mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-03 12:35:02 +00:00
644 lines
16 KiB
C
644 lines
16 KiB
C
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz and Don Ahn.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Routines to handle clock hardware.
|
|
*/
|
|
|
|
#include "opt_apic.h"
|
|
#include "opt_clock.h"
|
|
#include "opt_kdtrace.h"
|
|
#include "opt_isa.h"
|
|
#include "opt_mca.h"
|
|
#include "opt_xbox.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/clock.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <machine/md_var.h>
|
|
#ifdef DEV_APIC
|
|
#include <machine/apicvar.h>
|
|
#endif
|
|
#include <machine/ppireg.h>
|
|
#include <machine/timerreg.h>
|
|
|
|
#include <isa/rtc.h>
|
|
#ifdef DEV_ISA
|
|
#include <isa/isareg.h>
|
|
#include <isa/isavar.h>
|
|
#endif
|
|
|
|
#ifdef DEV_MCA
|
|
#include <i386/bios/mca_machdep.h>
|
|
#endif
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
#endif
|
|
|
|
#define TIMER_DIV(x) ((i8254_freq + (x) / 2) / (x))
|
|
|
|
int clkintr_pending;
|
|
static int pscnt = 1;
|
|
static int psdiv = 1;
|
|
int statclock_disable;
|
|
#ifndef TIMER_FREQ
|
|
#define TIMER_FREQ 1193182
|
|
#endif
|
|
u_int i8254_freq = TIMER_FREQ;
|
|
TUNABLE_INT("hw.i8254.freq", &i8254_freq);
|
|
int i8254_max_count;
|
|
static int i8254_real_max_count;
|
|
|
|
struct mtx clock_lock;
|
|
static struct intsrc *i8254_intsrc;
|
|
static u_int32_t i8254_lastcount;
|
|
static u_int32_t i8254_offset;
|
|
static int (*i8254_pending)(struct intsrc *);
|
|
static int i8254_ticked;
|
|
static int using_lapic_timer;
|
|
|
|
/* Values for timerX_state: */
|
|
#define RELEASED 0
|
|
#define RELEASE_PENDING 1
|
|
#define ACQUIRED 2
|
|
#define ACQUIRE_PENDING 3
|
|
|
|
static u_char timer2_state;
|
|
|
|
static unsigned i8254_get_timecount(struct timecounter *tc);
|
|
static unsigned i8254_simple_get_timecount(struct timecounter *tc);
|
|
static void set_i8254_freq(u_int freq, int intr_freq);
|
|
|
|
static struct timecounter i8254_timecounter = {
|
|
i8254_get_timecount, /* get_timecount */
|
|
0, /* no poll_pps */
|
|
~0u, /* counter_mask */
|
|
0, /* frequency */
|
|
"i8254", /* name */
|
|
0 /* quality */
|
|
};
|
|
|
|
static int
|
|
clkintr(struct trapframe *frame)
|
|
{
|
|
|
|
if (timecounter->tc_get_timecount == i8254_get_timecount) {
|
|
mtx_lock_spin(&clock_lock);
|
|
if (i8254_ticked)
|
|
i8254_ticked = 0;
|
|
else {
|
|
i8254_offset += i8254_max_count;
|
|
i8254_lastcount = 0;
|
|
}
|
|
clkintr_pending = 0;
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
KASSERT(!using_lapic_timer, ("clk interrupt enabled with lapic timer"));
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
/*
|
|
* If the DTrace hooks are configured and a callback function
|
|
* has been registered, then call it to process the high speed
|
|
* timers.
