
mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
|
|
rd.u.low);
|
|
} else {
|
|
rd.u.low = cm->cm_desc.Words.Low;
|
|
rd.u.high = cm->cm_desc.Words.High;
|
|
rd.word = htole64(rd.word);
|
|
mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
|
|
rd.u.low);
|
|
mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
|
|
rd.u.high);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Just the FACTS, ma'am.
|
|
*/
|
|
static int
|
|
mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
|
|
{
|
|
MPI2_DEFAULT_REPLY *reply;
|
|
MPI2_IOC_FACTS_REQUEST request;
|
|
int error, req_sz, reply_sz;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
|
|
reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
|
|
reply = (MPI2_DEFAULT_REPLY *)facts;
|
|
|
|
bzero(&request, req_sz);
|
|
request.Function = MPI2_FUNCTION_IOC_FACTS;
|
|
error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
mpr_send_iocinit(struct mpr_softc *sc)
|
|
{
|
|
MPI2_IOC_INIT_REQUEST init;
|
|
MPI2_DEFAULT_REPLY reply;
|
|
int req_sz, reply_sz, error;
|
|
struct timeval now;
|
|
uint64_t time_in_msec;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
/* Do a quick sanity check on proper initialization */
|
|
if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
|
|
|| (sc->replyframesz == 0)) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"Driver not fully initialized for IOCInit\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
|
|
reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
|
|
bzero(&init, req_sz);
|
|
bzero(&reply, reply_sz);
|
|
|
|
/*
|
|
* Fill in the init block. Note that most addresses are
|
|
* deliberately in the lower 32bits of memory. This is a micro-
|
|
* optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
|
|
*/
|
|
init.Function = MPI2_FUNCTION_IOC_INIT;
|
|
init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
|
|
init.MsgVersion = htole16(MPI2_VERSION);
|
|
init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
|
|
init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
|
|
init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
|
|
init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
|
|
init.SenseBufferAddressHigh = 0;
|
|
init.SystemReplyAddressHigh = 0;
|
|
init.SystemRequestFrameBaseAddress.High = 0;
|
|
init.SystemRequestFrameBaseAddress.Low =
|
|
htole32((uint32_t)sc->req_busaddr);
|
|
init.ReplyDescriptorPostQueueAddress.High = 0;
|
|
init.ReplyDescriptorPostQueueAddress.Low =
|
|
htole32((uint32_t)sc->post_busaddr);
|
|
init.ReplyFreeQueueAddress.High = 0;
|
|
init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
|
|
getmicrotime(&now);
|
|
time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
|
|
init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
|
|
init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
|
|
init.HostPageSize = HOST_PAGE_SIZE_4K;
|
|
|
|
error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
|
|
if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
|
|
error = ENXIO;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
bus_addr_t *addr;
|
|
|
|
addr = arg;
|
|
*addr = segs[0].ds_addr;
|
|
}
|
|
|
|
void
|
|
mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct mpr_busdma_context *ctx;
|
|
int need_unload, need_free;
|
|
|
|
ctx = (struct mpr_busdma_context *)arg;
|
|
need_unload = 0;
|
|
need_free = 0;
|
|
|
|
mpr_lock(ctx->softc);
|
|
ctx->error = error;
|
|
ctx->completed = 1;
|
|
if ((error == 0) && (ctx->abandoned == 0)) {
|
|
*ctx->addr = segs[0].ds_addr;
|
|
} else {
|
|
if (nsegs != 0)
|
|
need_unload = 1;
|
|
if (ctx->abandoned != 0)
|
|
need_free = 1;
|
|
}
|
|
if (need_free == 0)
|
|
wakeup(ctx);
|
|
|
|
mpr_unlock(ctx->softc);
|
|
|
|
if (need_unload != 0) {
|
|
bus_dmamap_unload(ctx->buffer_dmat,
|
|
ctx->buffer_dmamap);
|
|
*ctx->addr = 0;
|
|
}
|
|
|
|
if (need_free != 0)
|
|
free(ctx, M_MPR);
|
|
}
|
|
|
|
static int
|
|
mpr_alloc_queues(struct mpr_softc *sc)
|
|
{
|
|
struct mpr_queue *q;
|
|
int nq, i;
|
|
|
|
nq = sc->msi_msgs;
|
|
mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
|
|
|
|
sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
|
|
M_NOWAIT|M_ZERO);
|
|
if (sc->queues == NULL)
|
|
return (ENOMEM);
|
|
|
|
for (i = 0; i < nq; i++) {
|
|
q = &sc->queues[i];
|
|
mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
|
|
q->sc = sc;
|
|
q->qnum = i;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mpr_alloc_hw_queues(struct mpr_softc *sc)
|
|
{
|
|
bus_addr_t queues_busaddr;
|
|
uint8_t *queues;
|
|
int qsize, fqsize, pqsize;
|
|
|
|
/*
|
|
* The reply free queue contains 4 byte entries in multiples of 16 and
|
|
* aligned on a 16 byte boundary. There must always be an unused entry.
|
|
* This queue supplies fresh reply frames for the firmware to use.
|
|
*
|
|
* The reply descriptor post queue contains 8 byte entries in
|
|
* multiples of 16 and aligned on a 16 byte boundary. This queue
|
|
* contains filled-in reply frames sent from the firmware to the host.
|
|
*
|
|
* These two queues are allocated together for simplicity.
|
|
*/
|
|
sc->fqdepth = roundup2(sc->num_replies + 1, 16);
|
|
sc->pqdepth = roundup2(sc->num_replies + 1, 16);
|
|
fqsize= sc->fqdepth * 4;
|
|
pqsize = sc->pqdepth * 8;
|
|
qsize = fqsize + pqsize;
|
|
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
16, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
qsize, /* maxsize */
|
|
1, /* nsegments */
|
|
qsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->queues_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
|
|
&sc->queues_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
bzero(queues, qsize);
|
|
bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
|
|
mpr_memaddr_cb, &queues_busaddr, 0);
|
|
|
|
sc->free_queue = (uint32_t *)queues;
|
|
sc->free_busaddr = queues_busaddr;
|
|
sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
|
|
sc->post_busaddr = queues_busaddr + fqsize;
|
|
mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
|
|
(uintmax_t)sc->free_busaddr, fqsize);
|
|
mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
|
|
(uintmax_t)sc->post_busaddr, pqsize);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mpr_alloc_replies(struct mpr_softc *sc)
|
|
{
|
|
int rsize, num_replies;
|
|
|
|
/* Store the reply frame size in bytes rather than as 32bit words */
|
|
sc->replyframesz = sc->facts->ReplyFrameSize * 4;
|
|
|
|
/*
|
|
* sc->num_replies should be one less than sc->fqdepth. We need to
|
|
* allocate space for sc->fqdepth replies, but only sc->num_replies
|
|
* replies can be used at once.
|
|
*/
|
|
num_replies = max(sc->fqdepth, sc->num_replies);
|
|
|
|
rsize = sc->replyframesz * num_replies;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
4, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
rsize, /* maxsize */
|
|
1, /* nsegments */
|
|
rsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->reply_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
|
|
BUS_DMA_NOWAIT, &sc->reply_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
bzero(sc->reply_frames, rsize);
|
|
bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
|
|
mpr_memaddr_cb, &sc->reply_busaddr, 0);
|
|
mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
|
|
(uintmax_t)sc->reply_busaddr, rsize);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct mpr_softc *sc = arg;
|
|
struct mpr_chain *chain;
|
|
bus_size_t bo;
|
|
int i, o, s;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
for (i = 0, o = 0, s = 0; s < nsegs; s++) {
|
|
for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
|
|
bo += sc->chain_frame_size) {
|
|
chain = &sc->chains[i++];
|
|
chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
|
|
chain->chain_busaddr = segs[s].ds_addr + bo;
|
|
o += sc->chain_frame_size;
|
|
mpr_free_chain(sc, chain);
|
|
}
|
|
if (bo != segs[s].ds_len)
|
|
o += segs[s].ds_len - bo;
|
|
}
|
|
sc->chain_free_lowwater = i;
|
|
}
|
|
|
|
static int
|
|
mpr_alloc_requests(struct mpr_softc *sc)
|
|
{
|
|
struct mpr_command *cm;
|
|
int i, rsize, nsegs;
|
|
|
|
rsize = sc->reqframesz * sc->num_reqs;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
16, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
rsize, /* maxsize */
|
|
1, /* nsegments */
|
|
rsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->req_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
|
|
BUS_DMA_NOWAIT, &sc->req_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
bzero(sc->req_frames, rsize);
|
|
bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
|
|
mpr_memaddr_cb, &sc->req_busaddr, 0);
|
|
mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
|
|
(uintmax_t)sc->req_busaddr, rsize);
|
|
|
|
sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
|
|
M_NOWAIT | M_ZERO);
|
|
if (!sc->chains) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
rsize = sc->chain_frame_size * sc->num_chains;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
16, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
rsize, /* maxsize */
|
|
howmany(rsize, PAGE_SIZE), /* nsegments */
|
|
rsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->chain_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
|
|
rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
|
|
bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
|
|
sc->chain_map);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
rsize = MPR_SENSE_LEN * sc->num_reqs;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
rsize, /* maxsize */
|
|
1, /* nsegments */
|
|
rsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sense_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
|
|
BUS_DMA_NOWAIT, &sc->sense_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
bzero(sc->sense_frames, rsize);
|
|
bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
|
|
mpr_memaddr_cb, &sc->sense_busaddr, 0);
|
|
mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
|
|
(uintmax_t)sc->sense_busaddr, rsize);
|
|
|
|
/*
|
|
* Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
|
|
* these devices.
|
|
*/
|
|
if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
|
|
(sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
|
|
if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
|
|
return (ENOMEM);
|
|
}
|
|
|
|
nsegs = (sc->maxio / PAGE_SIZE) + 1;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
|
|
nsegs, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
busdma_lock_mutex, /* lockfunc */
|
|
&sc->mpr_mtx, /* lockarg */
|
|
&sc->buffer_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* SMID 0 cannot be used as a free command per the firmware spec.
|
|
* Just drop that command instead of risking accounting bugs.
|
|
*/
|
|
sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
|
|
M_MPR, M_WAITOK | M_ZERO);
|
|
if (!sc->commands) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 1; i < sc->num_reqs; i++) {
|
|
cm = &sc->commands[i];
|
|
cm->cm_req = sc->req_frames + i * sc->reqframesz;
|
|
cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
|
|
cm->cm_sense = &sc->sense_frames[i];
|
|
cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
|
|
cm->cm_desc.Default.SMID = i;
|
|
cm->cm_sc = sc;
|
|
cm->cm_state = MPR_CM_STATE_BUSY;
|
|
TAILQ_INIT(&cm->cm_chain_list);
|
|
TAILQ_INIT(&cm->cm_prp_page_list);
|
|
callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
|
|
|
|
/* XXX Is a failure here a critical problem? */
|
|
if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
|
|
== 0) {
|
|
if (i <= sc->num_prireqs)
|
|
mpr_free_high_priority_command(sc, cm);
|
|
else
|
|
mpr_free_command(sc, cm);
|
|
} else {
|
|
panic("failed to allocate command %d\n", i);
|
|
sc->num_reqs = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
|
|
* which are scatter/gather lists for NVMe devices.
|
|
*
|
|
* This buffer must be contiguous due to the nature of how NVMe PRPs are built
|
|
* and translated by FW.
|
|
*
|
|
* returns ENOMEM if memory could not be allocated, otherwise returns 0.
|
|
*/
|
|
static int
|
|
mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
|
|
{
|
|
int PRPs_per_page, PRPs_required, pages_required;
|
|
int rsize, i;
|
|
struct mpr_prp_page *prp_page;
|
|
|
|
/*
|
|
* Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
|
|
* of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
|
|
* MAX_IO_SIZE / PAGE_SIZE = 256
|
|
*
|
|
* 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
|
|
* required for the remainder of the 1MB I/O. 512 PRPs can fit into one
|
|
* page (4096 / 8 = 512), so only one page is required for each I/O.
|
|
*
|
|
* Each of these buffers will need to be contiguous. For simplicity,
|
|
* only one buffer is allocated here, which has all of the space
|
|
* required for the NVMe Queue Depth. If there are problems allocating
|
|
* this one buffer, this function will need to change to allocate
|
|
* individual, contiguous NVME_QDEPTH buffers.
|
|
*
|
|
* The real calculation will use the real max io size. Above is just an
|
|
* example.
|
|
*
|
|
*/
|
|
PRPs_required = sc->maxio / PAGE_SIZE;
|
|
PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
|
|
pages_required = (PRPs_required / PRPs_per_page) + 1;
|
|
|
|
sc->prp_buffer_size = PAGE_SIZE * pages_required;
|
|
rsize = sc->prp_buffer_size * NVME_QDEPTH;
|
|
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
|
|
4, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
rsize, /* maxsize */
|
|
1, /* nsegments */
|
|
rsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->prp_page_dmat)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
|
|
"tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
|
|
BUS_DMA_NOWAIT, &sc->prp_page_map)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
bzero(sc->prp_pages, rsize);
|
|
bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
|
|
rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
|
|
|
|
sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
|
|
M_WAITOK | M_ZERO);
|
|
for (i = 0; i < NVME_QDEPTH; i++) {
|
|
prp_page = &sc->prps[i];
|
|
prp_page->prp_page = (uint64_t *)(sc->prp_pages +
|
|
i * sc->prp_buffer_size);
|
|
prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
|
|
i * sc->prp_buffer_size);
|
|
mpr_free_prp_page(sc, prp_page);
|
|
sc->prp_pages_free_lowwater++;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mpr_init_queues(struct mpr_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
|
|
|
|
/*
|
|
* According to the spec, we need to use one less reply than we
|
|
* have space for on the queue. So sc->num_replies (the number we
|
|
* use) should be less than sc->fqdepth (allocated size).
|
|
*/
|
|
if (sc->num_replies >= sc->fqdepth)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Initialize all of the free queue entries.
|
|
*/
|
|
for (i = 0; i < sc->fqdepth; i++) {
|
|
sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
|
|
}
|
|
sc->replyfreeindex = sc->num_replies;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Get the driver parameter tunables. Lowest priority are the driver defaults.
|
|
* Next are the global settings, if they exist. Highest are the per-unit
|
|
* settings, if they exist.
|
|
*/
|
|
void
|
|
mpr_get_tunables(struct mpr_softc *sc)
|
|
{
|
|
char tmpstr[80], mpr_debug[80];
|
|
|
|
/* XXX default to some debugging for now */
|
|
sc->mpr_debug = MPR_INFO | MPR_FAULT;
|
|
sc->disable_msix = 0;
|
|
sc->disable_msi = 0;
|
|
sc->max_msix = MPR_MSIX_MAX;
|
|
sc->max_chains = MPR_CHAIN_FRAMES;
|
|
sc->max_io_pages = MPR_MAXIO_PAGES;
|
|
sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
|
|
sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
|
|
sc->use_phynum = 1;
|
|
sc->max_reqframes = MPR_REQ_FRAMES;
|
|
sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
|
|
sc->max_replyframes = MPR_REPLY_FRAMES;
|
|
sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
|
|
|
|
/*
|
|
* Grab the global variables.
|
|
*/
|
|
bzero(mpr_debug, 80);
|
|
if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
|
|
mpr_parse_debug(sc, mpr_debug);
|
|
TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
|
|
TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
|
|
TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
|
|
TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
|
|
TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
|
|
TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
|
|
|
|
/* Grab the unit-instance variables */
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
|
|
device_get_unit(sc->mpr_dev));
|
|
bzero(mpr_debug, 80);
|
|
if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
|
|
mpr_parse_debug(sc, mpr_debug);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
|
|
|
|
bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
|
|
|
|
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
|
|
device_get_unit(sc->mpr_dev));
|
|
TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
|
|
}
|
|
|
|
static void
|
|
mpr_setup_sysctl(struct mpr_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *sysctl_ctx = NULL;
|
|
struct sysctl_oid *sysctl_tree = NULL;
|
|
char tmpstr[80], tmpstr2[80];
|
|
|
|
/*
|
|
* Setup the sysctl variable so the user can change the debug level
|
|
* on the fly.
|
|
*/
|
|
snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
|
|
device_get_unit(sc->mpr_dev));
|
|
snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
|
|
|
|
sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
|
|
if (sysctl_ctx != NULL)
|
|
sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
|
|
|
|
if (sysctl_tree == NULL) {
|
|
sysctl_ctx_init(&sc->sysctl_ctx);
|
|
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
|
|
CTLFLAG_RD, 0, tmpstr);
|
|
if (sc->sysctl_tree == NULL)
|
|
return;
|
|
sysctl_ctx = &sc->sysctl_ctx;
|
|
sysctl_tree = sc->sysctl_tree;
|
|
}
|
|
|
|
SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
|
|
"Disable the use of MSI-X interrupts");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
|
|
"User-defined maximum number of MSIX queues");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
|
|
"Negotiated number of MSIX queues");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
|
|
"Total number of allocated request frames");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
|
|
"Total number of allocated high priority request frames");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
|
|
"Total number of allocated reply frames");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
|
|
"Total number of event frames allocated");
|
|
|
|
SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
|
|
strlen(sc->fw_version), "firmware version");
|
|
|
|
SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
|
|
strlen(MPR_DRIVER_VERSION), "driver version");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "io_cmds_active", CTLFLAG_RD,
|
|
&sc->io_cmds_active, 0, "number of currently active commands");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
|
|
&sc->io_cmds_highwater, 0, "maximum active commands seen");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "chain_free", CTLFLAG_RD,
|
|
&sc->chain_free, 0, "number of free chain elements");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
|
|
&sc->chain_free_lowwater, 0,"lowest number of free chain elements");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_chains", CTLFLAG_RD,
|
|
&sc->max_chains, 0,"maximum chain frames that will be allocated");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "max_io_pages", CTLFLAG_RD,
|
|
&sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
|
|
"IOCFacts)");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
|
|
"enable SSU to SATA SSD/HDD at shutdown");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
|
|
&sc->chain_alloc_fail, "chain allocation failures");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
|
|
&sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
|
|
"spinup after SATA ID error");
|
|
|
|
SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
|
|
mpr_dump_reqs, "I", "Dump Active Requests");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
|
|
"Use the phy number for enumeration");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "prp_pages_free", CTLFLAG_RD,
|
|
&sc->prp_pages_free, 0, "number of free PRP pages");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
|
|
&sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
|
|
OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
|
|
&sc->prp_page_alloc_fail, "PRP page allocation failures");
|
|
}
|
|
|
|
static struct mpr_debug_string {
|
|
char *name;
|
|
int flag;
|
|
} mpr_debug_strings[] = {
|
|
{"info", MPR_INFO},
|
|
{"fault", MPR_FAULT},
|
|
{"event", MPR_EVENT},
|
|
{"log", MPR_LOG},
|
|
{"recovery", MPR_RECOVERY},
|
|
{"error", MPR_ERROR},
|
|
{"init", MPR_INIT},
|
|
{"xinfo", MPR_XINFO},
|
|
{"user", MPR_USER},
|
|
{"mapping", MPR_MAPPING},
|
|
{"trace", MPR_TRACE}
|
|
};
|
|
|
|
enum mpr_debug_level_combiner {
|
|
COMB_NONE,
|
|
COMB_ADD,
|
|
COMB_SUB
|
|
};
|
|
|
|
static int
|
|
mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct mpr_softc *sc;
|
|
struct mpr_debug_string *string;
|
|
struct sbuf *sbuf;
|
|
char *buffer;
|
|
size_t sz;
|
|
int i, len, debug, error;
|
|
|
|
sc = (struct mpr_softc *)arg1;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
|
|
debug = sc->mpr_debug;
|
|
|
|
sbuf_printf(sbuf, "%#x", debug);
|
|
|
|
sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
|
|
for (i = 0; i < sz; i++) {
|
|
string = &mpr_debug_strings[i];
|
|
if (debug & string->flag)
|
|
sbuf_printf(sbuf, ",%s", string->name);
|
|
}
|
|
|
|
error = sbuf_finish(sbuf);
|
|
sbuf_delete(sbuf);
|
|
|
|
if (error || req->newptr == NULL)
|
|
return (error);
|
|
|
|
len = req->newlen - req->newidx;
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
|
|
error = SYSCTL_IN(req, buffer, len);
|
|
|
|
mpr_parse_debug(sc, buffer);
|
|
|
|
free(buffer, M_MPR);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
mpr_parse_debug(struct mpr_softc *sc, char *list)
|
|
{
|
|
struct mpr_debug_string *string;
|
|
enum mpr_debug_level_combiner op;
|
|
char *token, *endtoken;
|
|
size_t sz;
|
|
int flags, i;
|
|
|
|
if (list == NULL || *list == '\0')
|
|
return;
|