|
|
*/
|
|
int cpu = PCPU_GET(cpuid);
|
|
if (lapic_cyclic_clock_func[cpu] != NULL)
|
|
(*lapic_cyclic_clock_func[cpu])(frame);
|
|
#endif
|
|
|
|
hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
|
|
#ifdef DEV_MCA
|
|
/* Reset clock interrupt by asserting bit 7 of port 0x61 */
|
|
if (MCA_system)
|
|
outb(0x61, inb(0x61) | 0x80);
|
|
#endif
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
int
|
|
timer_spkr_acquire(void)
|
|
{
|
|
int mode;
|
|
|
|
mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
|
|
|
|
if (timer2_state != RELEASED)
|
|
return (-1);
|
|
timer2_state = ACQUIRED;
|
|
|
|
/*
|
|
* This access to the timer registers is as atomic as possible
|
|
* because it is a single instruction. We could do better if we
|
|
* knew the rate. Use of splclock() limits glitches to 10-100us,
|
|
* and this is probably good enough for timer2, so we aren't as
|
|
* careful with it as with timer0.
|
|
*/
|
|
outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
|
|
ppi_spkr_on(); /* enable counter2 output to speaker */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
timer_spkr_release(void)
|
|
{
|
|
|
|
if (timer2_state != ACQUIRED)
|
|
return (-1);
|
|
timer2_state = RELEASED;
|
|
outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
|
|
ppi_spkr_off(); /* disable counter2 output to speaker */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
timer_spkr_setfreq(int freq)
|
|
{
|
|
|
|
freq = i8254_freq / freq;
|
|
mtx_lock_spin(&clock_lock);
|
|
outb(TIMER_CNTR2, freq & 0xff);
|
|
outb(TIMER_CNTR2, freq >> 8);
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
|
|
/*
|
|
* This routine receives statistical clock interrupts from the RTC.
|
|
* As explained above, these occur at 128 interrupts per second.
|
|
* When profiling, we receive interrupts at a rate of 1024 Hz.
|
|
*
|
|
* This does not actually add as much overhead as it sounds, because
|
|
* when the statistical clock is active, the hardclock driver no longer
|
|
* needs to keep (inaccurate) statistics on its own. This decouples
|
|
* statistics gathering from scheduling interrupts.
|
|
*
|
|
* The RTC chip requires that we read status register C (RTC_INTR)
|
|
* to acknowledge an interrupt, before it will generate the next one.
|
|
* Under high interrupt load, rtcintr() can be indefinitely delayed and
|
|
* the clock can tick immediately after the read from RTC_INTR. In this
|
|
* case, the mc146818A interrupt signal will not drop for long enough
|
|
* to register with the 8259 PIC. If an interrupt is missed, the stat
|
|
* clock will halt, considerably degrading system performance. This is
|
|
* why we use 'while' rather than a more straightforward 'if' below.
|
|
* Stat clock ticks can still be lost, causing minor loss of accuracy
|
|
* in the statistics, but the stat clock will no longer stop.
|
|
*/
|
|
static int
|
|
rtcintr(struct trapframe *frame)
|
|
{
|
|
int flag = 0;
|
|
|
|
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
|
|
flag = 1;
|
|
if (profprocs != 0) {
|
|
if (--pscnt == 0)
|
|
pscnt = psdiv;
|
|
profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
|
|
}
|
|
if (pscnt == psdiv)
|
|
statclock(TRAPF_USERMODE(frame));
|
|
}
|
|
return(flag ? FILTER_HANDLED : FILTER_STRAY);
|
|
}
|
|
|
|
static int
|
|
getit(void)
|
|
{
|
|
int high, low;
|
|
|
|
mtx_lock_spin(&clock_lock);
|
|
|
|
/* Select timer0 and latch counter value. */
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
|
|
|
|
low = inb(TIMER_CNTR0);
|
|
high = inb(TIMER_CNTR0);
|
|
|
|
mtx_unlock_spin(&clock_lock);
|
|
return ((high << 8) | low);
|
|
}
|
|
|
|
/*
|
|
* Wait "n" microseconds.
|
|
* Relies on timer 1 counting down from (i8254_freq / hz)
|
|
* Note: timer had better have been programmed before this is first used!