|
|
|
if (*list == '+') {
|
|
op = COMB_ADD;
|
|
list++;
|
|
} else if (*list == '-') {
|
|
op = COMB_SUB;
|
|
list++;
|
|
} else
|
|
op = COMB_NONE;
|
|
if (*list == '\0')
|
|
return;
|
|
|
|
flags = 0;
|
|
sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
|
|
while ((token = strsep(&list, ":,")) != NULL) {
|
|
|
|
/* Handle integer flags */
|
|
flags |= strtol(token, &endtoken, 0);
|
|
if (token != endtoken)
|
|
continue;
|
|
|
|
/* Handle text flags */
|
|
for (i = 0; i < sz; i++) {
|
|
string = &mpr_debug_strings[i];
|
|
if (strcasecmp(token, string->name) == 0) {
|
|
flags |= string->flag;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (op) {
|
|
case COMB_NONE:
|
|
sc->mpr_debug = flags;
|
|
break;
|
|
case COMB_ADD:
|
|
sc->mpr_debug |= flags;
|
|
break;
|
|
case COMB_SUB:
|
|
sc->mpr_debug &= (~flags);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct mpr_dumpreq_hdr {
|
|
uint32_t smid;
|
|
uint32_t state;
|
|
uint32_t numframes;
|
|
uint32_t deschi;
|
|
uint32_t desclo;
|
|
};
|
|
|
|
static int
|
|
mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct mpr_softc *sc;
|
|
struct mpr_chain *chain, *chain1;
|
|
struct mpr_command *cm;
|
|
struct mpr_dumpreq_hdr hdr;
|
|
struct sbuf *sb;
|
|
uint32_t smid, state;
|
|
int i, numreqs, error = 0;
|
|
|
|
sc = (struct mpr_softc *)arg1;
|
|
|
|
if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
|
|
printf("priv check error %d\n", error);
|
|
return (error);
|
|
}
|
|
|
|
state = MPR_CM_STATE_INQUEUE;
|
|
smid = 1;
|
|
numreqs = sc->num_reqs;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EINVAL);
|
|
|
|
if (smid == 0 || smid > sc->num_reqs)
|
|
return (EINVAL);
|
|
if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
|
|
numreqs = sc->num_reqs;
|
|
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
|
|
|
|
/* Best effort, no locking */
|
|
for (i = smid; i < numreqs; i++) {
|
|
cm = &sc->commands[i];
|
|
if (cm->cm_state != state)
|
|
continue;
|
|
hdr.smid = i;
|
|
hdr.state = cm->cm_state;
|
|
hdr.numframes = 1;
|
|
hdr.deschi = cm->cm_desc.Words.High;
|
|
hdr.desclo = cm->cm_desc.Words.Low;
|
|
TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
|
|
chain1)
|
|
hdr.numframes++;
|
|
sbuf_bcat(sb, &hdr, sizeof(hdr));
|
|
sbuf_bcat(sb, cm->cm_req, 128);
|
|
TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
|
|
chain1)
|
|
sbuf_bcat(sb, chain->chain, 128);
|
|
}
|
|
|
|
error = sbuf_finish(sb);
|
|
sbuf_delete(sb);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
mpr_attach(struct mpr_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
|
|
callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
|
|
callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
|
|
TAILQ_INIT(&sc->event_list);
|
|
timevalclear(&sc->lastfail);
|
|
|
|
if ((error = mpr_transition_ready(sc)) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"Failed to transition ready\n");
|
|
return (error);
|
|
}
|
|
|
|
sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
|
|
M_ZERO|M_NOWAIT);
|
|
if (!sc->facts) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT,
|
|
"Cannot allocate memory, exit\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Get IOC Facts and allocate all structures based on this information.
|
|
* A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
|
|
* Facts. If relevant values have changed in IOC Facts, this function
|
|
* will free all of the memory based on IOC Facts and reallocate that
|
|
* memory. If this fails, any allocated memory should already be freed.
|
|
*/
|
|
if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
|
|
"failed with error %d\n", error);
|
|
return (error);
|
|
}
|
|
|
|
/* Start the periodic watchdog check on the IOC Doorbell */
|
|
mpr_periodic(sc);
|
|
|
|
/*
|
|
* The portenable will kick off discovery events that will drive the
|
|
* rest of the initialization process. The CAM/SAS module will
|
|
* hold up the boot sequence until discovery is complete.
|
|
*/
|
|
sc->mpr_ich.ich_func = mpr_startup;
|
|
sc->mpr_ich.ich_arg = sc;
|
|
if (config_intrhook_establish(&sc->mpr_ich) != 0) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"Cannot establish MPR config hook\n");
|
|
error = EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Allow IR to shutdown gracefully when shutdown occurs.
|
|
*/
|
|
sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
|
|
mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
|
|
|
|
if (sc->shutdown_eh == NULL)
|
|
mpr_dprint(sc, MPR_INIT|MPR_ERROR,
|
|
"shutdown event registration failed\n");
|
|
|
|
mpr_setup_sysctl(sc);
|
|
|
|
sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
|
|
mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* Run through any late-start handlers. */
|
|
static void
|
|
mpr_startup(void *arg)
|
|
{
|
|
struct mpr_softc *sc;
|
|
|
|
sc = (struct mpr_softc *)arg;
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
|
|
mpr_lock(sc);
|
|
mpr_unmask_intr(sc);
|
|
|
|
/* initialize device mapping tables */
|
|
mpr_base_static_config_pages(sc);
|
|
mpr_mapping_initialize(sc);
|
|
mprsas_startup(sc);
|
|
mpr_unlock(sc);
|
|
|
|
mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
|
|
config_intrhook_disestablish(&sc->mpr_ich);
|
|
sc->mpr_ich.ich_arg = NULL;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
}
|
|
|
|
/* Periodic watchdog. Is called with the driver lock already held. */
|
|
static void
|
|
mpr_periodic(void *arg)
|
|
{
|
|
struct mpr_softc *sc;
|
|
uint32_t db;
|
|
|
|
sc = (struct mpr_softc *)arg;
|
|
if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
|
|
return;
|
|
|
|
db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
|
|
if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
|
|
if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
|
|
IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
|
|
panic("TEMPERATURE FAULT: STOPPING.");
|
|
}
|
|
mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
|
|
mpr_reinit(sc);
|
|
}
|
|
|
|
callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
|
|
}
|
|
|
|
static void
|
|
mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
|
|
MPI2_EVENT_NOTIFICATION_REPLY *event)
|
|
{
|
|
MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
|
|
|
|
MPR_DPRINT_EVENT(sc, generic, event);
|
|
|
|
switch (event->Event) {
|
|
case MPI2_EVENT_LOG_DATA:
|
|
mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
|
|
if (sc->mpr_debug & MPR_EVENT)
|
|
hexdump(event->EventData, event->EventDataLength, NULL,
|
|
0);
|
|
break;
|
|
case MPI2_EVENT_LOG_ENTRY_ADDED:
|
|
entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
|
|
mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
|
|
"0x%x Sequence %d:\n", entry->LogEntryQualifier,
|
|
entry->LogSequence);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static int
|
|
mpr_attach_log(struct mpr_softc *sc)
|
|
{
|
|
uint8_t events[16];
|
|
|
|
bzero(events, 16);
|
|
setbit(events, MPI2_EVENT_LOG_DATA);
|
|
setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
|
|
|
|
mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
|
|
&sc->mpr_log_eh);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mpr_detach_log(struct mpr_softc *sc)
|
|
{
|
|
|
|
if (sc->mpr_log_eh != NULL)
|
|
mpr_deregister_events(sc, sc->mpr_log_eh);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free all of the driver resources and detach submodules. Should be called
|
|
* without the lock held.
|
|
*/
|
|
int
|
|
mpr_free(struct mpr_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
|
|
/* Turn off the watchdog */
|
|
mpr_lock(sc);
|
|
sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
|
|
mpr_unlock(sc);
|
|
/* Lock must not be held for this */
|
|
callout_drain(&sc->periodic);
|
|
callout_drain(&sc->device_check_callout);
|
|
|
|
if (((error = mpr_detach_log(sc)) != 0) ||
|
|
((error = mpr_detach_sas(sc)) != 0)) {
|
|
mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
|
|
"subsystems, error= %d, exit\n", error);
|
|
return (error);
|
|
}
|
|
|
|
mpr_detach_user(sc);
|
|
|
|
/* Put the IOC back in the READY state. */
|
|
mpr_lock(sc);
|
|
if ((error = mpr_transition_ready(sc)) != 0) {
|
|
mpr_unlock(sc);
|
|
return (error);
|
|
}
|
|
mpr_unlock(sc);
|
|
|
|
if (sc->facts != NULL)
|
|
free(sc->facts, M_MPR);
|
|
|
|
/*
|
|
* Free all buffers that are based on IOC Facts. A Diag Reset may need
|
|
* to free these buffers too.
|
|
*/
|
|
mpr_iocfacts_free(sc);
|
|
|
|
if (sc->sysctl_tree != NULL)
|
|
sysctl_ctx_free(&sc->sysctl_ctx);
|
|
|
|
/* Deregister the shutdown function */
|
|
if (sc->shutdown_eh != NULL)
|
|
EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
|
|
|
|
mtx_destroy(&sc->mpr_mtx);
|
|
mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
|
|
{
|
|
MPR_FUNCTRACE(sc);
|
|
|
|
if (cm == NULL) {
|
|
mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
|
|
return;
|
|
}
|
|
|
|
if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
|
|
cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
|
|
|
|
if (cm->cm_complete != NULL) {
|
|
mpr_dprint(sc, MPR_TRACE,
|
|
"%s cm %p calling cm_complete %p data %p reply %p\n",
|
|
__func__, cm, cm->cm_complete, cm->cm_complete_data,
|
|
cm->cm_reply);
|
|
cm->cm_complete(sc, cm);
|
|
}
|
|
|
|
if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
|
|
mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
|
|
wakeup(cm);
|
|
}
|
|
|
|
if (sc->io_cmds_active != 0) {
|
|
sc->io_cmds_active--;
|
|
} else {
|
|
mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
|
|
"out of sync - resynching to 0\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
|
|
{
|
|
union loginfo_type {
|
|
u32 loginfo;
|
|
struct {
|
|
u32 subcode:16;
|
|
u32 code:8;
|
|
u32 originator:4;
|
|
u32 bus_type:4;
|
|
} dw;
|
|
};
|
|
union loginfo_type sas_loginfo;
|
|
char *originator_str = NULL;
|
|
|
|
sas_loginfo.loginfo = log_info;
|
|
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
|
|
return;
|
|
|
|
/* each nexus loss loginfo */
|
|
if (log_info == 0x31170000)
|
|
return;
|
|
|
|
/* eat the loginfos associated with task aborts */
|
|
if ((log_info == 30050000) || (log_info == 0x31140000) ||
|
|
(log_info == 0x31130000))
|
|
return;
|
|
|
|
switch (sas_loginfo.dw.originator) {
|
|
case 0:
|
|
originator_str = "IOP";
|
|
break;
|
|
case 1:
|
|
originator_str = "PL";
|
|
break;
|
|
case 2:
|
|
originator_str = "IR";
|
|
break;
|
|
}
|
|
|
|
mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
|
|
"code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
|
|
sas_loginfo.dw.code, sas_loginfo.dw.subcode);
|
|
}
|
|
|
|
static void
|
|
mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
|
|
{
|
|
MPI2DefaultReply_t *mpi_reply;
|
|
u16 sc_status;
|
|
|
|
mpi_reply = (MPI2DefaultReply_t*)reply;
|
|
sc_status = le16toh(mpi_reply->IOCStatus);
|
|
if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
|
|
mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
|
|
}
|
|
|
|
void
|
|
mpr_intr(void *data)
|
|
{
|
|
struct mpr_softc *sc;
|
|
uint32_t status;
|
|
|
|
sc = (struct mpr_softc *)data;
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
/*
|
|
* Check interrupt status register to flush the bus. This is
|
|
* needed for both INTx interrupts and driver-driven polling
|
|
*/
|
|
status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
|
|
if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
|
|
return;
|
|
|
|
mpr_lock(sc);
|
|
mpr_intr_locked(data);
|
|
mpr_unlock(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
|
|
* chip. Hopefully this theory is correct.
|
|
*/
|
|
void
|
|
mpr_intr_msi(void *data)
|
|
{
|
|
struct mpr_softc *sc;
|
|
|
|
sc = (struct mpr_softc *)data;
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
mpr_lock(sc);
|
|
mpr_intr_locked(data);
|
|
mpr_unlock(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The locking is overly broad and simplistic, but easy to deal with for now.
|
|
*/
|
|
void
|
|
mpr_intr_locked(void *data)
|
|
{
|
|
MPI2_REPLY_DESCRIPTORS_UNION *desc;
|
|
struct mpr_softc *sc;
|
|
struct mpr_command *cm = NULL;
|
|
uint8_t flags;
|
|
u_int pq;
|
|
MPI2_DIAG_RELEASE_REPLY *rel_rep;
|
|
mpr_fw_diagnostic_buffer_t *pBuffer;
|
|
|
|
sc = (struct mpr_softc *)data;
|
|
|
|
pq = sc->replypostindex;
|
|
mpr_dprint(sc, MPR_TRACE,
|
|
"%s sc %p starting with replypostindex %u\n",
|
|
__func__, sc, sc->replypostindex);
|
|
|
|
for ( ;; ) {
|
|
cm = NULL;
|
|
desc = &sc->post_queue[sc->replypostindex];
|
|
flags = desc->Default.ReplyFlags &
|
|
MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
|
|
if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
|
|
(le32toh(desc->Words.High) == 0xffffffff))
|
|
break;
|
|
|
|
/* increment the replypostindex now, so that event handlers
|
|
* and cm completion handlers which decide to do a diag
|
|
* reset can zero it without it getting incremented again
|
|
* afterwards, and we break out of this loop on the next
|
|
* iteration since the reply post queue has been cleared to
|
|
* 0xFF and all descriptors look unused (which they are).
|
|
*/
|
|
if (++sc->replypostindex >= sc->pqdepth)
|
|
sc->replypostindex = 0;
|
|
|
|
switch (flags) {
|
|
case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
|
|
case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
|
|
case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
|
|
cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
|
|
KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
|
|
("command not inqueue\n"));
|
|
cm->cm_state = MPR_CM_STATE_BUSY;
|
|
cm->cm_reply = NULL;
|
|
break;
|
|
case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
|
|
{
|
|
uint32_t baddr;
|
|
uint8_t *reply;
|
|
|
|
/*
|
|
* Re-compose the reply address from the address
|
|
* sent back from the chip. The ReplyFrameAddress
|
|
* is the lower 32 bits of the physical address of
|
|
* particular reply frame. Convert that address to
|
|
* host format, and then use that to provide the
|
|
* offset against the virtual address base
|
|
* (sc->reply_frames).
|
|
*/
|
|
baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
|
|
reply = sc->reply_frames +
|
|
(baddr - ((uint32_t)sc->reply_busaddr));
|
|
/*
|
|
* Make sure the reply we got back is in a valid
|
|
* range. If not, go ahead and panic here, since
|
|
* we'll probably panic as soon as we deference the
|
|
* reply pointer anyway.
|
|
*/
|
|
if ((reply < sc->reply_frames)
|
|
|| (reply > (sc->reply_frames +
|
|
(sc->fqdepth * sc->replyframesz)))) {
|
|
printf("%s: WARNING: reply %p out of range!\n",
|
|
__func__, reply);
|
|
printf("%s: reply_frames %p, fqdepth %d, "
|
|
"frame size %d\n", __func__,
|
|
sc->reply_frames, sc->fqdepth,
|
|
sc->replyframesz);
|
|
printf("%s: baddr %#x,\n", __func__, baddr);
|
|
/* LSI-TODO. See Linux Code for Graceful exit */
|
|
panic("Reply address out of range");
|
|
}
|
|
if (le16toh(desc->AddressReply.SMID) == 0) {
|
|
if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
|
|
MPI2_FUNCTION_DIAG_BUFFER_POST) {
|
|
/*
|
|
* If SMID is 0 for Diag Buffer Post,
|
|
* this implies that the reply is due to
|
|
* a release function with a status that
|
|
* the buffer has been released. Set
|
|
* the buffer flags accordingly.
|
|
*/
|
|
rel_rep =
|
|
(MPI2_DIAG_RELEASE_REPLY *)reply;
|
|
if ((le16toh(rel_rep->IOCStatus) &
|
|
MPI2_IOCSTATUS_MASK) ==
|
|
MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
|
|
{
|
|
pBuffer =
|
|
&sc->fw_diag_buffer_list[
|
|
rel_rep->BufferType];
|
|
pBuffer->valid_data = TRUE;
|
|
pBuffer->owned_by_firmware =
|
|
FALSE;
|
|
pBuffer->immediate = FALSE;
|
|
}
|
|
} else
|
|
mpr_dispatch_event(sc, baddr,
|
|
(MPI2_EVENT_NOTIFICATION_REPLY *)
|
|
reply);
|
|
} else {
|
|
cm = &sc->commands[
|
|
le16toh(desc->AddressReply.SMID)];
|
|
KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
|
|
("command not inqueue\n"));
|
|
cm->cm_state = MPR_CM_STATE_BUSY;
|
|
cm->cm_reply = reply;
|
|
cm->cm_reply_data =
|
|
le32toh(desc->AddressReply.
|
|
ReplyFrameAddress);
|
|
}
|
|
break;
|
|
}
|
|
case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
|
|
case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
|
|
case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
|
|
default:
|
|
/* Unhandled */
|
|
mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
|
|
desc->Default.ReplyFlags);
|
|
cm = NULL;
|
|
break;
|
|
}
|
|
|
|
if (cm != NULL) {
|
|
// Print Error reply frame
|
|
if (cm->cm_reply)
|
|
mpr_display_reply_info(sc,cm->cm_reply);
|
|
mpr_complete_command(sc, cm);
|
|
}
|
|
|
|
desc->Words.Low = 0xffffffff;
|
|
desc->Words.High = 0xffffffff;
|
|
}
|
|
|
|
if (pq != sc->replypostindex) {
|
|
mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
|
|
__func__, sc, sc->replypostindex);
|
|
mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
|
|
sc->replypostindex);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
|
|
MPI2_EVENT_NOTIFICATION_REPLY *reply)
|
|
{
|
|
struct mpr_event_handle *eh;
|
|
int event, handled = 0;
|
|
|
|
event = le16toh(reply->Event);
|
|
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
|
|
if (isset(eh->mask, event)) {
|
|
eh->callback(sc, data, reply);
|
|
handled++;
|
|
}
|
|
}
|
|
|
|
if (handled == 0)
|
|
mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
|
|
le16toh(event));
|
|
|
|
/*
|
|
* This is the only place that the event/reply should be freed.
|
|
* Anything wanting to hold onto the event data should have
|
|
* already copied it into their own storage.
|
|
*/
|
|
mpr_free_reply(sc, data);
|
|
}
|
|
|
|
static void
|
|
mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
|
|
{
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
if (cm->cm_reply)
|
|
MPR_DPRINT_EVENT(sc, generic,
|
|
(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
|
|
|
|
mpr_free_command(sc, cm);
|
|
|
|
/* next, send a port enable */
|
|
mprsas_startup(sc);
|
|
}
|
|
|
|
/*
|
|
* For both register_events and update_events, the caller supplies a bitmap
|
|
* of events that it _wants_. These functions then turn that into a bitmask
|
|
* suitable for the controller.