|
|
*/
|
|
void
|
|
DELAY(int n)
|
|
{
|
|
int delta, prev_tick, tick, ticks_left;
|
|
|
|
#ifdef DELAYDEBUG
|
|
int getit_calls = 1;
|
|
int n1;
|
|
static int state = 0;
|
|
#endif
|
|
|
|
if (tsc_freq != 0 && !tsc_is_broken) {
|
|
uint64_t start, end, now;
|
|
|
|
sched_pin();
|
|
start = rdtsc();
|
|
end = start + (tsc_freq * n) / 1000000;
|
|
do {
|
|
cpu_spinwait();
|
|
now = rdtsc();
|
|
} while (now < end || (now > start && end < start));
|
|
sched_unpin();
|
|
return;
|
|
}
|
|
#ifdef DELAYDEBUG
|
|
if (state == 0) {
|
|
state = 1;
|
|
for (n1 = 1; n1 <= 10000000; n1 *= 10)
|
|
DELAY(n1);
|
|
state = 2;
|
|
}
|
|
if (state == 1)
|
|
printf("DELAY(%d)...", n);
|
|
#endif
|
|
/*
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
* counted. Guess the initial overhead is 20 usec (on most systems it
|
|
* takes about 1.5 usec for each of the i/o's in getit(). The loop
|
|
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
|
|
* multiplications and divisions to scale the count take a while).
|
|
*
|
|
* However, if ddb is active then use a fake counter since reading
|
|
* the i8254 counter involves acquiring a lock. ddb must not do
|
|
* locking for many reasons, but it calls here for at least atkbd
|
|
* input.
|
|
*/
|
|
#ifdef KDB
|
|
if (kdb_active)
|
|
prev_tick = 1;
|
|
else
|
|
#endif
|
|
prev_tick = getit();
|
|
n -= 0; /* XXX actually guess no initial overhead */
|
|
/*
|
|
* Calculate (n * (i8254_freq / 1e6)) without using floating point
|
|
* and without any avoidable overflows.
|
|
*/
|
|
if (n <= 0)
|
|
ticks_left = 0;
|
|
else if (n < 256)
|
|
/*
|
|
* Use fixed point to avoid a slow division by 1000000.
|
|
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
|
|
* 2^15 is the first power of 2 that gives exact results
|
|
* for n between 0 and 256.
|
|
*/
|
|
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
|
|
else
|
|
/*
|
|
* Don't bother using fixed point, although gcc-2.7.2
|
|
* generates particularly poor code for the long long
|
|
* division, since even the slow way will complete long
|
|
* before the delay is up (unless we're interrupted).
|
|
*/
|
|
ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
|
|
/ 1000000;
|
|
|
|
while (ticks_left > 0) {
|
|
#ifdef KDB
|
|
if (kdb_active) {
|
|
inb(0x84);
|
|
tick = prev_tick - 1;
|
|
if (tick <= 0)
|
|
tick = i8254_max_count;
|
|
} else
|
|
#endif
|
|
tick = getit();
|
|
#ifdef DELAYDEBUG
|
|
++getit_calls;
|
|
#endif
|
|
delta = prev_tick - tick;
|
|
prev_tick = tick;
|
|
if (delta < 0) {
|
|
delta += i8254_max_count;
|
|
/*
|
|
* Guard against i8254_max_count being wrong.
|
|
* This shouldn't happen in normal operation,
|
|
* but it may happen if set_i8254_freq() is
|
|
* traced.