|
|
*/
|
|
int
|
|
mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
|
|
mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
|
|
{
|
|
struct mpr_event_handle *eh;
|
|
int error = 0;
|
|
|
|
eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
|
|
if (!eh) {
|
|
mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
|
|
"Cannot allocate event memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
eh->callback = cb;
|
|
eh->data = data;
|
|
TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
|
|
if (mask != NULL)
|
|
error = mpr_update_events(sc, eh, mask);
|
|
*handle = eh;
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
|
|
uint8_t *mask)
|
|
{
|
|
MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
|
|
MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
|
|
struct mpr_command *cm = NULL;
|
|
struct mpr_event_handle *eh;
|
|
int error, i;
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
if ((mask != NULL) && (handle != NULL))
|
|
bcopy(mask, &handle->mask[0], 16);
|
|
memset(sc->event_mask, 0xff, 16);
|
|
|
|
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
|
|
for (i = 0; i < 16; i++)
|
|
sc->event_mask[i] &= ~eh->mask[i];
|
|
}
|
|
|
|
if ((cm = mpr_alloc_command(sc)) == NULL)
|
|
return (EBUSY);
|
|
evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
|
|
evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
|
|
evtreq->MsgFlags = 0;
|
|
evtreq->SASBroadcastPrimitiveMasks = 0;
|
|
#ifdef MPR_DEBUG_ALL_EVENTS
|
|
{
|
|
u_char fullmask[16];
|
|
memset(fullmask, 0x00, 16);
|
|
bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
|
|
}
|
|
#else
|
|
bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
|
|
#endif
|
|
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
|
|
cm->cm_data = NULL;
|
|
|
|
error = mpr_request_polled(sc, &cm);
|
|
if (cm != NULL)
|
|
reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
|
|
if ((reply == NULL) ||
|
|
(reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
|
|
error = ENXIO;
|
|
|
|
if (reply)
|
|
MPR_DPRINT_EVENT(sc, generic, reply);
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
|
|
|
|
if (cm != NULL)
|
|
mpr_free_command(sc, cm);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
mpr_reregister_events(struct mpr_softc *sc)
|
|
{
|
|
MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
|
|
struct mpr_command *cm;
|
|
struct mpr_event_handle *eh;
|
|
int error, i;
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
/* first, reregister events */
|
|
|
|
memset(sc->event_mask, 0xff, 16);
|
|
|
|
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
|
|
for (i = 0; i < 16; i++)
|
|
sc->event_mask[i] &= ~eh->mask[i];
|
|
}
|
|
|
|
if ((cm = mpr_alloc_command(sc)) == NULL)
|
|
return (EBUSY);
|
|
evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
|
|
evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
|
|
evtreq->MsgFlags = 0;
|
|
evtreq->SASBroadcastPrimitiveMasks = 0;
|
|
#ifdef MPR_DEBUG_ALL_EVENTS
|
|
{
|
|
u_char fullmask[16];
|
|
memset(fullmask, 0x00, 16);
|
|
bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
|
|
}
|
|
#else
|
|
bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
|
|
#endif
|
|
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
|
|
cm->cm_data = NULL;
|
|
cm->cm_complete = mpr_reregister_events_complete;
|
|
|
|
error = mpr_map_command(sc, cm);
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
|
|
error);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
|
|
{
|
|
|
|
TAILQ_REMOVE(&sc->event_list, handle, eh_list);
|
|
free(handle, M_MPR);
|
|
return (mpr_update_events(sc, NULL, NULL));
|
|
}
|
|
|
|
/**
|
|
* mpr_build_nvme_prp - This function is called for NVMe end devices to build a
|
|
* native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
|
|
* of the NVMe message (PRP1). If the data buffer is small enough to be described
|
|
* entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
|
|
* describe a larger data buffer. If the data buffer is too large to describe
|
|
* using the two PRP entriess inside the NVMe message, then PRP1 describes the
|
|
* first data memory segment, and PRP2 contains a pointer to a PRP list located
|
|
* elsewhere in memory to describe the remaining data memory segments. The PRP
|
|
* list will be contiguous.
|
|
|
|
* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
|
|
* consists of a list of PRP entries to describe a number of noncontigous
|
|
* physical memory segments as a single memory buffer, just as a SGL does. Note
|
|
* however, that this function is only used by the IOCTL call, so the memory
|
|
* given will be guaranteed to be contiguous. There is no need to translate
|
|
* non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
|
|
* space that is one page size each.
|
|
*
|
|
* Each NVMe message contains two PRP entries. The first (PRP1) either contains
|
|
* a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
|
|
* the second PRP element if the memory being described fits within 2 PRP
|
|
* entries, or a PRP list pointer if the PRP spans more than two entries.
|
|
*
|
|
* A PRP list pointer contains the address of a PRP list, structured as a linear
|
|
* array of PRP entries. Each PRP entry in this list describes a segment of
|
|
* physical memory.
|
|
*
|
|
* Each 64-bit PRP entry comprises an address and an offset field. The address
|
|
* always points to the beginning of a PAGE_SIZE physical memory page, and the
|
|
* offset describes where within that page the memory segment begins. Only the
|
|
* first element in a PRP list may contain a non-zero offest, implying that all
|
|
* memory segments following the first begin at the start of a PAGE_SIZE page.
|
|
*
|
|
* Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
|
|
* with exceptions for the first and last elements in the list. If the memory
|
|
* being described by the list begins at a non-zero offset within the first page,
|
|
* then the first PRP element will contain a non-zero offset indicating where the
|
|
* region begins within the page. The last memory segment may end before the end
|
|
* of the PAGE_SIZE segment, depending upon the overall size of the memory being
|
|
* described by the PRP list.
|
|
*
|
|
* Since PRP entries lack any indication of size, the overall data buffer length
|
|
* is used to determine where the end of the data memory buffer is located, and
|
|
* how many PRP entries are required to describe it.
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
void
|
|
mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
|
|
Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
|
|
uint32_t data_in_sz, uint32_t data_out_sz)
|
|
{
|
|
int prp_size = PRP_ENTRY_SIZE;
|
|
uint64_t *prp_entry, *prp1_entry, *prp2_entry;
|
|
uint64_t *prp_entry_phys, *prp_page, *prp_page_phys;
|
|
uint32_t offset, entry_len, page_mask_result, page_mask;
|
|
bus_addr_t paddr;
|
|
size_t length;
|
|
struct mpr_prp_page *prp_page_info = NULL;
|
|
|
|
/*
|
|
* Not all commands require a data transfer. If no data, just return
|
|
* without constructing any PRP.
|
|
*/
|
|
if (!data_in_sz && !data_out_sz)
|
|
return;
|
|
|
|
/*
|
|
* Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
|
|
* located at a 24 byte offset from the start of the NVMe command. Then
|
|
* set the current PRP entry pointer to PRP1.
|
|
*/
|
|
prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
|
|
NVME_CMD_PRP1_OFFSET);
|
|
prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
|
|
NVME_CMD_PRP2_OFFSET);
|
|
prp_entry = prp1_entry;
|
|
|
|
/*
|
|
* For the PRP entries, use the specially allocated buffer of
|
|
* contiguous memory. PRP Page allocation failures should not happen
|
|
* because there should be enough PRP page buffers to account for the
|
|
* possible NVMe QDepth.
|
|
*/
|
|
prp_page_info = mpr_alloc_prp_page(sc);
|
|
KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
|
|
"used for building a native NVMe SGL.\n", __func__));
|
|
prp_page = (uint64_t *)prp_page_info->prp_page;
|
|
prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
|
|
|
|
/*
|
|
* Insert the allocated PRP page into the command's PRP page list. This
|
|
* will be freed when the command is freed.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
|
|
|
|
/*
|
|
* Check if we are within 1 entry of a page boundary we don't want our
|
|
* first entry to be a PRP List entry.
|
|
*/
|
|
page_mask = PAGE_SIZE - 1;
|
|
page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
|
|
page_mask;
|
|
if (!page_mask_result)
|
|
{
|
|
/* Bump up to next page boundary. */
|
|
prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
|
|
prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
|
|
prp_size);
|
|
}
|
|
|
|
/*
|
|
* Set PRP physical pointer, which initially points to the current PRP
|
|
* DMA memory page.
|
|
*/
|
|
prp_entry_phys = prp_page_phys;
|
|
|
|
/* Get physical address and length of the data buffer. */
|
|
paddr = (bus_addr_t)(uintptr_t)data;
|
|
if (data_in_sz)
|
|
length = data_in_sz;
|
|
else
|
|
length = data_out_sz;
|
|
|
|
/* Loop while the length is not zero. */
|
|
while (length)
|
|
{
|
|
/*
|
|
* Check if we need to put a list pointer here if we are at page
|
|
* boundary - prp_size (8 bytes).
|
|
*/
|
|
page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
|
|
prp_size) & page_mask;
|
|
if (!page_mask_result)
|
|
{
|
|
/*
|
|
* This is the last entry in a PRP List, so we need to
|
|
* put a PRP list pointer here. What this does is:
|
|
* - bump the current memory pointer to the next
|
|
* address, which will be the next full page.
|
|
* - set the PRP Entry to point to that page. This is
|
|
* now the PRP List pointer.
|
|
* - bump the PRP Entry pointer the start of the next
|
|
* page. Since all of this PRP memory is contiguous,
|
|
* no need to get a new page - it's just the next
|
|
* address.
|
|
*/
|
|
prp_entry_phys++;
|
|
*prp_entry =
|
|
htole64((uint64_t)(uintptr_t)prp_entry_phys);
|
|
prp_entry++;
|
|
}
|
|
|
|
/* Need to handle if entry will be part of a page. */
|
|
offset = (uint32_t)paddr & page_mask;
|
|
entry_len = PAGE_SIZE - offset;
|
|
|
|
if (prp_entry == prp1_entry)
|
|
{
|
|
/*
|
|
* Must fill in the first PRP pointer (PRP1) before
|
|
* moving on.
|
|
*/
|
|
*prp1_entry = htole64((uint64_t)paddr);
|
|
|
|
/*
|
|
* Now point to the second PRP entry within the
|
|
* command (PRP2).
|
|
*/
|
|
prp_entry = prp2_entry;
|
|
}
|
|
else if (prp_entry == prp2_entry)
|
|
{
|
|
/*
|
|
* Should the PRP2 entry be a PRP List pointer or just a
|
|
* regular PRP pointer? If there is more than one more
|
|
* page of data, must use a PRP List pointer.
|
|
*/
|
|
if (length > PAGE_SIZE)
|
|
{
|
|
/*
|
|
* PRP2 will contain a PRP List pointer because
|
|
* more PRP's are needed with this command. The
|
|
* list will start at the beginning of the
|
|
* contiguous buffer.
|
|
*/
|
|
*prp2_entry =
|
|
htole64(
|
|
(uint64_t)(uintptr_t)prp_entry_phys);
|
|
|
|
/*
|
|
* The next PRP Entry will be the start of the
|
|
* first PRP List.
|
|
*/
|
|
prp_entry = prp_page;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* After this, the PRP Entries are complete.
|
|
* This command uses 2 PRP's and no PRP list.
|
|
*/
|
|
*prp2_entry = htole64((uint64_t)paddr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Put entry in list and bump the addresses.
|
|
*
|
|
* After PRP1 and PRP2 are filled in, this will fill in
|
|
* all remaining PRP entries in a PRP List, one per each
|
|
* time through the loop.
|
|
*/
|
|
*prp_entry = htole64((uint64_t)paddr);
|
|
prp_entry++;
|
|
prp_entry_phys++;
|
|
}
|
|
|
|
/*
|
|
* Bump the phys address of the command's data buffer by the
|
|
* entry_len.
|
|
*/
|
|
paddr += entry_len;
|
|
|
|
/* Decrement length accounting for last partial page. */
|
|
if (entry_len > length)
|
|
length = 0;
|
|
else
|
|
length -= entry_len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
|
|
* determine if the driver needs to build a native SGL. If so, that native SGL
|
|
* is built in the contiguous buffers allocated especially for PCIe SGL
|
|
* creation. If the driver will not build a native SGL, return TRUE and a
|
|
* normal IEEE SGL will be built. Currently this routine supports NVMe devices
|
|
* only.
|
|
*
|
|
* Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
|
|
*/
|
|
static int
|
|
mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
|
|
bus_dma_segment_t *segs, int segs_left)
|
|
{
|
|
uint32_t i, sge_dwords, length, offset, entry_len;
|
|
uint32_t num_entries, buff_len = 0, sges_in_segment;
|
|
uint32_t page_mask, page_mask_result, *curr_buff;
|
|
uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset;
|
|
uint32_t first_page_data_size, end_residual;
|
|
uint64_t *msg_phys;
|
|
bus_addr_t paddr;
|
|
int build_native_sgl = 0, first_prp_entry;
|
|
int prp_size = PRP_ENTRY_SIZE;
|
|
Mpi25IeeeSgeChain64_t *main_chain_element = NULL;
|
|
struct mpr_prp_page *prp_page_info = NULL;
|
|
|
|
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
|
|
|
|
/*
|
|
* Add up the sizes of each segment length to get the total transfer
|
|
* size, which will be checked against the Maximum Data Transfer Size.
|
|
* If the data transfer length exceeds the MDTS for this device, just
|
|
* return 1 so a normal IEEE SGL will be built. F/W will break the I/O
|
|
* up into multiple I/O's. [nvme_mdts = 0 means unlimited]
|
|
*/
|
|
for (i = 0; i < segs_left; i++)
|
|
buff_len += htole32(segs[i].ds_len);
|
|
if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
|
|
return 1;
|
|
|
|
/* Create page_mask (to get offset within page) */
|
|
page_mask = PAGE_SIZE - 1;
|
|
|
|
/*
|
|
* Check if the number of elements exceeds the max number that can be
|
|
* put in the main message frame (H/W can only translate an SGL that
|
|
* is contained entirely in the main message frame).
|
|
*/
|
|
sges_in_segment = (sc->reqframesz -
|
|
offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
|
|
if (segs_left > sges_in_segment)
|
|
build_native_sgl = 1;
|
|
else
|
|
{
|
|
/*
|
|
* NVMe uses one PRP for each physical page (or part of physical
|
|
* page).
|
|
* if 4 pages or less then IEEE is OK
|
|
* if > 5 pages then we need to build a native SGL
|
|
* if > 4 and <= 5 pages, then check the physical address of
|
|
* the first SG entry, then if this first size in the page
|
|
* is >= the residual beyond 4 pages then use IEEE,
|
|
* otherwise use native SGL
|
|
*/
|
|
if (buff_len > (PAGE_SIZE * 5))
|
|
build_native_sgl = 1;
|
|
else if ((buff_len > (PAGE_SIZE * 4)) &&
|
|
(buff_len <= (PAGE_SIZE * 5)) )
|
|
{
|
|
msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
|
|
first_page_offset =
|
|
((uint32_t)(uint64_t)(uintptr_t)msg_phys &
|
|
page_mask);
|
|
first_page_data_size = PAGE_SIZE - first_page_offset;
|
|
end_residual = buff_len % PAGE_SIZE;
|
|
|
|
/*
|
|
* If offset into first page pushes the end of the data
|
|
* beyond end of the 5th page, we need the extra PRP
|
|
* list.
|
|
*/
|
|
if (first_page_data_size < end_residual)
|
|
build_native_sgl = 1;
|
|
|
|
/*
|
|
* Check if first SG entry size is < residual beyond 4
|
|
* pages.
|
|
*/
|
|
if (htole32(segs[0].ds_len) <
|
|
(buff_len - (PAGE_SIZE * 4)))
|
|
build_native_sgl = 1;
|
|
}
|
|
}
|
|
|
|
/* check if native SGL is needed */
|
|
if (!build_native_sgl)
|
|
return 1;
|
|
|
|
/*
|
|
* Native SGL is needed.
|
|
* Put a chain element in main message frame that points to the first
|
|
* chain buffer.
|
|
*
|
|
* NOTE: The ChainOffset field must be 0 when using a chain pointer to
|
|
* a native SGL.
|
|
*/
|
|
|
|
/* Set main message chain element pointer */
|
|
main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
|
|
|
|
/*
|
|
* For NVMe the chain element needs to be the 2nd SGL entry in the main
|
|
* message.
|
|
*/
|
|
main_chain_element = (Mpi25IeeeSgeChain64_t *)
|
|
((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
|
|
|
|
/*
|
|
* For the PRP entries, use the specially allocated buffer of
|
|
* contiguous memory. PRP Page allocation failures should not happen
|
|
* because there should be enough PRP page buffers to account for the
|
|
* possible NVMe QDepth.
|
|
*/
|
|
prp_page_info = mpr_alloc_prp_page(sc);
|
|
KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
|
|
"used for building a native NVMe SGL.\n", __func__));
|
|
curr_buff = (uint32_t *)prp_page_info->prp_page;
|
|
msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
|
|
|
|
/*
|
|
* Insert the allocated PRP page into the command's PRP page list. This
|
|
* will be freed when the command is freed.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
|
|
|
|
/*
|
|
* Check if we are within 1 entry of a page boundary we don't want our
|
|
* first entry to be a PRP List entry.
|
|
*/
|
|
page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
|
|
page_mask;
|
|
if (!page_mask_result) {
|
|
/* Bump up to next page boundary. */
|
|
curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
|
|
msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
|
|
}
|
|
|
|
/* Fill in the chain element and make it an NVMe segment type. */
|
|
main_chain_element->Address.High =
|
|
htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
|
|
main_chain_element->Address.Low =
|
|
htole32((uint32_t)(uintptr_t)msg_phys);
|
|
main_chain_element->NextChainOffset = 0;
|
|
main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
|
|
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
|
|
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
|
|
|
|
/* Set SGL pointer to start of contiguous PCIe buffer. */
|
|
ptr_sgl = curr_buff;
|
|
sge_dwords = 2;
|
|
num_entries = 0;
|
|
|
|
/*
|
|
* NVMe has a very convoluted PRP format. One PRP is required for each
|
|
* page or partial page. We need to split up OS SG entries if they are
|
|
* longer than one page or cross a page boundary. We also have to insert
|
|
* a PRP list pointer entry as the last entry in each physical page of
|
|
* the PRP list.
|
|
*
|
|
* NOTE: The first PRP "entry" is actually placed in the first SGL entry
|
|
* in the main message in IEEE 64 format. The 2nd entry in the main
|
|
* message is the chain element, and the rest of the PRP entries are
|
|
* built in the contiguous PCIe buffer.
|
|
*/
|
|
first_prp_entry = 1;
|
|
ptr_first_sgl = (uint32_t *)cm->cm_sge;
|
|
|
|
for (i = 0; i < segs_left; i++) {
|
|
/* Get physical address and length of this SG entry. */
|
|
paddr = segs[i].ds_addr;
|
|
length = segs[i].ds_len;
|
|
|
|
/*
|
|
* Check whether a given SGE buffer lies on a non-PAGED
|
|
* boundary if this is not the first page. If so, this is not
|
|
* expected so have FW build the SGL.
|
|
*/
|
|
if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
|
|
mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
|
|
"building NVMe PRPs, low address is 0x%x\n",
|
|
(uint32_t)paddr);
|
|
return 1;
|
|
}
|
|
|
|
/* Apart from last SGE, if any other SGE boundary is not page
|
|
* aligned then it means that hole exists. Existence of hole
|
|
* leads to data corruption. So fallback to IEEE SGEs.
|
|
*/
|
|
if (i != (segs_left - 1)) {
|
|
if (((uint32_t)paddr + length) & page_mask) {
|
|
mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
|
|
"boundary while building NVMe PRPs, low "
|
|
"address: 0x%x and length: %u\n",
|
|
(uint32_t)paddr, length);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Loop while the length is not zero. */
|
|
while (length) {
|
|
/*
|
|
* Check if we need to put a list pointer here if we are
|
|
* at page boundary - prp_size.
|
|
*/
|
|
page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
|
|
prp_size) & page_mask;
|
|
if (!page_mask_result) {
|
|
/*
|
|
* Need to put a PRP list pointer here.
|
|
*/
|
|
msg_phys = (uint64_t *)((uint8_t *)msg_phys +
|
|
prp_size);
|
|
*ptr_sgl = htole32((uintptr_t)msg_phys);
|
|
*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
|
|
msg_phys >> 32);
|
|
ptr_sgl += sge_dwords;
|
|
num_entries++;
|
|
}
|
|
|
|
/* Need to handle if entry will be part of a page. */
|
|
offset = (uint32_t)paddr & page_mask;
|
|
entry_len = PAGE_SIZE - offset;
|
|
if (first_prp_entry) {
|
|
/*
|
|
* Put IEEE entry in first SGE in main message.
|
|
* (Simple element, System addr, not end of
|
|
* list.)
|
|
*/
|
|
*ptr_first_sgl = htole32((uint32_t)paddr);
|
|
*(ptr_first_sgl + 1) =
|
|
htole32((uint32_t)((uint64_t)paddr >> 32));
|
|
*(ptr_first_sgl + 2) = htole32(entry_len);
|
|
*(ptr_first_sgl + 3) = 0;
|
|
|
|
/* No longer the first PRP entry. */
|
|
first_prp_entry = 0;
|
|
} else {
|
|
/* Put entry in list. */
|
|
*ptr_sgl = htole32((uint32_t)paddr);
|
|
*(ptr_sgl + 1) =
|
|
htole32((uint32_t)((uint64_t)paddr >> 32));
|
|
|
|
/* Bump ptr_sgl, msg_phys, and num_entries. */
|
|
ptr_sgl += sge_dwords;
|
|
msg_phys = (uint64_t *)((uint8_t *)msg_phys +
|
|
prp_size);
|
|
num_entries++;
|
|
}
|
|
|
|
/* Bump the phys address by the entry_len. */
|
|
paddr += entry_len;
|
|
|
|
/* Decrement length accounting for last partial page. */
|
|
if (entry_len > length)
|
|
length = 0;
|
|
else
|
|
length -= entry_len;
|
|
}
|
|
}
|
|
|
|
/* Set chain element Length. */
|
|
main_chain_element->Length = htole32(num_entries * prp_size);
|
|
|
|
/* Return 0, indicating we built a native SGL. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a chain element as the next SGE for the specified command.
|
|
* Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
|
|
* only required for IEEE commands. Therefore there is no code for commands
|
|
* that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
|
|
* shouldn't be requesting chains).
|
|
*/
|
|
static int
|
|
mpr_add_chain(struct mpr_command *cm, int segsleft)
|
|
{
|
|
struct mpr_softc *sc = cm->cm_sc;
|
|
MPI2_REQUEST_HEADER *req;
|
|
MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
|
|
struct mpr_chain *chain;
|
|
int sgc_size, current_segs, rem_segs, segs_per_frame;
|
|
uint8_t next_chain_offset = 0;
|
|
|
|
/*
|
|
* Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3
|
|
* only IEEE commands should be requesting chains. Return some error
|
|
* code other than 0.