|
|
*/
|
|
if (delta < 0)
|
|
delta = 0;
|
|
}
|
|
ticks_left -= delta;
|
|
}
|
|
#ifdef DELAYDEBUG
|
|
if (state == 1)
|
|
printf(" %d calls to getit() at %d usec each\n",
|
|
getit_calls, (n + 5) / getit_calls);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
set_i8254_freq(u_int freq, int intr_freq)
|
|
{
|
|
int new_i8254_real_max_count;
|
|
|
|
i8254_timecounter.tc_frequency = freq;
|
|
mtx_lock_spin(&clock_lock);
|
|
i8254_freq = freq;
|
|
if (using_lapic_timer)
|
|
new_i8254_real_max_count = 0x10000;
|
|
else
|
|
new_i8254_real_max_count = TIMER_DIV(intr_freq);
|
|
if (new_i8254_real_max_count != i8254_real_max_count) {
|
|
i8254_real_max_count = new_i8254_real_max_count;
|
|
if (i8254_real_max_count == 0x10000)
|
|
i8254_max_count = 0xffff;
|
|
else
|
|
i8254_max_count = i8254_real_max_count;
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
|
|
outb(TIMER_CNTR0, i8254_real_max_count >> 8);
|
|
}
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
|
|
static void
|
|
i8254_restore(void)
|
|
{
|
|
|
|
mtx_lock_spin(&clock_lock);
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
|
|
outb(TIMER_CNTR0, i8254_real_max_count >> 8);
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
|
|
/*
|
|
* Restore all the timers non-atomically (XXX: should be atomically).
|
|
*
|
|
* This function is called from pmtimer_resume() to restore all the timers.
|
|
* This should not be necessary, but there are broken laptops that do not
|
|
* restore all the timers on resume.
|
|
*/
|
|
void
|
|
timer_restore(void)
|
|
{
|
|
|
|
i8254_restore(); /* restore i8254_freq and hz */
|
|
atrtc_restore(); /* reenable RTC interrupts */
|
|
}
|
|
|
|
/* This is separate from startrtclock() so that it can be called early. */
|
|
void
|
|
i8254_init(void)
|
|
{
|
|
|
|
mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
|
|
set_i8254_freq(i8254_freq, hz);
|
|
}
|
|
|
|
void
|
|
startrtclock()
|
|
{
|
|
|
|
atrtc_start();
|
|
|
|
set_i8254_freq(i8254_freq, hz);
|
|
tc_init(&i8254_timecounter);
|
|
|
|
init_TSC();
|
|
}
|
|
|
|
/*
|
|
* Start both clocks running.
|
|
*/
|
|
void
|
|
cpu_initclocks()
|
|
{
|
|
int diag;
|
|
|
|
#ifdef DEV_APIC
|
|
using_lapic_timer = lapic_setup_clock();
|
|
#endif
|
|
/*
|
|
* If we aren't using the local APIC timer to drive the kernel
|
|
* clocks, setup the interrupt handler for the 8254 timer 0 so
|
|
* that it can drive hardclock(). Otherwise, change the 8254
|
|
* timecounter to user a simpler algorithm.
|
|
*/
|
|
if (!using_lapic_timer) {
|
|
intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
|
|
NULL, INTR_TYPE_CLK, NULL);
|
|
i8254_intsrc = intr_lookup_source(0);
|
|
if (i8254_intsrc != NULL)
|
|
i8254_pending =
|
|
i8254_intsrc->is_pic->pic_source_pending;
|
|
} else {
|
|
i8254_timecounter.tc_get_timecount =
|
|
i8254_simple_get_timecount;
|
|
i8254_timecounter.tc_counter_mask = 0xffff;
|
|
set_i8254_freq(i8254_freq, hz);
|
|
}
|
|
|
|
/* Initialize RTC. */
|
|
atrtc_start();
|
|
|
|
/*
|
|
* If the separate statistics clock hasn't been explicility disabled
|
|
* and we aren't already using the local APIC timer to drive the
|
|
* kernel clocks, then setup the RTC to periodically interrupt to
|
|
* drive statclock() and profclock().