|
|
*/
|
|
if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
|
|
mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
|
|
"an MPI SGL.\n");
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
|
|
if (cm->cm_sglsize < sgc_size)
|
|
panic("MPR: Need SGE Error Code\n");
|
|
|
|
chain = mpr_alloc_chain(cm->cm_sc);
|
|
if (chain == NULL)
|
|
return (ENOBUFS);
|
|
|
|
/*
|
|
* Note: a double-linked list is used to make it easier to walk for
|
|
* debugging.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
|
|
|
|
/*
|
|
* Need to know if the number of frames left is more than 1 or not. If
|
|
* more than 1 frame is required, NextChainOffset will need to be set,
|
|
* which will just be the last segment of the frame.
|
|
*/
|
|
rem_segs = 0;
|
|
if (cm->cm_sglsize < (sgc_size * segsleft)) {
|
|
/*
|
|
* rem_segs is the number of segements remaining after the
|
|
* segments that will go into the current frame. Since it is
|
|
* known that at least one more frame is required, account for
|
|
* the chain element. To know if more than one more frame is
|
|
* required, just check if there will be a remainder after using
|
|
* the current frame (with this chain) and the next frame. If
|
|
* so the NextChainOffset must be the last element of the next
|
|
* frame.
|
|
*/
|
|
current_segs = (cm->cm_sglsize / sgc_size) - 1;
|
|
rem_segs = segsleft - current_segs;
|
|
segs_per_frame = sc->chain_frame_size / sgc_size;
|
|
if (rem_segs > segs_per_frame) {
|
|
next_chain_offset = segs_per_frame - 1;
|
|
}
|
|
}
|
|
ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
|
|
ieee_sgc->Length = next_chain_offset ?
|
|
htole32((uint32_t)sc->chain_frame_size) :
|
|
htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
|
|
ieee_sgc->NextChainOffset = next_chain_offset;
|
|
ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
|
|
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
|
|
ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
|
|
ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
|
|
cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
|
|
req = (MPI2_REQUEST_HEADER *)cm->cm_req;
|
|
req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
|
|
|
|
cm->cm_sglsize = sc->chain_frame_size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add one scatter-gather element to the scatter-gather list for a command.
|
|
* Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
|
|
* next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a
|
|
* chain, so don't consider any chain additions.
|
|
*/
|
|
int
|
|
mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
|
|
int segsleft)
|
|
{
|
|
uint32_t saved_buf_len, saved_address_low, saved_address_high;
|
|
u32 sge_flags;
|
|
|
|
/*
|
|
* case 1: >=1 more segment, no room for anything (error)
|
|
* case 2: 1 more segment and enough room for it
|
|
*/
|
|
|
|
if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
|
|
mpr_dprint(cm->cm_sc, MPR_ERROR,
|
|
"%s: warning: Not enough room for MPI SGL in frame.\n",
|
|
__func__);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
KASSERT(segsleft == 1,
|
|
("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
|
|
segsleft));
|
|
|
|
/*
|
|
* There is one more segment left to add for the MPI SGL and there is
|
|
* enough room in the frame to add it. This is the normal case because
|
|
* MPI SGL's don't have chains, otherwise something is wrong.
|
|
*
|
|
* If this is a bi-directional request, need to account for that
|
|
* here. Save the pre-filled sge values. These will be used
|
|
* either for the 2nd SGL or for a single direction SGL. If
|
|
* cm_out_len is non-zero, this is a bi-directional request, so
|
|
* fill in the OUT SGL first, then the IN SGL, otherwise just
|
|
* fill in the IN SGL. Note that at this time, when filling in
|
|
* 2 SGL's for a bi-directional request, they both use the same
|
|
* DMA buffer (same cm command).
|
|
*/
|
|
saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
|
|
saved_address_low = sge->Address.Low;
|
|
saved_address_high = sge->Address.High;
|
|
if (cm->cm_out_len) {
|
|
sge->FlagsLength = cm->cm_out_len |
|
|
((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_SGE_FLAGS_END_OF_BUFFER |
|
|
MPI2_SGE_FLAGS_HOST_TO_IOC |
|
|
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
|
|
MPI2_SGE_FLAGS_SHIFT);
|
|
cm->cm_sglsize -= len;
|
|
/* Endian Safe code */
|
|
sge_flags = sge->FlagsLength;
|
|
sge->FlagsLength = htole32(sge_flags);
|
|
sge->Address.High = htole32(sge->Address.High);
|
|
sge->Address.Low = htole32(sge->Address.Low);
|
|
bcopy(sge, cm->cm_sge, len);
|
|
cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
|
|
}
|
|
sge->FlagsLength = saved_buf_len |
|
|
((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_SGE_FLAGS_END_OF_BUFFER |
|
|
MPI2_SGE_FLAGS_LAST_ELEMENT |
|
|
MPI2_SGE_FLAGS_END_OF_LIST |
|
|
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
|
|
MPI2_SGE_FLAGS_SHIFT);
|
|
if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
|
|
sge->FlagsLength |=
|
|
((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
|
|
MPI2_SGE_FLAGS_SHIFT);
|
|
} else {
|
|
sge->FlagsLength |=
|
|
((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
|
|
MPI2_SGE_FLAGS_SHIFT);
|
|
}
|
|
sge->Address.Low = saved_address_low;
|
|
sge->Address.High = saved_address_high;
|
|
|
|
cm->cm_sglsize -= len;
|
|
/* Endian Safe code */
|
|
sge_flags = sge->FlagsLength;
|
|
sge->FlagsLength = htole32(sge_flags);
|
|
sge->Address.High = htole32(sge->Address.High);
|
|
sge->Address.Low = htole32(sge->Address.Low);
|
|
bcopy(sge, cm->cm_sge, len);
|
|
cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
|
|
* gather list for a command. Maintain cm_sglsize and cm_sge as the
|
|
* remaining size and pointer to the next SGE to fill in, respectively.
|
|
*/
|
|
int
|
|
mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
|
|
{
|
|
MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
|
|
int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
|
|
uint32_t saved_buf_len, saved_address_low, saved_address_high;
|
|
uint32_t sge_length;
|
|
|
|
/*
|
|
* case 1: No room for chain or segment (error).
|
|
* case 2: Two or more segments left but only room for chain.
|
|
* case 3: Last segment and room for it, so set flags.
|
|
*/
|
|
|
|
/*
|
|
* There should be room for at least one element, or there is a big
|
|
* problem.
|
|
*/
|
|
if (cm->cm_sglsize < ieee_sge_size)
|
|
panic("MPR: Need SGE Error Code\n");
|
|
|
|
if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
|
|
if ((error = mpr_add_chain(cm, segsleft)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
if (segsleft == 1) {
|
|
/*
|
|
* If this is a bi-directional request, need to account for that
|
|
* here. Save the pre-filled sge values. These will be used
|
|
* either for the 2nd SGL or for a single direction SGL. If
|
|
* cm_out_len is non-zero, this is a bi-directional request, so
|
|
* fill in the OUT SGL first, then the IN SGL, otherwise just
|
|
* fill in the IN SGL. Note that at this time, when filling in
|
|
* 2 SGL's for a bi-directional request, they both use the same
|
|
* DMA buffer (same cm command).
|
|
*/
|
|
saved_buf_len = sge->Length;
|
|
saved_address_low = sge->Address.Low;
|
|
saved_address_high = sge->Address.High;
|
|
if (cm->cm_out_len) {
|
|
sge->Length = cm->cm_out_len;
|
|
sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
|
|
cm->cm_sglsize -= ieee_sge_size;
|
|
/* Endian Safe code */
|
|
sge_length = sge->Length;
|
|
sge->Length = htole32(sge_length);
|
|
sge->Address.High = htole32(sge->Address.High);
|
|
sge->Address.Low = htole32(sge->Address.Low);
|
|
bcopy(sgep, cm->cm_sge, ieee_sge_size);
|
|
cm->cm_sge =
|
|
(MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
|
|
ieee_sge_size);
|
|
}
|
|
sge->Length = saved_buf_len;
|
|
sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
|
|
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
|
|
sge->Address.Low = saved_address_low;
|
|
sge->Address.High = saved_address_high;
|
|
}
|
|
|
|
cm->cm_sglsize -= ieee_sge_size;
|
|
/* Endian Safe code */
|
|
sge_length = sge->Length;
|
|
sge->Length = htole32(sge_length);
|
|
sge->Address.High = htole32(sge->Address.High);
|
|
sge->Address.Low = htole32(sge->Address.Low);
|
|
bcopy(sgep, cm->cm_sge, ieee_sge_size);
|
|
cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
|
|
ieee_sge_size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add one dma segment to the scatter-gather list for a command.
|
|
*/
|
|
int
|
|
mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
|
|
int segsleft)
|
|
{
|
|
MPI2_SGE_SIMPLE64 sge;
|
|
MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
|
|
|
|
if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
|
|
ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
|
|
ieee_sge.Length = len;
|
|
mpr_from_u64(pa, &ieee_sge.Address);
|
|
|
|
return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
|
|
} else {
|
|
/*
|
|
* This driver always uses 64-bit address elements for
|
|
* simplicity.
|
|
*/
|
|
flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
|
|
MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
|
|
/* Set Endian safe macro in mpr_push_sge */
|
|
sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
|
|
mpr_from_u64(pa, &sge.Address);
|
|
|
|
return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
|
|
}
|
|
}
|
|
|
|
static void
|
|
mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct mpr_softc *sc;
|
|
struct mpr_command *cm;
|
|
u_int i, dir, sflags;
|
|
|
|
cm = (struct mpr_command *)arg;
|
|
sc = cm->cm_sc;
|
|
|
|
/*
|
|
* In this case, just print out a warning and let the chip tell the
|
|
* user they did the wrong thing.
|
|
*/
|
|
if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
|
|
mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
|
|
"segments, more than the %d allowed\n", __func__, nsegs,
|
|
cm->cm_max_segs);
|
|
}
|
|
|
|
/*
|
|
* Set up DMA direction flags. Bi-directional requests are also handled
|
|
* here. In that case, both direction flags will be set.
|
|
*/
|
|
sflags = 0;
|
|
if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
|
|
/*
|
|
* We have to add a special case for SMP passthrough, there
|
|
* is no easy way to generically handle it. The first
|
|
* S/G element is used for the command (therefore the
|
|
* direction bit needs to be set). The second one is used
|
|
* for the reply. We'll leave it to the caller to make
|
|
* sure we only have two buffers.
|
|
*/
|
|
/*
|
|
* Even though the busdma man page says it doesn't make
|
|
* sense to have both direction flags, it does in this case.
|
|
* We have one s/g element being accessed in each direction.
|
|
*/
|
|
dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
|
|
|
|
/*
|
|
* Set the direction flag on the first buffer in the SMP
|
|
* passthrough request. We'll clear it for the second one.
|
|
*/
|
|
sflags |= MPI2_SGE_FLAGS_DIRECTION |
|
|
MPI2_SGE_FLAGS_END_OF_BUFFER;
|
|
} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
|
|
sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
|
|
dir = BUS_DMASYNC_PREWRITE;
|
|
} else
|
|
dir = BUS_DMASYNC_PREREAD;
|
|
|
|
/* Check if a native SG list is needed for an NVMe PCIe device. */
|
|
if (cm->cm_targ && cm->cm_targ->is_nvme &&
|
|
mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
|
|
/* A native SG list was built, skip to end. */
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < nsegs; i++) {
|
|
if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
|
|
sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
|
|
}
|
|
error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
|
|
sflags, nsegs - i);
|
|
if (error != 0) {
|
|
/* Resource shortage, roll back! */
|
|
if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
|
|
mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
|
|
"consider increasing hw.mpr.max_chains.\n");
|
|
cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
|
|
mpr_complete_command(sc, cm);
|
|
return;
|
|
}
|
|
}
|
|
|
|
out:
|
|
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
|
|
mpr_enqueue_request(sc, cm);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
|
|
int error)
|
|
{
|
|
mpr_data_cb(arg, segs, nsegs, error);
|
|
}
|
|
|
|
/*
|
|
* This is the routine to enqueue commands ansynchronously.
|
|
* Note that the only error path here is from bus_dmamap_load(), which can
|
|
* return EINPROGRESS if it is waiting for resources. Other than this, it's
|
|
* assumed that if you have a command in-hand, then you have enough credits
|
|
* to use it.
|
|
*/
|
|
int
|
|
mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
|
|
{
|
|
int error = 0;
|
|
|
|
if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
|
|
error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
|
|
&cm->cm_uio, mpr_data_cb2, cm, 0);
|
|
} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
|
|
error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
|
|
cm->cm_data, mpr_data_cb, cm, 0);
|
|
} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
|
|
error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
|
|
cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
|
|
} else {
|
|
/* Add a zero-length element as needed */
|
|
if (cm->cm_sge != NULL)
|
|
mpr_add_dmaseg(cm, 0, 0, 0, 1);
|
|
mpr_enqueue_request(sc, cm);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This is the routine to enqueue commands synchronously. An error of
|
|
* EINPROGRESS from mpr_map_command() is ignored since the command will
|
|
* be executed and enqueued automatically. Other errors come from msleep().
|
|
*/
|
|
int
|
|
mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
|
|
int sleep_flag)
|
|
{
|
|
int error, rc;
|
|
struct timeval cur_time, start_time;
|
|
struct mpr_command *cm = *cmp;
|
|
|
|
if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
|
|
return EBUSY;
|
|
|
|
cm->cm_complete = NULL;
|
|
cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
|
|
error = mpr_map_command(sc, cm);
|
|
if ((error != 0) && (error != EINPROGRESS))
|
|
return (error);
|
|
|
|
// Check for context and wait for 50 mSec at a time until time has
|
|
// expired or the command has finished. If msleep can't be used, need
|
|
// to poll.
|
|
#if __FreeBSD_version >= 1000029
|
|
if (curthread->td_no_sleeping)
|
|
#else //__FreeBSD_version < 1000029
|
|
if (curthread->td_pflags & TDP_NOSLEEPING)
|
|
#endif //__FreeBSD_version >= 1000029
|
|
sleep_flag = NO_SLEEP;
|
|
getmicrouptime(&start_time);
|
|
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
|
|
error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
|
|
if (error == EWOULDBLOCK) {
|
|
/*
|
|
* Record the actual elapsed time in the case of a
|
|
* timeout for the message below.
|
|
*/
|
|
getmicrouptime(&cur_time);
|
|
timevalsub(&cur_time, &start_time);
|
|
}
|
|
} else {
|
|
while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
|
|
mpr_intr_locked(sc);
|
|
if (sleep_flag == CAN_SLEEP)
|
|
pause("mprwait", hz/20);
|
|
else
|
|
DELAY(50000);
|
|
|
|
getmicrouptime(&cur_time);
|
|
timevalsub(&cur_time, &start_time);
|
|
if (cur_time.tv_sec > timeout) {
|
|
error = EWOULDBLOCK;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (error == EWOULDBLOCK) {
|
|
mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
|
|
" elapsed=%jd\n", __func__, timeout,
|
|
(intmax_t)cur_time.tv_sec);
|
|
rc = mpr_reinit(sc);
|
|
mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
|
|
"failed");
|
|
if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
|
|
/*
|
|
* Tell the caller that we freed the command in a
|
|
* reinit.
|
|
*/
|
|
*cmp = NULL;
|
|
}
|
|
error = ETIMEDOUT;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This is the routine to enqueue a command synchonously and poll for
|
|
* completion. Its use should be rare.
|
|
*/
|
|
int
|
|
mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
|
|
{
|
|
int error, rc;
|
|
struct timeval cur_time, start_time;
|
|
struct mpr_command *cm = *cmp;
|
|
|
|
error = 0;
|
|
|
|
cm->cm_flags |= MPR_CM_FLAGS_POLLED;
|
|
cm->cm_complete = NULL;
|
|
mpr_map_command(sc, cm);
|
|
|
|
getmicrouptime(&start_time);
|
|
while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
|
|
mpr_intr_locked(sc);
|
|
|
|
if (mtx_owned(&sc->mpr_mtx))
|
|
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
|
|
"mprpoll", hz/20);
|
|
else
|
|
pause("mprpoll", hz/20);
|
|
|
|
/*
|
|
* Check for real-time timeout and fail if more than 60 seconds.
|
|
*/
|
|
getmicrouptime(&cur_time);
|
|
timevalsub(&cur_time, &start_time);
|
|
if (cur_time.tv_sec > 60) {
|
|
mpr_dprint(sc, MPR_FAULT, "polling failed\n");
|
|
error = ETIMEDOUT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
|
|
rc = mpr_reinit(sc);
|
|
mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
|
|
"failed");
|
|
|
|
if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
|
|
/*
|
|
* Tell the caller that we freed the command in a
|
|
* reinit.
|
|
*/
|
|
*cmp = NULL;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The MPT driver had a verbose interface for config pages. In this driver,
|
|
* reduce it to much simpler terms, similar to the Linux driver.
|
|
*/
|
|
int
|
|
mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
|
|
{
|
|
MPI2_CONFIG_REQUEST *req;
|
|
struct mpr_command *cm;
|
|
int error;
|
|
|
|
if (sc->mpr_flags & MPR_FLAGS_BUSY) {
|
|
return (EBUSY);
|
|
}
|
|
|
|
cm = mpr_alloc_command(sc);
|
|
if (cm == NULL) {
|
|
return (EBUSY);
|
|
}
|
|
|
|
req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
|
|
req->Function = MPI2_FUNCTION_CONFIG;
|
|
req->Action = params->action;
|
|
req->SGLFlags = 0;
|
|
req->ChainOffset = 0;
|
|
req->PageAddress = params->page_address;
|
|
if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
|
|
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
|
|
|
|
hdr = ¶ms->hdr.Ext;
|
|
req->ExtPageType = hdr->ExtPageType;
|
|
req->ExtPageLength = hdr->ExtPageLength;
|
|
req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
|
|
req->Header.PageLength = 0; /* Must be set to zero */
|
|
req->Header.PageNumber = hdr->PageNumber;
|
|
req->Header.PageVersion = hdr->PageVersion;
|
|
} else {
|
|
MPI2_CONFIG_PAGE_HEADER *hdr;
|
|
|
|
hdr = ¶ms->hdr.Struct;
|
|
req->Header.PageType = hdr->PageType;
|
|
req->Header.PageNumber = hdr->PageNumber;
|
|
req->Header.PageLength = hdr->PageLength;
|
|
req->Header.PageVersion = hdr->PageVersion;
|
|
}
|
|
|
|
cm->cm_data = params->buffer;
|
|
cm->cm_length = params->length;
|
|
if (cm->cm_data != NULL) {
|
|
cm->cm_sge = &req->PageBufferSGE;
|
|
cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
|
|
cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
|
|
} else
|
|
cm->cm_sge = NULL;
|
|
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
|
|
|
|
cm->cm_complete_data = params;
|
|
if (params->callback != NULL) {
|
|
cm->cm_complete = mpr_config_complete;
|
|
return (mpr_map_command(sc, cm));
|
|
} else {
|
|
error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
|
|
if (error) {
|
|
mpr_dprint(sc, MPR_FAULT,
|
|
"Error %d reading config page\n", error);
|
|
if (cm != NULL)
|
|
mpr_free_command(sc, cm);
|
|
return (error);
|
|
}
|
|
mpr_config_complete(sc, cm);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
|
|
{
|
|
return (EINVAL);
|
|
}
|
|
|
|
static void
|
|
mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
|
|
{
|
|
MPI2_CONFIG_REPLY *reply;
|
|
struct mpr_config_params *params;
|
|
|
|
MPR_FUNCTRACE(sc);
|
|
params = cm->cm_complete_data;
|
|
|
|
if (cm->cm_data != NULL) {
|
|
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
|
|
}
|
|
|
|
/*
|
|
* XXX KDM need to do more error recovery? This results in the
|
|
* device in question not getting probed.
|
|
*/
|
|
if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
|
|
params->status = MPI2_IOCSTATUS_BUSY;
|
|
goto done;
|
|
}
|
|
|
|
reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
|
|
if (reply == NULL) {
|
|
params->status = MPI2_IOCSTATUS_BUSY;
|
|
goto done;
|
|
}
|
|
params->status = reply->IOCStatus;
|
|
if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
|
|
params->hdr.Ext.ExtPageType = reply->ExtPageType;
|
|
params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
|
|
params->hdr.Ext.PageType = reply->Header.PageType;
|
|
params->hdr.Ext.PageNumber = reply->Header.PageNumber;
|
|
params->hdr.Ext.PageVersion = reply->Header.PageVersion;
|
|
} else {
|
|
params->hdr.Struct.PageType = reply->Header.PageType;
|
|
params->hdr.Struct.PageNumber = reply->Header.PageNumber;
|
|
params->hdr.Struct.PageLength = reply->Header.PageLength;
|
|
params->hdr.Struct.PageVersion = reply->Header.PageVersion;
|
|
}
|
|
|
|
done:
|
|
mpr_free_command(sc, cm);
|
|
if (params->callback != NULL)
|
|
params->callback(sc, params);
|
|
|
|
return;
|
|
}
|