|
|
*/
|
|
if (!statclock_disable && !using_lapic_timer) {
|
|
diag = rtcin(RTC_DIAG);
|
|
if (diag != 0)
|
|
printf("RTC BIOS diagnostic error %b\n",
|
|
diag, RTCDG_BITS);
|
|
|
|
/* Setting stathz to nonzero early helps avoid races. */
|
|
stathz = RTC_NOPROFRATE;
|
|
profhz = RTC_PROFRATE;
|
|
|
|
/* Enable periodic interrupts from the RTC. */
|
|
intr_add_handler("rtc", 8,
|
|
(driver_filter_t *)rtcintr, NULL, NULL,
|
|
INTR_TYPE_CLK, NULL);
|
|
atrtc_enable_intr();
|
|
}
|
|
|
|
init_TSC_tc();
|
|
}
|
|
|
|
void
|
|
cpu_startprofclock(void)
|
|
{
|
|
|
|
if (using_lapic_timer)
|
|
return;
|
|
atrtc_rate(RTCSA_PROF);
|
|
psdiv = pscnt = psratio;
|
|
}
|
|
|
|
void
|
|
cpu_stopprofclock(void)
|
|
{
|
|
|
|
if (using_lapic_timer)
|
|
return;
|
|
atrtc_rate(RTCSA_NOPROF);
|
|
psdiv = pscnt = 1;
|
|
}
|
|
|
|
static int
|
|
sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
u_int freq;
|
|
|
|
/*
|
|
* Use `i8254' instead of `timer' in external names because `timer'
|
|
* is is too generic. Should use it everywhere.
|
|
*/
|
|
freq = i8254_freq;
|
|
error = sysctl_handle_int(oidp, &freq, 0, req);
|
|
if (error == 0 && req->newptr != NULL)
|
|
set_i8254_freq(freq, hz);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
|
|
|
|
static unsigned
|
|
i8254_simple_get_timecount(struct timecounter *tc)
|
|
{
|
|
|
|
return (i8254_max_count - getit());
|
|
}
|
|
|
|
static unsigned
|
|
i8254_get_timecount(struct timecounter *tc)
|
|
{
|
|
u_int count;
|
|
u_int high, low;
|
|
u_int eflags;
|
|
|
|
eflags = read_eflags();
|
|
mtx_lock_spin(&clock_lock);
|
|
|
|
/* Select timer0 and latch counter value. */
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
|
|
|
|
low = inb(TIMER_CNTR0);
|
|
high = inb(TIMER_CNTR0);
|
|
count = i8254_max_count - ((high << 8) | low);
|
|
if (count < i8254_lastcount ||
|
|
(!i8254_ticked && (clkintr_pending ||
|
|
((count < 20 || (!(eflags & PSL_I) &&
|
|
count < i8254_max_count / 2u)) &&
|
|
i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
|
|
i8254_ticked = 1;
|
|
i8254_offset += i8254_max_count;
|
|
}
|
|
i8254_lastcount = count;
|
|
count += i8254_offset;
|
|
mtx_unlock_spin(&clock_lock);
|
|
return (count);
|
|
}
|
|
|
|
#ifdef DEV_ISA
|
|
/*
|
|
* Attach to the ISA PnP descriptors for the timer
|
|
*/
|
|
static struct isa_pnp_id attimer_ids[] = {
|
|
{ 0x0001d041 /* PNP0100 */, "AT timer" },
|
|
{ 0 }
|
|
};
|
|
|
|
static int
|
|
attimer_probe(device_t dev)
|
|
{
|
|
int result;
|
|
|
|
result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
|
|
if (result <= 0)
|
|
device_quiet(dev);
|
|
return(result);
|
|
}
|
|
|
|
static int
|
|
attimer_attach(device_t dev)
|
|
{
|
|
return(0);
|
|
}
|
|
|
|
static device_method_t attimer_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, attimer_probe),
|
|
DEVMETHOD(device_attach, attimer_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t attimer_driver = {
|
|
"attimer",
|
|
attimer_methods,
|
|
1, /* no softc */
|
|
};
|
|
|
|
static devclass_t attimer_devclass;
|
|
|
|
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
|
|
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
|
|
|
|
#endif /* DEV_ISA */
|